Q	Question		Answer			Marks	Guidance
1	(a)	(i)	mass of the isotope of OR mass of the atom con (the mass of a) ¹² C (a	npared to 1/1		2	 ALLOW for ¹²C: carbon-12 OR C-12 OR C 12 OR 12 C IGNORE reference to average OR weighted mean (ie correct definition of relative atomic mass scores both marks) ALLOW mass of a mole of the isotope/atom with 1/12th ✓ the mass of a mole OR 12 g of carbon-12 ✓ ALLOW 2 marks for: 'mass of the isotope OR mass of the atom compared to ¹²C atom given a mass of 12.0' ie 'given a mass of 12' communicates the same idea as 1/12th' ALLOW FOR 2 MARKS: mass of the isotope mass of 1/12th mass of carbon - 12 ie fraction is equivalent to 'compared to' ALLOW 1 MARK FOR a mix of mass of atom and mass of mole of atoms, ie: 'mass of the isotope/mass of an atom compared with 1/12th the mass of a mole OR 12 g of carbon-12' DO NOT ALLOW mass of ion OR mass of element BUT ALLOW mass of an atom of an element
		(ii)	Both rows completed	correctly ✓		1	ALL four entries in table correct for 1 mark
				protons	neutrons		
			iodine-127	53	74		
			iodine-131	53	78		

Q	Question		Answer	Marks	Guidance
1	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = 91.6 (μ g), must be 3 sf, award 2 marks Amount of I ⁻ mark: = 70.0 x 10 ⁻⁶ /126.9 OR = 5.52 x 10 ⁻⁷ \checkmark (mol)	2	If there is an alternative answer, check to see if there is any ECF credit possible FOR ONE MARK ONLY using working below ALLOW 70.0 x 10^{-x} /126.9 OR 5.52 x 10^{-x} (ie wrong conversion of µg and g) ALLOW calculator values which round to 5.52 x 10^{-x} , ie 3 significant figures or more
			Mass of KI = $(5.52 \times 10^{-7}/10^{-6}) \times 166.0$ = 91.6 (µg) must be 3 sf \checkmark		ALLOW ECF for incorrect calculated amount of $I^- x$ 166.0, must be 3 sf ALLOW calculator value or rounding to 3 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2. Answers with 91.6 x 10 ^{-x} (ie wrong conversion of µg and g) would get one mark
		(ii)	Ethical implications Some people feel it is wrong to put additives into the national diet OR Dietary issues Food OR diet contains sufficient amounts of iodide ✓	1	ALLOW some people disapprove of additives in their food Assume 'it' refers to KI IGNORE economic reasons ALLOW (excess) potassium OR K ⁽⁺⁾ OR KI is harmful OR toxic ALLOW too much iodine OR iodide OR I ⁽⁻⁾ is harmful OR toxic ALLOW iodine OR iodide OR I ⁽⁻⁾ OR KI is radioactive ALLOW any effect which would be detrimental to human health OR well-being OR eg 'lead to heart problems' ALLOW some table salt already contains iodide (eg sea salt) ALLOW some countries do not have (access to) KI IGNORE references to dangerous OR taste IGNORE responses referring solely to intake going above GDA IGNORE carcinogenic
	(C)	(i)	$Cl_2 + 2l^- \rightarrow 2Cl^- + l_2 \checkmark$	1	IGNORE state symbols

Q	uesti	on	Answer	Marks	Guidance
1	(c)	(ii)	Two alternative explanations to award the two marks:	2	<i>Quality of Written Communication:</i> 'dipole' OR 'permanent' spelled correctly at least once and in context for marking point 1 in explanation 1
			Explanation 1 ICI has permanent dipole (–dipole) (interactions) AND CI_2 has (only) van der Waals' forces \checkmark		ALLOW 'vdW' for van der Waals' IGNORE references to van der Waals' forces in IC <i>I</i> in explanation 1 DO NOT ALLOW 'dipole–dipole interactions' without reference to these being permanent for marking point 1
			Forces are stronger in IC/ ORA OR More energy is needed to overcome forces in IC/ ✓ ORA		DO NOT ALLOW marking point 2 for comparison of IC/ having stronger ionic OR covalent bonds than Cl ₂ <i>Quality of Written Communication</i> – 'electrons' spelled correctly once and used in context for marking point 1 of explanation 2
			Explanation 2 ICI has more electrons ✓ ORA		ALLOW I has more electrons
			Stronger van der Waals' forces in IC <i>I</i> (than in C <i>I</i> ₂) ORA OR More energy is needed to overcome van der Waals' forces in IC $I \checkmark$ ORA		ALLOW more van der Waals' forces ALLOW 'vdW' for van der Waals'
			Total	9	

