| Question | Expected Answers                                                                                                                                      | Marks | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 a i    | <sup>118</sup> Sn 50p 68n 50e Complete row ✓                                                                                                          | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ii       | <sup>120</sup> <sub>50</sub> Sn has (two) more neutrons / 70 neutrons ✓<br>ora                                                                        | 1     | ALLOW There is a different number of neutrons<br>IGNORE correct reference to protons / electrons<br>DO NOT ALLOW incorrect references to protons / electrons<br>ALLOW ECF for stated number of neutrons from 1a(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| b i      | <ul> <li>The (weighted) mean mass of an atom (of an element)</li> <li>OR</li> <li>The (weighted) average mass of an atom (of an element) ✓</li> </ul> | 3     | ALLOW average atomic mass<br>DO NOT ALLOW mean mass of an element<br>ALLOW mean mass of isotopes OR average mass of isotopes<br>DO NOT ALLOW the singular; 'isotope'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | compared with 1/12th (the mass) $\checkmark$                                                                                                          |       | For second <b>and</b> third marking points<br><b>ALLOW</b> compared with (the mass of) carbon-12 which is 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | of (one atom of) carbon-12 ✓                                                                                                                          |       | ALLOW mass of one mole of atoms ✓<br>compared to 1/12th ✓<br>(mass of) one mole OR 12g of carbon-12 ✓<br>ALLOW<br>mass of one mole of atoms<br>1/12th mass of one mole OR 12g of carbon-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C        | moles of Sn = $\frac{2080}{118.7}$ = 17.52 $\checkmark$<br>17.52 × 6.02 × 10 <sup>23</sup> = 1.05 × 10 <sup>25</sup> atoms $\checkmark$               | 2     | ALLOW 17.5 up to (correctly rounded) calculator value of 17.52316765<br>DO NOT ALLOW use of 118, which makes moles of Sn = 17.63<br>ALLOW 105 × 10 <sup>23</sup> atoms<br>DO NOT ALLOW answers which are not to three sig figs for second marking<br>point<br>ALLOW two marks for answer only of $1.05 \times 10^{25}$<br>ALLOW one mark for answer only if not 3 sig figs up to calculator value of<br>$1.054894693 \times 10^{25}$<br>Eg 100 × 1<br>ALLOW ECF for any calculated moles of Sn (based on use of any $A_r$ value) ×<br>$6.02 \times 10^{23}$ if shown to 3 sig figs<br>DO NOT ALLOW mass of Sn × $6.02 \times 10^{23}$                                                                        |
| C        | moles of Sn = $\frac{2080}{118.7}$ = 17.52 $\checkmark$<br>17.52 × 6.02 × 10 <sup>23</sup> = 1.05 × 10 <sup>25</sup> atoms $\checkmark$               | 2     | (mass of) one mole OR 12g of carbon-12 $\checkmark$<br>ALLOW<br><u>mass of one mole OR 12g of carbon-12</u><br>ALLOW 17.5 up to (correctly rounded) calculator value of 17.523<br>DO NOT ALLOW use of 118, which makes moles of Sn = 17.63<br>ALLOW 105 × 10 <sup>23</sup> atoms<br>DO NOT ALLOW answers which are not to three sig figs for sec<br>point<br>ALLOW two marks for answer only of $1.05 \times 10^{25}$<br>ALLOW one mark for answer only if not 3 sig figs up to calculator<br>1.054894693 × 10 <sup>25</sup><br>Eg 100 × 1<br>ALLOW ECF for any calculated moles of Sn (based on use of a<br>$6.02 \times 10^{23}$ if shown to 3 sig figs<br>DO NOT ALLOW mass of Sn × $6.02 \times 10^{23}$ |

| Qu | Question |  | Expected Answers              |                             | Marks        | Additional Guidance |                                                                                                                    |
|----|----------|--|-------------------------------|-----------------------------|--------------|---------------------|--------------------------------------------------------------------------------------------------------------------|
| 1  | d        |  | 78.8 and                      | <u>21.2</u>                 |              | 2                   | ALLOW SnO <sub>2</sub> for one mark if no working shown                                                            |
|    |          |  | 118.7                         | 16.0                        |              |                     | ALLOW use of 118 for this part                                                                                     |
|    |          |  | OR                            |                             |              |                     |                                                                                                                    |
|    |          |  | = 0.66(4) and                 | = 1.3(25)                   | $\checkmark$ |                     | IGNORE incorrect rounding provided given to two sig figs                                                           |
|    |          |  |                               |                             |              |                     | <b>IGNORE</b> incorrect symbols e.g. T or Ti for Tin, as long as correct $A_r$ of tin (118.7                       |
|    |          |  | $\frac{0.66(4)}{0.66(4)} = 1$ | $\frac{1.325}{0.00(4)} = 2$ |              |                     | or 118) used                                                                                                       |
|    |          |  | 0.66(4)                       | 0.66(4)                     |              |                     |                                                                                                                    |
|    |          |  | ans - SnO. $$                 |                             |              |                     | ALLOW Sn-O for 1 mark ECE if <b>both</b> inverted mole calculations are shown                                      |
|    |          |  | $a_{13} = 010_2$ ·            |                             |              |                     | ALLOW Sh20 for 1 mark EGF in both inverted mole calculations are shown                                             |
