Mark Scheme

Quest	ion	Answer					Guidance
1 (a)		particle proton neutron electrons	rel charge +1 nil/0 -1	rel mass 1 1 1/2000	position nucleus nucleus in shells	1	1 mark for whole table ALLOW '+' on its own for rel charge of proton DO NOT ALLOW '1' on its own for rel charge of proton DO NOT ALLOW 'positive' for rel charge of proton For neutron ALLOW 'neutral' ALLOW '' on its own for rel charge of electron DO NOT ALLOW 'negative' for rel charge of electron IGNORE '+' if precedes '1' for mass IGNORE '+' if precedes '1' for mass IGNORE 'middle/centre' for nucleus
(b)		The energy require from each atom in of atoms in the ga	one mole √	n electron ✓		1 1 1	ALLOW 'energy to remove one mole of electrons from one mole of gaseous atoms' for three marks ALLOW 'The energy required to remove an electron from one mole of gaseous atoms to form one mole of gaseous 1+ ions' for two marks as it does not meet the 2 nd marking point For third mark: ALLOW ECF of wrong particle being gaseous If no attempt at a definition, ALLOW one mark for the equation below, including state symbols X(g) → X ⁺ (g) + e ⁻ OR X(g) - e ⁻ → X ⁺ (g) ALLOW e for electrons
(c)		a 2p orbital the 3s sub-shell the 4th shell	2	$\frac{}{}$		1 1 1	IGNORE state symbol for electron
(d)		A repeating pattern periods) ✓	n (of properties	shown across	different	1	ALLOW 'repeating trend' DO NOT ALLOW just 'trend' OR 'pattern'
(e)	(i)	C√				1	
	(ii)	AI✓				1	
	(iii)	N✓				1	
	(iv)	Al✓				1	
	(v)	Mg ✓				1	
					Total	13	

Mark Scheme

	Quest	tion	Answer	Mark	Guidance
2	(a)		$MgCO_3 \rightarrow MgO + CO_2 \checkmark$	1	IGNORE state symbols
	(b)	(i)	MgCO ₃ (s) + 2HCl(aq) →MgCl ₂ (aq) + H ₂ O(l) + CO ₂ (g) Correct balanced equation \checkmark Correct states for correct species \checkmark	1 1	ALLOW states mark if MgCl used in place of MgCl ₂
		(ii)	Similarity: (Both) dissolve OR disappear. ✓ Difference:	1	ALLOW (both) 'go clear'
			One effervesces OR fizzes OR bubbles OR gas produced ✓	1	ALLOW CO ₂ produced DO NOT ALLOW incorrect gases DO NOT ALLOW responses which suggest A will effervesce e.g. as B will fizz more
		(iii)	203.3	1	DO NOT ALLOW 203 or 203.0 IGNORE units
		(iv)	$\begin{bmatrix} Mg \end{bmatrix}^{2+} \begin{bmatrix} c_{i} \\ c_{i} \\ c_{i} \end{bmatrix}^{-}$		 For 1st mark, if 8 electrons shown around cation then 'extra' electron around anion must match symbol chosen for electrons in cation Shell circles not required IGNORE inner shell electrons ALLOW correct diagram of a [Cl⁻] ion with '2 x' OR '2' in front OR 'x 2' after the diagram. ALLOW correct diagram of [Cl⁻] ion with subscript 2. i.e. [Cl⁻]₂. DO NOT ALLOW [Cl⁻₂] [Cl]⁻₂
			magnesium (ion) with 8 (or no) outermost electrons AND 2 x chloride (ions) with ' <i>dot-and-</i> <i>cross</i> ' outermost octet ✓ correct charges ✓	1	i.e. for first mark charges do not need to be seen

