Qı	uestion	Answer	Mark	Guidance
1	(a)	Rb-87 has (two) more neutrons ✓	1	 ALLOW Different numbers of neutrons ALLOW 2 neutrons ALLOW Rb-85 has 48 neutrons AND Rb-87 has 50 neutrons IGNORE correct references to protons and electrons DO NOT ALLOW incorrect references to protons and electrons
	(b)	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) ✓ compared with 1/12th (the mass) ✓ of (one atom of) carbon-12 ✓	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular; 'isotope' For second AND third marking points ALLOW compared with (the mass of) carbon-12 which is 12 ALLOW mass of one mole of atoms ✓ compared to 1/12th ✓ (mass of) one mole OR 12 g of carbon-12 ✓ ALLOW mass of one mole of atoms 1/12th mass of one mole OR 12 g of carbon-12
	(c)	$\frac{(85.00 \times 72.15) + (87.00 \times 27.85)}{100} =$ OR 61.3275 + 24.2295 OR 85.557 \checkmark A _r = 85.56 (to 2 decimal places) \checkmark	2	ALLOW two marks for correct answer $A_r = 85.56$ (with no working)ALLOW one mark for ECF from seen incorrect sum provided final answer is between 85 and 87 and is to 2 decimal places, e.g. 85.567 gives ECF of 85.57 for one mark

C	Question		Answer	Mark	Guidance
1	(d)		Spherical OR sphere ✓	1	DO NOT ALLOW 'circular'
					IGNORE unlabelled 2-D diagrams
	(e)	(i)	$Sr^{+}(g) \rightarrow Sr^{2+}(g) + e^{-} \checkmark$	1	ALLOW e for electrons
					ALLOW $Sr^+(g) - e^- \rightarrow Sr^{2+}(g)$
					DO NOT ALLOW $Sr^{+}(g) + e^{-} \rightarrow Sr^{2+}(g) + 2e^{-}$
					IGNORE state symbols for electrons
	(e)	(ii)		3	Use annotations with ticks, crosses ECF etc. for this part
			Sr has one more proton		Comparison should be used for each mark
			OR greater nuclear charge ✓		
					ALLOW Sr has more protons ALLOW 'across the period' for 'Sr'
					IGNORE 'atomic number increases', but ALLOW 'proton
					number' increases
					IGNORE 'nucleus gets bigger'
					'Charge increases' is insufficient
					ALLOW 'effective nuclear charge increases' OR 'shielded
					nuclear charge increases'
					Quality of Written Communication – Nuclear OR proton(s)
					OR nucleus spelled correctly ONCE for the first marking point
					ALLOW shielding is similar
			(Outermost) electrons are in the same shell		ALLOW screening for shielding
			OR (outermost) electrons experience same shielding OR Atomic radius of Sr is smaller \checkmark		IGNORE sub-shells
			OR Atomic radius of Sr is smaller V		DO NOT ALLOW 'distance is similar'
			Sr has greater nuclear attraction (on outer electrons /		ALLOW 'greater nuclear pull' for 'greater nuclear attraction'
			outer shell/s)		DO NOT ALLOW 'nuclear charge' for nuclear attraction
			OR the (outer) electrons are attracted more strongly (to the nucleus) ✓		ORA throughout

Mark Scheme

January 2011

(Quest	ion	Answer	Mark	Guidance
1	(e)	(iii)	2nd IE of Rb involves removing electron from shell closer to nucleus ✓	2	IGNORE new shell ALLOW There is one shell fewer in Rb(⁺) (than Sr ⁺) ALLOW Rb(⁺) has a smaller radius (than Sr ⁺) ALLOW Rb(⁺) loses an electron from the 4th shell AND Sr(⁺) loses an electron from the 5th shell.
			Strong er nuclear attraction on (outermost electron) of Rb OR (outermost electron) of Rb experiences less shielding ✓		 ALLOW responses which do not specifically say 'nuclear' attraction (e.g. Rb has greater attraction) as long as nucleus is seen in first point A comparison of Rb to Sr must be used, e.g. 'Because of shielding' is not enough ORA
			Total	13	