|    |          |  |                               |                             |              |                     | <b>ALLOW</b> Sn <sub>3</sub> O <sub>5</sub> with <b>evidence</b> of use of <b>both</b> atomic numbers for one mark |
|    |          |  |                               |                             |              |                     | ALLOW 2 marks if candidate has adopted the following approach                                                      |
|    |          |  |                               |                             |              |                     | 78.8% of mass = 118.7                                                                                              |
|    |          |  |                               |                             |              |                     | 100%  of mass = 1187/0788 = 150.6 (151)                                                                            |
|    |          |  |                               |                             |              |                     | 150.6 - 118.7 = 31.9 (32) <b>Both</b> masses would get one mark                                                    |
|    |          |  |                               |                             |              |                     | 31.9/16 = 2                                                                                                        |
|    |          |  |                               |                             | Total        | 9                   |                                                                                                                    |

| Q | uesti | ion | Expected Answers                                                                                                                                                                                                                                                                                                                                                                     | Marks | Additional Guidance                                                                                                                                                                                                                                                                                                                                            |
|---|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | а     | i   | Any <b>two</b> from ✓✓<br>H <sup>+</sup><br>SO₄ <sup>2-</sup><br>HSO₄ <sup>-</sup>                                                                                                                                                                                                                                                                                                   | 2 max | <b>DO NOT ALLOW</b> OH <sup>-</sup><br><b>IGNORE</b> state symbols<br>Charge is essential<br><b>ALLOW</b> $H_3O^+$ for $H^+$ and $SO_4^{-2}$ for $SO_4^{2-}$<br>One answer incorrect = 1 mark max<br>Two answers incorrect = 0 marks                                                                                                                           |
|   |       | ii  | Effervescence <b>OR</b> fizzing <b>OR</b> bubbling <b>OR</b> gas<br>produced $\checkmark$<br>K <sub>2</sub> CO <sub>3</sub> dissolves <b>OR</b> disappears <b>OR</b> colourless<br>solution is formed $\checkmark$<br>H <sub>2</sub> SO <sub>4</sub> + K <sub>2</sub> CO <sub>3</sub> $\rightarrow$ K <sub>2</sub> SO <sub>4</sub> + CO <sub>2</sub> + H <sub>2</sub> O $\checkmark$ | 3     | DO NOT ALLOW 'carbon dioxide produced' without 'gas'<br>DO NOT ALLOW incorrectly named gas produced<br>DO NOT ALLOW 'precipitate forms' = CON<br>ALLOW 'it' for K <sub>2</sub> CO <sub>3</sub><br>DO NOT ALLOW mark for 'dissolves' from state symbols in equation<br>DO NOT ALLOW 'potassium'<br>IGNORE state symbols<br>ALLOW ionic equation                 |
|   | b     | i   | $\frac{24.6}{1000}$ × 0.100 = 0.00246 mol ✓ (2.46 × 10 <sup>-3</sup> mol)<br>1000                                                                                                                                                                                                                                                                                                    | 1     | DO NOT ALLOW 0.0025 as this would lead to 100% in part (iii)<br>DO NOT ALLOW 0.0024 due to incorrect rounding                                                                                                                                                                                                                                                  |
|   |       | ii  | $0.00246 \times 2 = 0.00492 \text{ mol } \checkmark (4.92 \times 10^{-3} \text{ mol})$                                                                                                                                                                                                                                                                                               | 1     | ALLOW ECF for ans (i) × 2                                                                                                                                                                                                                                                                                                                                      |
|   |       |     | Moles of NaOH in 250 cm <sup>2</sup> =<br>$0.00492 \times \frac{250}{25} = 0.0492 \text{ mol }\checkmark$<br>Mass of NaOH in original sample<br>= $0.0492 \times 40.0 = 1.968 \text{ g }\checkmark$<br>% purity $1.968 \times 100 = 98.4\% \checkmark$<br>2.00                                                                                                                       | 3     | ALLOW ECF for ans (II) $\times$ 10<br>ALLOW 1.97g<br>ALLOW ECF for moles of NaOH $\times$ 40<br>ALLOW 98.5% (from use of 1.97)<br>ALLOW ECF for <u>mass of NaOH</u> $\times$ 100<br>2.00<br>DO NOT ALLOW ECF for 3rd marking point if answer >100%<br>ALLOW ECF for 3rd marking point if answer = 100%                                                         |