F321				Mark	Scheme June 2011
	Quest	tion	Answer	Mark	Guidance
2	(c)		1.82 1.05 2.40 24.3 28.1 16.0 To give 0.0749 0.0374 0.150 Ratio of moles ✓	1	 ALLOW '24' for Mg (giving 0.0758) and '28' for Si (giving 0.0375) ALLOW any correct ratios of moles as calculator value OR correct rounding to 2 sig figs or more ALLOW method from masses being converted to percentages
			Answer = Mg₂SiO₄ ✓	1	ALLOW correct answer from a ratio of moles where it is clear that the candidate has divided by the atomic numbers. ALLOW ECF for formula from incorrect ratio of moles due to over-rounding calculator error or upside down mole calculation
	(d)	(i)	$\frac{32.00}{1000} \times 0.500 = 1.60 \times 10^{-2} \text{ (mol)}$ OR 0.0160 (mol) \checkmark	1	ALLOW 0.016 (mol) IGNORE trailing zeroes
		(ii)	$\frac{1.60 \times 10^{-2}}{2} = 8.00 \times 10^{-3} \text{ (mol)}$ OR 0.00800 (mol)	1	ALLOW ECF for answer $\frac{d(i)}{2}$ ALLOW 0.008 or 8 × 10 ⁻³ (mol) Ignore trailing zeroes ALLOW 0.0080 or 8.0 × 10 ⁻³
		(iii)	Molar mass Mg(OH) ₂ = 58.3 \checkmark	1	DO NOT ALLOW 58 OR 58.0
			mass Mg(OH) ₂ = 58.3 × 8.00 × 10^{-3} = 0.466(4) g	1	ALLOW answer to d(ii) × 58.3 ALLOW 0.47 ALLOW ECF for d(ii) × incorrect molar mass as calculator value OR correct rounding to 2 sig figs or more
			% Mg(OH) ₂ = $\frac{0.4664}{0.500}$ × 100 = 93.3% \checkmark	1	ALLOW 93% OR 93.2% OR 93.28% DO NOT ALLOW d(ii)/0.5 x 100 ALLOW (answer to second marking point/0.500) × 100 as calculator value OR correct rounding to 2 sig figs or more
					ALLOW moles method for 3 marks Molar mass = 58.3 0.500/58.3 = =0.00857(6) 0.00800/0857(6) × 100 = 93.3%
					ALLOW correct answer without working for 3 marks
			Total	15	

Mark Scheme

C	Quest	ion	Answer		Guidance
3	(a)		2NaOH + Cl ₂ → NaClO + NaCl + H ₂ O \checkmark	1	ALLOW NaOCI IGNORE state symbols
	(b)	(i)	Sodium chlorate(V) ✓	1	ALLOW sodium chlorate V DO NOT ALLOW sodium chlorate 5
		(ii)			USE annotations with ticks, crosses, con, ECF, etc for this part.
			Cl in NaClO ₃ is (+)5 AND Cl in NaClO ₄ is (+)7 AND Cl in NaCl is $-1 \checkmark$	1	ALLOW 5+, 7+ 1– Look for oxidation numbers seen above equation. DO NOT ALLOW CI [−] in NaCl
			Chlorine has been both oxidised and reduced OR The oxidation number of chlorine has increased AND decreased ✓	1	The second and third marking points must refer to chlorine ALLOW 'it' for 'chlorine' if oxidation numbers of chlorine are given ALLOW CI for 'chlorine' DO NOT ALLOW CI ₂ for 'chlorine'
			Chlorine has been oxidised from (+)5 to (+)7 AND chlorine has been reduced from (+)5 to $-1 \checkmark$ (These points would secure marking points 2 and 3) 4NaClO ₃ \rightarrow 3NaClO ₄ + NaCl +5 $+7$ -1 This diagram gets all 3 marks	1	 ALLOW 'correct' references to oxidation and reduction even if based on incorrect oxidation numbers of chlorine IGNORE references to electron loss / gain if correct. DO NOT ALLOW 3rd mark for reference to electron loss/gain If oxidation numbers are correct, ALLOW 1 mark for 'chlorine is oxidised to form NaClO₄' ALLOW 1 mark for 'chlorine is reduced to form NaCl' ALLOW one mark for 'disproportionation is when a species is both oxidised and
	(c)	(i)	Chlorinated hydrocarbons are carcinogens OR toxic OR Chlorine is toxic OR poisonous ✓	1	reduced' whether or not chlorine is mentioned ALLOW CH ₃ Cl for 'chlorinated hydrocarbons' IGNORE 'harmful'
			(Chlorine) kills bacteria OR 'kills germs' 'kills micro-organisms' OR 'makes water safe to drink' OR 'sterilises water' OR 'disinfects' ✓	1	IGNORE 'carcinogenic' for chlorine DO NOT ALLOW 'antiseptic' ALLOW 'to make water potable' ALLOW 'removes' for 'kills' IGNORE 'virus' IGNORE 'purifies water' IGNORE 'cleans water'