Q	Question		Answer	Marks	Guidance	
2	(a)	(a) Add (aqueous) silver nitrate OR AgNO ₃ OR Ag ⁺ ions ✓		2	IGNORE references to nitric acid DO NOT ALLOW references to any other additional reagent added to silver nitrate for marking point 1	
			white AND precipitate ✓		 ALLOW 'solid' OR 'ppt' for 'precipitate'. Both colour AND state is needed. IGNORE references to solubility in ammonia for marking point 2 if colour of precipitate is stated BUT ALLOW 'dissolves in dilute ammonia' if no colour of precipitate is given DO NOT ALLOW marking point 2 if additional reagent leads to invalid test 	
	(b)		The mixture effervesced OR fizzed OR bubbled OR produced a gas \checkmark X is CaCO ₃ OR calcium carbonate \checkmark	2	ALLOW CaO would not fizz IGNORE name of gas	
	(C)	(i)	Contains water (of crystallisation) ✓	1	ALLOW 'with water' OR 'has water' DO NOT ALLOW 'in solution' OR 'in water'	
		(ii)	Working must be marked first 219.1 – 111.1 = 108 ✓ 108/18 (= 6) AND CaC <i>l</i> ₂ •6H ₂ O ✓	2	ALLOW $CaC_{l_2}(H_2O)_6$ ALLOW $CaC_{l_2}6H_2O$ (ie no 'dot') ALLOW [219.1 – (40.1 + 2 x 35.5)] / 18 AND $CaC_{l_2}\bullet 6H_2O$ for two marks ALLOW ECF for incorrectly calculated mass of H_2O / 18 provided final answer is rounded to nearest whole number for marking point 2	

Question	Answer	Marks	Guidance
2 (d)	$\begin{bmatrix} Ca \\ 2^+ \\ C^- \\ C^-$	2	For first mark, if eight electrons are shown in the cation then the 'extra' electron in the anion must match symbol chosen for electrons in the cation IGNORE inner shell electrons Circles not essential ALLOW One mark if both electron arrangement and charges are correct but only one Cl is drawn ALLOW 2[Cl ⁻] 2[Cl] ⁻ [Cl ⁻] ₂ (brackets not required) DO NOT ALLOW [Cl ₂] ⁻ [Cl ₂] ²⁻ [2Cl] ²⁻ [Cl] ₂ ⁻
(e)	Ba is more reactive than Ca ✓ ORA Br₂ is less reactive than Cl₂ ✓ ORA	2	 ALLOW reactivity increases down Group 2 ORA Provided Ca and Ba have been identified as Group 2 elements ALLOW reactivity decreases down Group 7 ORA Provided C<i>I</i> and Br have been identified as Group 7 elements ALLOW one mark for both sentences if no ascribing to groups ALLOW Br for Br₂ and C<i>I</i> for C<i>I</i>₂ DO NOT ALLOW Br⁻ for Br₂ OR C<i>I</i>⁻
	Total	11	

Q	uesti	on	Answer	Marks	Guidance
3	(a)	(i)	A region (within an atom) that can hold (up to) two electrons ✓ (with opposite spin)	1	 ALLOW 'can be found' OR 'contains' OR 'has' etc. for 'can hold' ALLOW 'area' OR 'volume' OR 'space' OR 'somewhere' etc. for region DO NOT ALLOW path of an electron IGNORE references to 'orbitals being parts of sub-shells'
		(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴ ✓	1	ALLOW subscripts, capitals IGNORE 1s ² seen twice
		(iii)	7 ✓	1	
	(b)		(The amount of substance which contains) as many particles as there are carbon atoms in 12g of ¹² C (atoms) ✓	1	ALLOW 6.02×10^{23} particles (atoms, molecules, ions etc.)OR N_A particles OR L particlesALLOW 'Avogadro number' in place of N_A particlesALLOW 'Number of atoms in 12 g of 12 C'DO NOT ALLOW 'the number of particles in 12g of 12 C atoms'
	(c)		Energy (needed) to remove an electron ✓ from each atom in one mole ✓ of gaseous atoms ✓	3	ALLOW 'Energy to remove one mole of electrons from one mole of gaseous atoms' for three marks IGNORE 'element' ALLOW 'Energy needed to remove an electron from one mole of gaseous atoms (to form one mole of gaseous 1+ ions') for two marks For third mark: ALLOW ECF if wrong 'particle' is used in second marking point but is described as being gaseous eg 'molecule' instead of 'atom' If no definition, ALLOW one mark for X(g) → X ⁺ (g) + e ⁻ OR X(g) - e ⁻ → X ⁺ (g) ALLOW e ⁻ for electron IGNORE state symbols on e