|   |       |     | Total                                                                                                                                                                                                                                                                                                                                                                                | 10    | ALLOW molar approach for second and third marks<br>i.e. mol of (expected) NaOH in 2.00 g = $2/40 = 0.05(00)$ mol<br>$(0.0492/0.0500) \times 100 = 98.4\%$<br>1.6% (the percentage of the impurity present) is likely to be 2 marks, but please check<br>9.84% has not multiplied up by 10 for first marking point is likely to be 2 marks, but<br>please check |
|   |       |     | lotal                                                                                                                                                                                                                                                                                                                                                                                | 10    |                                                                                                                                                                                                                                                                                                                                                                |

| Qu | esti | on | Expected Answers                                                                        | Marks | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                       |
|----|------|----|-----------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  | а    |    | 3d 4p ✓                                                                                 | 1     | Correct order is essential<br>ALLOW '3D'                                                                                                                                                                                                                                                                                                                                                                  |
|    | b    | i  | A region (within an atom) that can hold (up to) two<br>electrons ✓ (with opposite spin) | 1     | ALLOW 'can be found' for 'can hold'<br>ALLOW 'area' OR 'volume' OR 'space' for region<br>DO NOT ALLOW 'place' for region<br>DO NOT ALLOW path of an electron<br>IGNORE references to 'orbitals being parts of sub-shells'                                                                                                                                                                                 |
|    |      | ii | 11 ✓                                                                                    | 1     |                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | С    |    | 18 🗸                                                                                    | 1     |                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | d    | i  | 2nd, 3rd<br>OR<br>1817, 2745 ✓<br>10th, 11th<br>OR<br>38458, 42655 ✓                    | 2     | Mark as pairs<br><b>IGNORE</b> references to 12th and 13th<br>Three answers with one correct pair = 1 mark<br>Four answers with one correct pair = 1 mark<br>Five answers with both pairs correct = 1 mark<br>Five answers with only one pair correct = 0 marks<br>Six (or more) answers = 0 marks                                                                                                        |
|    |      | ii | $Al^{2+}(g) \rightarrow Al^{3+}(g) + e^{-\sqrt{4}}$                                     | 2     | ALLOW $Al^{2^+}(g) - e^- \rightarrow Al^{3^+}(g)$ for 2 marks<br>ALLOW 1 mark for $Al(g) \rightarrow Al^{3^+}(g) + 3e^-$ as states are correct<br>ALLOW 1 mark for $Al^{2^+}(g) + 2e^- \rightarrow Al^{3^+}(g) + 3e^-$ as states are correct<br>ALLOW 1 mark if symbol of Al is incorrect, but equation is otherwise fully correct.<br>ALLOW e for electron (i.e. no charge)<br>IGNORE states on electron |
|    |      |    | Total                                                                                   | 8     |                                                                                                                                                                                                                                                                                                                                                                                                           |

| Que | esti | on  | Expected Answers                                                                                                                                                      | Marks | Additional Guidance                                                                                                                                                                                                                                                                                                                                     |
|-----|------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4   | а    | i   | 1 = purple / lilac / violet / pink / mauve ✓                                                                                                                          | 2     | ALLOW any combination of these but no others for 1                                                                                                                                                                                                                                                                                                      |
|     |      |     | S = 0range ▼                                                                                                                                                          |       | DO NOT ALLOW 'precipitate' in either                                                                                                                                                                                                                                                                                                                    |