	Ques	tion	Answer	Mark	Guidance
3	(c)	(ii)	Electron pairs in covalent bonds shown correctly using dots and crosses in a molecule of CH_3CI AND lone pairs correct on $CI \checkmark$	1	Must be ' <i>dot-and cross</i> ' ALLOW different symbol for third 'type' of electron Circles for outer shells not needed IGNORE inner shells Non-bonding electrons of chlorine do not need to be shown as pairs
		(iii)	Tetrahedral OR tetrahedron ✓	1	
	(d)		Add AgNO ₃ (aq) OR Ag ⁺ (aq) OR silver nitrate OR AgNO ₃ ✓	1	ALLOW Ag ⁺ (aq) seen in the ionic equation IGNORE references to nitric acid IGNORE references to adding water or dissolving the brine DO NOT ALLOW references to any other additional reagent as well as the silver nitrate for the first mark
			White precipitate ✓	1	White AND precipitate required DO NOT ALLOW hint of any other colour IGNORE 'turns grey' ALLOW solid as alternative for precipitate
			$Ag^+ + CI^- \rightarrow AgCI \checkmark$	1	IGNORE states
			Add dilute NH ₃ and precipitate (completely) dissolves OR disappears \checkmark	1	DO NOT ALLOW conc. NH ₃ DO NOT ALLOW any mention of incomplete dissolving ALLOW (for 4th mark) 'add Cl ₂ (aq)' AND 'no colouration would be seen' OR 'no change' OR 'no reaction'
			Total	13	

Quest	tion	Answer	Mark	Guidance
4 (a)	(i)	The hydrogen ions OR H ⁺ OR protons (of hydrochloric acid) are replaced by zinc ions OR Zn ²⁺ ✓	1	 ALLOW Zn ions OR positive ions replace H ions OR a metal ion has replaced a hydrogen ion OR protons DO NOT ALLOW Zn replaces H. Ions are key either in word form or symbol form DO NOT ALLOW Zn⁺ i.e. if charge is shown it must be correct
	(ii)	Zn ₃ (PO ₄) ₂ ✓	1	ALLOW ZnHPO ₄ OR Zn(H ₂ PO ₄) ₂ ALLOW Zn ₃ P ₂ O ₈
(b)		reactivity increases (down the group) \checkmark	1	USE annotations with ticks, crosses, con, ECF, etc for this part. 'down the group' not required ALLOW alternative phrases for 'reactivity increases'
		atomic radii increases OR there are more shells ✓	1	ALLOW 'there are more energy levels' ALLOW 'electrons are in a higher energy level' ALLOW 'the electrons are further from nucleus' IGNORE there are more orbitals OR more sub-shells IGNORE 'different shell' or 'new shell'
		<i>Increased shielding mark</i> there is more shielding ✓	1	ALLOW 'more screening' There must be a clear comparison i.e. 'more shielding' OR 'increased shielding'. i.e. DO NOT ALLOW 'there is shielding' ALLOW 'there is more electron repulsion from inner shells' 'more' is essential
		 Nuclear attraction mark The nuclear attraction decreases OR (outermost) electrons experience less attraction (to nucleus) OR Increased shielding / distance outweighs the increased nuclear charge ✓ 	1	ALLOW 'there is less nuclear pull' OR 'electrons less tightly held' IGNORE 'there is less effective nuclear charge' IGNORE 'nuclear charge' for 'nuclear attraction'
		easier to remove (outer) electrons OR ionisation energy decreases ✓ ORA throughout	1	ALLOW 'easier to oxidise' <i>Quality of Written Communication</i> – 'electron(s)' <i>OR</i> 'ionisation' <i>OR</i> 'ionization' <i>OR</i> 'oxidise' <i>OR</i> oxidize' spelled correctly at least once for 5 th marking point
		Total	7	