Quest	ion	Answer	Marks	Guidance
3 (d)	(i)	From F to Ne	3	Use annotations with ticks, crosses, ECF etc for this part
		Nuclear charge mark:		
		Ne has (one) more proton		ALLOW proton number increases but IGNORE atomic
		OR		number increases
		Nuclear charge increases ✓		IGNORE nucleus gets bigger
				IGNORE 'charge increases' ie must be nuclear charge
		Same shell or energy level mark:		IGNORE 'effective nuclear charge increases'
		(Outermost) electrons are in the same shell OR energy		
		level		ALLOW sub-shell for shell but IGNORE orbitals
		OR		
		(Outermost) electrons experience the same shielding \checkmark		ALLOW shielding is similar
				ALLOW screening for shielding
				IGNORE Atomic radius decreases (because given in
				question) OR outermost electrons are closer
				DO NOT ALLOW 'distance is the same' for second mark
		Nuclear attraction mark:		
		Greater nuclear attraction (on outermost electrons)		ALLOW greater nuclear pull for greater nuclear attraction
		OR		DO NOT ALLOW 'greater nuclear charge' instead of 'greater
		Outer electrons are attracted more strongly (to the		nuclear attraction' for the third mark
		nucleus) ✓		IGNORE 'pulled closer' for 'pulled more strongly'
	(ii)	From Ne to Na	3	Use annotations with ticks, crosses, ECF etc for this part
	. ,	Extra shell or energy level mark:		ALLOW 'next' shell OR 'new' shell
		Na has (one) more shell(s) OR energy level \checkmark		ALLOW (outermost) electrons in a higher energy level
				ALLOW outermost electrons OR shell further from nucleus
				IGNORE Atomic radius increases (because given in
				question)
				DO NOT ALLOW orbitals OR sub-shells
		Shielding mark:		
		(Outermost) electron experiences greater shielding ✓		ALLOW screening for shielding
				ALLOW more electron repulsion from inner shells
		Nuclear attraction mark:		
		Less nuclear attraction (on outermost electrons)		ALLOW 'less nuclear pull' for 'less nuclear attraction'
		OR		DO NOT ALLOW 'less nuclear charge' for 'less nuclear
		Outer electrons are attracted less strongly (to nucleus) ✓		attraction' for third mark. There must be a clear comparison
	1	Total	13	

Q	uestic	on		Answe	er	Marks	Guidance
4	(a)		solid	melting point / ⁰C	type of lattice	2	
			К	63			
			KBr	734	giant ionic ✓		giant AND ionic required
			H ₂ O	0	simple molecular ✓		simple AND molecular required ALLOW simple covalent
	(b)		Particle mark	<i>1:</i> tatic attraction bet	ween)	6	Use annotations with ticks, crosses, ECF etc for this part
				cations AND e ⁻ / el			ALLOW labels from diagrams if not seen in text
			<i>Particle mark</i> In KBr. (electr	— -	etween) oppositely OR		ALLOW K^+ and Br^- for 'oppositely charged ions'
				D negatively charg			DO NOT ALLOW 'atoms' in KBr
			positive ions a AND KBr has ionic	and electrons bonding OR KBr h	s attraction between as attraction between		IGNORE 'metallic lattice' for metallic bonding' AND 'ionic lattice' for 'ionic bonding' DO NOT ALLOW , for forces mark, incorrect forces for K and KBr, such as covalent, van der Waals' seen anywhere in the response
			oppositely cha	arged ions ✓			IGNORE references to van der Waals' forces in water
			Forces mark: hydrogen bon	ding 🗸			ALLOW 'intermolecular' OR 'molecular' for particles mark <i>Quality of Written Communication</i> : 'molecules' OR 'intermolecular' OR 'molecular' spelt correctly once and used
			<i>Particles mark</i> (Between) mo				in context for the fifth marking point
			OR	gth of forces: KBr > metallic bonding	> K > H₂O > hydrogen bonding ✓		The order of all three substances OR bonding must be referred to for this mark ALLOW responses which use comparatives such as strong and extremely strong to differentiate strength of forces ALLOW answers that inform KBr > K > H ₂ O IGNORING incorrect forces used above