|     |      |     | $Cl \pm 2Br^{-} \rightarrow 2Cl^{-} \pm Br \sqrt{2}$                                                                                                                  | 1     | IGNORE state symbols                                                                                                                                                                                                                                                                                                                                    |
|     |      |     |                                                                                                                                                                       |       | ALLOW correct multiples including fractions                                                                                                                                                                                                                                                                                                             |
|     |      | iii | Addition of $Br_2(aq)$ to $I^-(aq)$ ions $\checkmark$                                                                                                                 | 1     | <ul> <li>ALLOW Addition of bromine to iodide (i.e. aqueous not needed)</li> <li>DO NOT ALLOW Addition of bromine to iodine</li> <li>ALLOW Addition of I<sub>2</sub> to Br<sup>-</sup>, but NOT if accompanied by description of displacement of bromine</li> <li>ALLOW Br<sub>2</sub> + I<sup>-</sup> even if seen in an unbalanced equation</li> </ul> |
|     | b    | i   | Cl <sub>2</sub> is 0 <b>AND</b> HCl is −1 <b>AND</b> HClO is (+)1 $\checkmark$                                                                                        | 3     | ALLOW 1– ALLOW 1+ Oxidation states may be seen above the equation<br>DO NOT ALLOW CI <sup>-</sup> in HCI DO NOT ALLOW CI <sup>+</sup> in HCIO in text of answer<br>DO NOT ALLOW chlorIDE in place of 'chlorine'                                                                                                                                         |
|     |      |     | Chlorine has been both oxidised and reduced <b>OR</b><br>Chlorine's oxidation state has increased and decreased ✓                                                     |       | IF CORRECT OXIDATION STATES ARE SEEN, ALLOW second and third marking points for:<br>Chlorine is oxidised to form HCIO<br>Chlorine is reduced to form HCI<br>ALLOW CI or Cl <sub>2</sub> for 'chlorine'                                                                                                                                                  |
|     |      |     | Chlorine has been oxidised (from 0) to +1 <b>AND</b><br>chlorine has been reduced (from 0) to −1 ✓<br>(These two points together subsume the second<br>marking point) |       | IGNORE reference to electron loss / gain if correct<br>DO NOT ALLOW 3rd mark for reference to electron loss / gain if incorrect<br>ALLOW one mark for 'disproportionation is when a species is both oxidised and reduced'<br>if chlorine / chloride is not mentioned                                                                                    |
|     |      | ii  | Kills bacteria <b>OR</b> 'kills germs'<br>kills micro-organisms <b>OR</b> makes water safe to<br>drink <b>OR</b> sterilises water ✓ <b>OR</b> 'disinfects'            | 1     | ALLOW to make water potable<br>ALLOW 'removes' for 'kills'<br>IGNORE 'virus'<br>IGNORE 'purifies water'                                                                                                                                                                                                                                                 |
|     | С    | i   | Thermal decomposition ✓                                                                                                                                               | 1     | DO NOT ALLOW just 'decomposition' or 'thermodecomposition'                                                                                                                                                                                                                                                                                              |
|     |      | ii  | $\frac{1.47}{84.3} = 0.0174 \text{ mol of MgCO}_3 \checkmark$                                                                                                         | 2     | <b>ALLOW</b> mol of MgCO <sub>3</sub> as calculator value of 0.017437722 or correct rounding to 2 sig figs or more <b>DO NOT ALLOW</b> 0.0175 (this has taken $M_r$ of MgCO <sub>3</sub> as 84)                                                                                                                                                         |
|     |      |     | $0.0174 \times 24.0 = 0.418 \text{ dm}^3$<br>OR<br>(Calculator value × 24.0) = 0.419 dm <sup>3</sup> ✓                                                                |       | ALLOW, for 2nd mark calculated moles of $MgCO_3 \times 24(.0)$ as calculator value or correct<br>rounding to 2 sig figs or more [e.g. $0.017 \times 24(.0) = 0.408$ ]<br>DO NOT ALLOW 84.3 or $1.47 \times 24(.0)$ as no mole calculation has been done<br>ALLOW two marks for correct answer with no working shown                                     |

| Que | Question |     | Expected Answers                                                     | Marks | Additional Guidance                                                                                                                                                                                                              |
|-----|----------|-----|----------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4   | C        | iii | The ease of (thermal) decomposition decreases (down the group) ora ✓ | 1     | ALLOW (thermal) stability increases<br>IGNORE more heat would be needed<br>IGNORE 'takes longer' or 'is slower'<br>IGNORE reference to trend in reactivity<br>IGNORE answers which include 'more / less mol of CO <sub>2</sub> ' |