G	Question		Answer		Guidance
2	(a)	(i)	mol of H _x A = 25.00×0.0500 = 1.25×10^{-3} OR 0.00125 mol \checkmark	1	ALLOW 0.0013 OR 1.3 × 10 ⁻³
			1000		ALLOW correct answer only without working
		(ii)	mol of NaOH =	1	ALLOW correct answer without working
			$\frac{12.50 \times 0.200}{1000} = 2.5(0) \times 10^{-3} \mathbf{OR} 0.0025(0) \text{mol} \checkmark$		
		(iii)	Answer 2a(ii) rounded to nearest whole number ✓ Answer 2a(i)	1	ALLOW answer without working if answers to 2a(i) AND 2a(ii) are seen
			If 2a(i) and 2a(ii) are correct this will be $x = \frac{2.50 \times 10^{-3} \text{ mol}}{1.25 \times 10^{-3} \text{ mol}} = 2$ OR H ₂ A		DO NOT ALLOW responses without seeing answers in 2a(i) AND 2a(ii)
	(b)	(i)	$\frac{\text{HNO}_3}{\text{CuO} + 2\text{HNO}_3} \rightarrow \text{Cu(NO}_3)_2 + \text{H}_2\text{O} \checkmark$	2	IGNORE state symbols ALLOW correct multiples
		(ii)	(Electrostatic) attraction between oppositely charged ions ✓	1	Attraction is essential IGNORE references to metal and non-metal
		(iii)	lons are mobile OR ions can move ✓	1	IGNORE 'free ions' IGNORE 'delocalised ions' IGNORE ions can move when molten IGNORE charge carriers DO NOT ALLOW Any mention of electrons moving ALLOW ions move when in a liquid IGNORE responses which give liquid ions
		(iv)	(+) 5 ✓	1	ALLOW V

F32	F321				January 2011		
C	Question		Answer	Guidance			
2	(c)		Cu(NO ₃) ₂ •6H ₂ O ✓		1	ALLOW $Cu(NO_3)_26H_2O$ ALLOW $Cu(NO_3)_2(H_2O)_6$ ALLOW $Cu(NO_3)_2.6H_2O$ DO NOT ALLOW $CuN_2O_6\bullet 6H_2O$	
				Total	9		

C	Quest	ion	Answer	Mark	Guidance
3	(a)		The ability of an atom to attract electrons ✓	2	ALLOW 'attraction of an atom for electrons' ALLOW 'pull' for 'attract' DO NOT ALLOW 'element' for 'atom'
			in a covalent bond \checkmark		ALLOW 'shared pair' or 'bond(ing) pair' for 'covalent bond'
	(b)		δ ⁺ N–Fδ [−] AND δ [−] N–Brδ ⁺ ✓	1	ALLOW d+ / d- DO NOT ALLOW + / -
	(c)	(i)	octahedral OR octahedron ✓	1	
		(ii)	F B C C C D i agram of BF ₃ showing three ' <i>dot-and-cross</i> ' bonds between B and F and all F atoms with complete octet of electrons \checkmark D i agram of NH ₃ showing three ' <i>dot-and-cross</i> ' bonds between N and H and N atom has a lone pair \checkmark Marking points 3, 4 and 5 may be awarded independently	5	Use annotations with ticks, crosses ECF etc. for this part ALLOW diagrams without circles Must be 'dot-and-cross'
			electron pairs repel ✓		IGNORE 'electrons repel' DO NOT ALLOW 'atoms repel' ALLOW 'bonds repel'
			NH_3 has one lone pair and three bonding pairs of electrons AND lone pair of electrons repels more than bonding pairs \checkmark		ALLOW 'bonds' for 'bonding pairs' ALLOW 'four pairs' in place of 'one lone pair and three bonding pairs'
			BF₃ has three (bonding) pairs of electrons (which repel equally) ✓		The third marking point can be gained from statements seen in fourth or fifth marking points

