Answer all the questions.

- 1 The element indium, atomic number 49, is a very soft, silvery-white metal with a brilliant shine. One strange property of indium is that it makes a high-pitched 'scream' when bent! It occurs as a mixture of two isotopes, ¹¹³In and ¹¹⁵In.
 - (a) Complete the table below for the isotopes of indium.

isotope	protons	neutrons	electrons
¹¹³ In			
¹¹⁵ In			

[2]

(b) A sample of indium contains 4.23% of ¹¹³In and 95.77% ¹¹⁵In.

Calculate the relative atomic mass of the indium sample.

Give your answer to one decimal place.

A,	=	 	 	 	[2]
r					[-]

(c) Indium has metallic bonding.

Draw a labelled diagram to show metallic bonding.

[2]

		3	
(d)	A co	ompound of indium and iodine has the following percentage composition by mass:	
	In, 2	23.19%; I, 76.81%. The relative molecular mass of this compound is 992.	
	(i)	Define the term relative molecular mass.	
			[3]
	(ii)	Calculate the molecular formula of this compound.	

molecular formula =[3]

[Total: 12]

© OCR 2008 [Turn over

2 This question refers to the first 20 elements in the Periodic Table. These are shown below.

				Н								Не
Li	Ве						В	С	N	0	F	Ne
Na	Mg						Αl	Si	Р	S	Cl	Ar
K	Ca											

(a)		m these first 20 elements only , identify an element that fits each of the foll scriptions.	owing
	(i)	The element that forms a 2+ ion with the same electronic configuration as Ar.	
			[1]
	(ii)	The element that forms a 3– ion with the same electronic configuration as Ne.	
			[1]
	(iii)	The element that has atoms with a 3p subshell containing five electrons.	
			[1]
	(iv)	An element that forms a compound with fluorine with trigonal planar molecules.	
			[1]
	(v)	The element with the smallest first ionisation energy.	
			[1]
	(vi)	An element with a giant covalent lattice.	

[1]

.....

(b)	Elei	ments form many compounds.	
		pose compounds, formed from the first 20 elements only , to illustrate ionic and covalding.	lent
	Sho	owing outer electrons only, draw 'dot-and-cross' diagrams of your chosen examples.	
	(i)	'Dot-and-cross' diagram for a compound with ionic bonding.	
	(ii)	'Dot-and-cross' diagram for a compound with covalent bonding.	[2]
			[2]
(c)	Acr	oss a period in the Periodic Table, elements often show characteristic trends.	
	Des	scribe and explain the trend in atomic radius across Period 3.	
			[4]

[Total: 14]

3	(a)		tudent prepared some chlorine gas on a small scale by reacting hydrochloric acid with isehold bleach.
		The	e reaction is shown below.
			$2HCl(aq) + NaClO(aq) \longrightarrow Cl_2(g) + NaCl(aq) + H_2O(l)$
		chlo	e student reacted $1.0\mathrm{cm^3}$ of $6.0\mathrm{moldm^{-3}}$ HC l with $3.0\mathrm{cm^3}$ household bleach. $55\mathrm{cm^3}$ of prine gas were produced. The hydrochloric acid was in excess and this ensured that all the ClO in the bleach was reacted.
		Und	der these conditions, 1.0 mol of $Cl_2(g)$ has a volume of 24 dm ³ .
		(i)	Calculate how many moles of $\mathrm{C}\mathit{l}_{2}(\mathrm{g})$ were produced.
			answer = mol [1]
		(ii)	Calculate the concentration, in mol dm ⁻³ , of NaC lO in the bleach.
			concentration = mol dm ⁻³ [1]
		(iii)	Calculate the number of moles of HC <i>l</i> that remained after the reaction.
		(111)	Calculate the number of moles of mol that remained arter the reaction.
			answer = mol [3]
	(b)	A s	tudent carries out two experiments.
		(i)	The student bubbles some chlorine gas through a solution of sodium iodide. The solution turns a brown colour.
			Explain this observation and write an equation for the reaction that takes place.
			[2]

	(ii)	The student bubbles chlorine gas through aqueous silver nitrate. A white precipitate forms.
		Explain this observation including equations for any reactions that take place.
		[4]
(c)	HC7	is a polar molecule but ${ m CC}l_4$ is a non-polar molecule. This difference can be explained by sideration of electronegativity and molecular shapes.
	(i)	Explain the term <i>electronegativity</i> .
		[2]
	(ii)	Draw a 3-D diagram to show the shape of a molecule of ${\rm CC}l_4$. State the bond angle.
		[2]
	(iii)	Explain why HCl is a polar molecule but CCl_4 is a non-polar molecule.
		[3]

[Total: 18]

- 4 This question looks at the chemistry of Group 2 elements and their compounds.
 - (a) The flowchart below shows some reactions involving calcium compounds.

Identify substances **A–F** by writing their **formulae** in the boxes.

(b) In this question, one mark is available for the quality of spelling, punctuation and grammar.

All the Group 2 elements react with oxygen.

- Write a balanced equation, with state symbols, for the reaction of calcium with oxygen.
 Using this reaction, explain what is meant by oxidation and reduction in terms of electrons.
- State and explain the trend in reactivity of the Group 2 elements with oxygen. [5]