|     |          |     | Total                                                                | 15    |                                                                                                                                                                                                                                  |

| Qu | esti | on | Expected Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks | Additional Guidance                                                                                                                                                                                                                                                                                                                                                 |
|----|------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | а    |    | (+) $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ | 3     | Lattice diagram must have at least two rows of correctly charged ions and a minimum of 2 ions per row                                                                                                                                                                                                                                                               |
|    |      |    | (+) $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ |       | ALLOW as label: + ions, positive ions, cations<br>If '+' is unlabelled in diagram, award label from a correct statement within the text<br>below                                                                                                                                                                                                                    |
|    |      |    | Scattering of labelled electrons between other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | <b>DO NOT ALLOW</b> 2+, 3+ etc ions<br><b>DO NOT ALLOW</b> for label or in text: nuclei <b>OR</b> positive atom <b>OR</b> protons                                                                                                                                                                                                                                   |
|    |      |    | species<br>OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | ALLOW e <sup>-</sup> OR e as label for electron                                                                                                                                                                                                                                                                                                                     |
|    |      |    | a statement anywhere of <b>delocalised</b> electrons (can be in text or in diagram) ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                                                                                                                                                                                                                                                                                                                                     |
|    |      |    | The attraction between + ions and $e^-$ is strong <b>OR</b> metallic bonding is strong $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | ALLOW a lot of energy is needed to break the (metallic) bond                                                                                                                                                                                                                                                                                                        |
|    |      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | <b>DO NOT ALLOW</b> incorrect particles or incorrect attraction e.g. 'intermolecular attraction' or 'nuclear attraction'                                                                                                                                                                                                                                            |
|    | b    | i  | $F = F$ Dot and cross bond + 6 matching electrons on each F atom $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1     | ALLOW diagram consisting of all dots OR all crosses<br>Circles not essential<br>ALLOW 'FI' for fluorine                                                                                                                                                                                                                                                             |
|    |      | ii | $F_2$ has induced dipoles <b>OR</b> temporary dipoles <b>OR</b> van der Waals' forces (between the molecules) $\checkmark$ which are <b>weak</b> $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2     | ALLOW little energy needed to overcome intermolecular bonding for second mark<br>ALLOW 'weak' intermolecular bonding for second mark<br>ALLOW max 1 mark if structure is referred to as giant with first and second marking<br>points correct<br>Award no marks if 'weak' is applied to incorrect bonding. E.g. ionic, covalent, metallic<br>or unspecified bonding |

| Qu | esti | on | Expected Answers                                                                                                                                                                                                                                                                                                            | Marks | Additional Guidance                                                                                                                                                                                                                                                                                                                      |
|----|------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | C    | i  | $\begin{bmatrix} \mathbf{u} \\ \mathbf{u} \end{bmatrix}^{+} \begin{bmatrix} \mathbf{v} \\ \mathbf{v} \end{bmatrix}^{-}$ Li shown with either 2 or 0 electrons <b>and</b> F shown<br>with 8 electrons with 7 crosses and one dot (or <i>vice</i><br><i>versa</i> ) $\checkmark$<br>correct charges on both ions $\checkmark$ | 2     | For first mark, if 2 electrons are shown in the cation then the 'extra' electron in the anion must match symbol chosen for electrons in the cation IGNORE inner shell electrons ALLOW 'FI' for fluorine Circles not essential DO NOT ALLOW Li <sup>+</sup> with 8 electrons                                                              |