F321

Mark Scheme

C	Question		Answer	Mark	Guidance
3	(c)	(iii)	BF₃ is symmetrical ✓ The dipoles cancel out ✓	2	IGNORE 'polar bonds cancel' IGNORE 'charges cancel'
			Total	11	

C	Quest	ion	Answer	Mark	Guidance
4	(a)		Used to neutralise acidic soils ✓ Excess will result in soils becoming too alkaline (to sustain crop growth) ✓	2	ALLOW raises the pH of the soil IGNORE references to fertilisers ALLOW pH becomes too high IGNORE 'harmful' IGNORE 'corrosive'
	(b)	(i)	0.00131 × 40.1 = 0.0525 g OR 5.25 × 10 ⁻² ✓	1	ALLOW 0.053 OR 0.05253 OR 0.052531 g IGNORE 0.05 if correct answer seen in working DO NOT ALLOW 0.052 OR 0.0524
		(ii)	0 00131 × 24.0 = 0.0314 dm ³ OR 3.14 × 10 ⁻² ✓	1	ALLOW 0.031 OR 0.03144 dm ³ IGNORE 0.03 if correct answer seen in working DO NOT ALLOW 31.4
		(iii)	Mol of OH^- ions = 0.00131 × 2 = 0.00262 OR 2.62 × 10 ⁻³ \checkmark Mol of OH^- ions in 1 dm ³ = 0.00262 × <u>1000</u> = 0.0105 mol dm ⁻³ 250 \checkmark	2	ALLOW 0.0026 ALLOW 0.01048 OR 0.01(0) ALLOW ECF from incorrect mol of OH [−] DO NOT ALLOW 2nd mark as ECF if 0.0525 is used as no of mol of OH [−] ions DO NOT ALLOW 2nd mark as ECF if 0.0314 is used as no of mol of OH [−] ions 0.00524 mol dm ^{−3} is a likely ECF as a result of not multiplying 0.00131 by 2, but 0.00131 must be seen in working
	(c)	(i)	Fewer moles of Ba (in 0.0525 g) OR Fewer atoms of Ba (in 0.0525) ✓	1	ORA Assume candidate is referring to Ba if not stated IGNORE A_r Ba > A_r Ca
		(ii)	Idea of Ba having a quick er rate OR more vigorous reaction ✓	1	ALLOW more exothermic OR gets hotter OR fizzes more Assume candidate is referring to Ba if not stated Comparison is essential IGNORE 'Ba more reactive' ORA
			Total	8	

Q	uest	ion	Answer	Mark	Guidance
5	(a)	(i)	Creating the dipole mark uneven distribution of electrons ✓	3	Use annotations with ticks, crosses ECF etc. for this part ALLOW movement of electrons ALLOW changing electron density
			<i>Type of dipole mark</i> creates an instantaneous dipole OR temporary dipole ✓		ALLOW 'transient', 'oscillating', 'momentary', 'changing'
			<i>Induction of a second dipole mark</i> causes induced dipole(s) in neighbouring molecules ✓		ALLOW 'induces a dipole in neighbouring molecules' ALLOW 'causes a resultant dipole in neighbouring molecules' ALLOW 'atoms' for 'molecules'
		(ii)	boiling points increase down the group ✓ greater number of electrons	3	Use annotations with ticks, crosses ECF etc. for this part ALLOW Bpt of iodine is highest OR Bpt of chlorine is lowest ALLOW CI for chlorine etc. For 'down the group' ALLOW 'as molecules get bigger'
			OR stronger intermolecular forces OR stronger van der Waals' forces ✓		ALLOW number of electron shells increases IGNORE 'more shells' (if no reference to electrons) ALLOW 'more' for 'stronger' ALLOW iodine has most electrons ALLOW chlorine has fewest electrons
			more energy needed to break intermolecular OR van der Waals' forces ✓		DO NOT ALLOW any implication that the attraction is between atoms not molecules for third mark
	(b)		Same number of outer(most) electrons OR same outer(most) electron structure ✓	1	ALLOW same number of electrons in outer shell ALLOW It has seven outer electrons IGNORE same group DO NOT ALLOW 'same number of electrons'