Q	uesti	on	Answer	Marks	Guidance
4	(C)		FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = 72(.0) (cm ³) award 3 marks amount of K = 0.2346 / 39.1 OR = 6.(00) × 10^{-3} OR 0.006(00) mol \checkmark	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below
			amount of H ₂ = (mol of K) / 2 OR = $3.(00) \times 10^{-3}$ OR 0.003(00) mol \checkmark		ALLOW mol of K x 0.5 correctly calculated for 2nd mark
			Volume of gas = (mol of H ₂) × 24000 OR = 72(.0) (cm ³) \checkmark		 ALLOW mol of H₂ x 24000 correctly calculated for 3rd mark ALLOW 144 (cm³) from 0.006 x 24000 for two marks ALLOW 0.072 from 0.003 x 24 for two marks ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2
			Total	11	

Q	uesti	on	Answer	Marks	Guidance
5	(a)	(i)	The H ⁺ OR hydrogen ions OR protons in (sulfuric) acid have been replaced by ammonium ions OR NH ₄ ⁺ ✓	1	ALLOW 'a positive ion' for 'ammonium ions' BUT IGNORE 'a positive metal ion' OR 'metal ions' for 'ammoniu ions' IGNORE references to being produced by the reaction of ar acid and a base DO NOT ALLOW hydrogen atoms OR ammonia ions DO NOT ALLOW 'H for H ⁺ OR NH ₄ for NH ₄ ⁺
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = 0.104 (mol) award 3 marks Amount of $H_2SO_4 = 0.100 \times 32.5/1000 = 3.25 \times 10^{-3}$ OR 0.00325 mol \checkmark	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECF for amount of $H_2SO_4 \times 2$
			Amount of NH_3 = (mol of H_2SO_4) × 2 = 6.50 × 10 ⁻³ OR 0.0065 mol \checkmark No. of mol of NH_3 = (mol of NH_3) × 400 / 25.0 = 0.104 (mol) \checkmark		ALLOW ECF for amount of NH ₃ × 400 / 25.0 ALLOW concentration approach for marking point 3 Conc ammonia = $6.50 \times 10^{-3} \times 1000 / 25.0 = 0.260 \text{ mol dm}^{-3}$ mol of NH ₃ = (conc of NH ₃) × 400 / 1000 = 0.104 (mol) ALLOW calculator value or rounding to 2 sig figs or more
	(b)		Predicted bond angle 107° ✓ <i>Explanation</i> There are 3 bonded pairs and 1 lone pair ✓ Electron pairs repel ✓ Lone pairs repel more than bonded pairs ✓	4	BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2ALLOW range 106–108°ALLOW a response which is equivalent to 3 bp and 1 lp, eg 'There are four pairs of electrons. One is a lone pair'ALLOW 'bonds' for 'bonded pairs'ALLOW diagram showing N atom with 3 dot-and-cross bonds and 1 lone pair clearly drawn onto it for second mark IGNORE stick versions of bonding DO NOT ALLOW 'atoms repel' for 'electron pairs repel'IGNORE 'electrons repel'ALLOW 'bonds repel'

Q	uesti	on	Answer	Marks	Guidance
5	(C)	(i)	OH⁻✓	1	Correct charge must be seen ALLOW OH [−] if seen as the ONLY negative product of an equation
		(ii)	$N_2H_5^+ $ OR $N_2H_6^{2+} \checkmark$	1	ALLOW $H_2N-NH_3^+$ OR $H_3N-NH_3^{2+}$
	(d)	(i)	CI goes from (+)1 to –1 ✓	3	 ALLOW 1(+), 1–. Only look for oxidation numbers seen above or below equation if not seen in text IGNORE CI[−] CI⁺ DO NOT ALLOW If a second species is seen going down in oxidation number with the exception of N going from -3 to -4
			N goes from –3 to –2 ✓		ALLOW 3 –, 2 –. Only look for oxidation numbers seen above or below equation if not seen in text IGNORE N^{3-} N^{2-} DO NOT ALLOW If a second species is seen going up in oxidation number
			C <i>I</i> is reduced AND N is oxidised ✓		ALLOW ECF for oxidation of any species showing an increase in oxidation number AND for reduction of any species showing a decrease in oxidation number
					IGNORE references to electron loss OR gain ALLOW 3 marks for labelled equation such as below
					$2NH_{3} + NaCIO \rightarrow N_{2}H_{4} + NaCI + H_{2}O$ $-3 + 1 -2 -1$ $\boxed{oxidation}$ $reduction$
		(ii)	sodium chlorate(I) ✓	1	ALLOW sodium chlorate I (ie no brackets) ALLOW sodium hypochlorite IGNORE bleach DO NOT ALLOW sodium chlorate (with no Roman numeral)
		(iii)	$N_2H_4 + 2NH_2CI \rightarrow 2NH_4CI + N_2 \checkmark \checkmark$	2	One mark for N₂ One mark for NH₄C / AND balancing
			Total	16	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