|    |      | ii | Ions cannot move in a solid ✓<br>Ions can move <b>OR</b> are mobile when molten ✓                                                                                                                                                                                                                                           | 2     | ALLOW ions are fixed in place<br>IGNORE electrons<br>IGNORE 'charge carriers' or 'charged particles'<br>DO NOT ALLOW ions can move when in solution<br>IGNORE charge carriers<br>IGNORE 'delocalised ions' or 'free ions'<br>ALLOW 'Ions can only move when molten' for one mark<br>Any mention of electrons moving when molten is a CON |
|    | d    | i  | $2B + 3F_2 \longrightarrow 2BF_3 \checkmark$                                                                                                                                                                                                                                                                                | 1     | ALLOW B <sub>2</sub><br>ALLOW multiples including fractions                                                                                                                                                                                                                                                                              |
|    |      | ii | Shape: trigonal planar ✓<br>Bond angle: 120° ✓<br>Explanation:<br>Pairs of electrons repel (one another equally) ✓                                                                                                                                                                                                          | 4     | 'Trigonal planar' must be seen and spelt correctly at least ONCE<br>DO NOT ALLOW 'atoms repel' or 'electrons repel'                                                                                                                                                                                                                      |
|    |      |    | Boron has 3 bonded pairs (and 0 lone pairs) ✓                                                                                                                                                                                                                                                                               |       | ALLOW 'bonds repel'<br>ALLOW diagram showing B atom with three dot-and-cross pairs of electrons, but <b>no</b><br>lone pairs for 4th mark<br>Must refer to boron / central atom<br>ALLOW 'bonds' for 'bonded pairs'                                                                                                                      |

| Qu | esti | ion | Expected Answers                                                                                                              | Marks | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----|------|-----|-------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | e    |     | F is more electronegative than N<br>OR ${}^{\delta^+}F-N^{\delta^+} \checkmark$<br>Dipoles do not cancel<br>OR                | 2     | ALLOW F attracts electrons more than N<br>ALLOW N has a partial positive charge <b>and</b> F has a partial negative charge (partial<br>must be seen)<br>DO NOT ALLOW diagrams that contradict statements about polarity                                                                                                                                                                                                                                                                                |
|    |      |     | $NF_3$ is pyramidal (in words) / asymmetrical $\checkmark$                                                                    |       | ALLOW unsymmetrical, non-symmetrical etc                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | f    |     | (As you go across the period)<br>The atomic radii decreases ✓<br>The nuclear charge increases <b>OR</b> protons increase<br>✓ | 4     | Use annotations with ticks, crosses ECF etc. for this part<br>Assume 'across the period from Li to F'<br>ALLOW (outer shell) electrons get closer (to nucleus)<br>IGNORE 'atomic number increases', but ALLOW 'proton number' increases<br>IGNORE 'nucleus gets bigger'<br>'Charge increases' is insufficient<br>ALLOW 'effective nuclear charge increases' OR 'shielded nuclear charge increases'<br>Nuclear OR proton(s) OR nucleus spelt correctly ONCE and used in context of<br>2nd marking point |
|    |      |     | electrons are added to the same shell<br>OR<br>shielding remains the same ✓                                                   |       | ALLOW shielding is similar<br>ALLOW screening for shielding<br>DO NOT ALLOW 'subshells'<br>DO NOT ALLOW 'distance is similar' This will CON first marking point                                                                                                                                                                                                                                                                                                                                        |
|    |      |     | great <b>er</b> (nuclear) attraction on (outer) electrons /<br>(outer) shell(s) ✓                                             |       | ALLOW 'greater (nuclear) pull for greater nuclear attraction'<br>DO NOT ALLOW 'pulled in more' as this is a restatement of the first marking point                                                                                                                                                                                                                                                                                                                                                     |
|    |      |     | Total                                                                                                                         | 21    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

**OCR Customer Contact Centre** 

### 14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