Que	stion	Answer	Mark	Guidance
5 (c) (i)	Colours: (Add Br ₂ to NaCl,) (Cyclohexane layer) turns orange OR yellow ✓ (Add Br ₂ to Nal,) (Cyclohexane layer) turns purple OR lilac OR violet OR pink OR mauve ✓ Equation: Br ₂ + 2l ⁻ → I_2 + 2Br ⁻ ✓	6	 Use annotations with ticks, crosses ECF etc. for this part ALLOW any combination of these but no others ALLOW any combination of these but no others DO NOT ALLOW 'precipitate' with either colour DO NOT ALLOW equation mark if incorrect equation(s) also seen IGNORE Br₂ + 2Cl⁻ → Br₂ + 2Cl⁻ IGNORE correct non-ionic version of equation IGNORE state symbols
		 <i>Reactivity:</i> Reactivity decreases down the group OR Oxidising power decreases down the group ✓ <i>Explanations:</i> Chlorine will gain electron easiest OR form negative ion easiest ✓ 		 ALLOW Chlorine is the most reactive ALLOW Cl for chlorine etc. ALLOW lodine is the least reactive ALLOW chlorine is best at electron capture ALLOW chlorine has 'greatest' electron affinity IGNORE chlorine is most electronegative DO NOT ALLOW explanations in terms of displacement <i>Quality of Written Communication – Electron(s) OR negative spelled</i> <i>correctly at least ONCE for marking point 5</i>
		Because chlorine (atom) is smallest OR Outer(most) shell of chlorine least shielded OR Nuclear attraction on electrons of chlorine is greatest ✓		ALLOW Chlorine atom has fewest shells ALLOW outer(most) shell closest to the nucleus ALLOW Chlorine atom has lowest shielding ORA for marking points 4, 5 and 6

Que	estic	on	Answer	Mark	Guidance
5 (0	c)	(ii)	Bromine is toxic ✓	1	ALLOW cyclohexane is toxic ALLOW bromine irritates the lungs DO NOT ALLOW Cl ₂ is toxic IGNORE 'strong smelling' IGNORE 'halogens' are toxic
(0	d)	(i)	$2F_2 + 2H_2O \rightarrow 4HF + O_2 \checkmark$	1	ALLOW correct multiples, including use of ½ O ₂ ALLOW 4FH IGNORE state symbols
		(ii)	Oxygen has been oxidised as (oxidation number has increased from) $O = -2$ to $O = 0 \checkmark$ Fluorine has been reduced as (oxidation number has decreased from) F = 0 to F = -1 \checkmark	2	IGNORE references to oxygen in any incorrect products DO NOT ALLOW $O_2 = -2 \rightarrow O = 0$ but ALLOW $F_2 = 0 \rightarrow F = -1$ ALLOW 'F is reduced from 0 to -1' regardless of product (or no product) in 5d(i) except ALLOW ECF for $F = -2$ if H_2F is seen ALLOW one mark for $O = -2$ and $O_2 = 0$ AND $F_2 = 0$ and $F = -1$ if no reference OR incorrect reference to oxidation / reduction is seen Look at equation in 5d(i) for oxidation numbers if not seen in 5d(ii) IGNORE reference to electron loss / gain if correct DO NOT ALLOW incorrect reference to electron loss / gain
(€	e)	(i)	$(1s^2) 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^1 \checkmark$	1	IGNORE 1s ² twice ALLOW 4s ² before 3d ¹⁰ ALLOW '3D'
		(ii)	GaF₃ ✓	1	
			Total	19	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