Q	luest	ion	Answer		Guidance
5	(a)		Metallic lattice has delocalised OR mobile electrons OR metallic bonding has delocalised OR mobile electrons ✓ lonic lattice has no mobile ions OR ionic solid has no mobile ions ✓ molten ionic (compounds) have mobile ions ✓	1	IGNORE 'free electrons' for 'mobile electrons' DO NOT ALLOW references to incorrect bonding ALLOW 'ions are fixed in place' IGNORE 'no mobile electrons' for solid ionic IGNORE 'no mobile charge carriers' for solid ionic IGNORE 'delocalised ions' OR 'free ions' for 'mobile ions' DO NOT ALLOW any mention of electrons moving IGNORE 'aqueous ionic compounds have mobile ions'
	(b)	(i)	Two (or more) ammonia molecules with at least one H $\delta+$ and at least one N $\delta-$ (can be on the same or different molecules) \checkmark	1	There must be 3H atoms bonded to one N atom DO NOT ALLOW any Hδ- OR Nδ+ ALLOW 2-D NH ₃ molecules IGNORE lone pair(s) for first marking point
			H-bond between H in one ammonia and lone pair of N in another ammonia molecule \checkmark hydrogen bond H H H HH	1	All H-bonds drawn must hit the lone pair H-bond does not need to be labelled but must be different from covalent bond DO NOT ALLOW more than one lone pair on N for second marking point ALLOW a pair of molecules with two 'correct' hydrogen bonds forming a 'dimer'
		(ii)	Ice has stronger hydrogen bonds ✓	1	 ALLOW 'more' for 'stronger' OR Ice has twice as many hydrogen bonds as ammonia ALLOW ice has stronger intermolecular forces than ammonia OR bigger permanent dipole than ammonia DO NOT ALLOW comparisons between different types of force DO NOT ALLOW reference to van der Waals' IGNORE 'more energy needed'
			O has two lone pairs (AND N has one) OR O more electronegative (than N) ✓	1	ALLOW O has more lone pairs

Qu	estion	Answer	Mark	Guidance
5	(c)	SiO₂ is giant covalent (lattice)✓	1	USE annotations with ticks, crosses, con, ECF, etc for this part. ALLOW macromolecular OR giant atomic ALLOW SiO ₂ is a 'giant structure with covalent bonds' ALLOW even if reference to 'covalent' only appears later in answer. DO NOT ALLOW any reference to 'ionic' OR 'intermolecular' OR 'metallic' Quality of Written Communication - Covalent OR macromolecular OR atomic spelt correctly ONCE and used in context of the first marking point
		SiCl₄ is simple molecular (lattice) ✓	1	ALLOW simple covalent DO NOT ALLOW any reference to 'giant' OR 'ionic' OR 'metallic' If neither of the 1st 2 marks have been awarded, ALLOW 1 mark for SiO ₂ is giant AND SiCl ₄ is simple OR molecular
		van der Waals' forces in SiCl₄ ✓	1	ALLOW induced dipoles DO NOT ALLOW permanent dipoles
		Covalent bonds broken in $SiO_2 \checkmark$	1	ALLOW alternative words to broken e.g. overcome
		Forces OR bonds are stronger in SiO ₂ (than in SiCl ₄) OR more energy is needed to break forces OR bonds in SiO ₂ (than in SiCl ₄) \checkmark ORA	1	ALLOW incorrect forces in SiCl ₄ OR SiO ₂ for this mark
		Total	12	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

