Que	estion	Answer	Marks	Guidance
1 (;	a)	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) ✓ compared with 1/12th (the mass) ✓ of (one atom of) carbon-12 ✓	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular; 'isotope' For second and third marking points ALLOW compared with (the mass of) carbon-12 which is 12 ALLOW mass of one mole of atoms ✓ compared to 1/12th ✓ (mass of) one mole OR 12g of carbon-12 ✓ ALLOW mass of one mole OR 12g of carbon-12
	b)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 32.09 award 2 marks $32 \times 95.02 + 33 \times 0.76 + 34 \times 4.22$ 100 OR 30.4064 + 0.2508 + 1.4348 OR = 32.092 (calculator value) \checkmark $(A_r =) 32.09 \checkmark$	2	ALLOW one mark for ECF from transcription error in first sum provided final answer is to 2 decimal places and is between 32 and 34 and is a correct calculation of the transcription

Q	Question		Answer					Marks	Guidance
1	(c)		³³ S ³⁴ S ²⁻	protons 16 16	neutrons 17 18	electrons 16 18	✓ ✓	2	Mark by row
	(d)		If answ (mol of OR (no. of OR (no. of 10^{24} \checkmark Correct 6.02 \times	ver = 5.78 : atoms) = 0 molecules) S atoms in	× 10²² awar 0.0120 × 8 = 0 = 0.0120 × 1 mole of S es (number o	d 2 marks 0.0960 (mo 6.02×10^{23} $_{8}) = 8 \times 6.02$	ANSWER LINE I) = 7.224×10^{21} $2 \times 10^{23} = 4.816 \times 10^{23}$ 0.0120 × 8 ×	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW 5.8 x 10^{22} up to calculator value of 5.7792 x 10^{22} ALLOW correct rounding of ECF to 2 significant figures or more up to calculator value ALLOW answers in non standard form such as 0.578×10^{23} correctly rounded to 2 or more significant figures
	(e)	(i)	Unever <i>Type o</i> Creates dipole (<i>Inducti</i>	f dipole m s or causes (in a molec ion of a se	on of electron p ark s an instanta ule) ✓ cond dipol	ineous dipol	e OR temporary nolecules ✓	3	 Use annotations with ticks, crosses, ECF etc for this part ALLOW movement of electrons ALLOW changing electron density ALLOW 'transient', 'oscillating' 'momentary' 'changing' DO NOT ALLOW induces a temporary dipole for the second marking point ALLOW induces a dipole in neighbouring molecules ALLOW causes a resultant dipole in other molecules ALLOW atoms for molecules

C	luesti	ion	Answer	Marks	Guidance
1	(e)	(ii)	Only one type of atom OR No (permanent) dipoles OR non-polar OR no polar bonds ✓	1	ALLOW no difference in electronegativity IGNORE 'No hydrogen bonding' IGNORE 'No lone pairs'
	(f)		+ 2 ✓	1	ALLOW 2(+)
	(g)	(i)	There are no waters of crystallisation \checkmark	1	ALLOW 'without water' 'no water' etc IGNORE dehydrated
		(ii)	248.2 ✓	1	IGNORE units DO NOT ALLOW 248
		(iii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 7.91 (g) award 2 marks	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below
			(amount of Na ₂ S ₂ O ₃ •5H ₂ O) = 12.41/248.2 OR = 0.05(00) (mol) ✓		ALLOW ECFs from answer to (g)(ii) for both marking points
			(mass of Na ₂ S ₂ O ₃) = 0.05 x 158.2 = 7.91 (g) \checkmark		ALLOW ECF for calculated mol of $Na_2S_2O_3\bullet 5H_2O \times 158.2$ correctly calculated for the 2nd mark
					ALLOW calculator value or rounding to 3 significant figures or more but IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2

G	luesti	on	Answer	Marks	Guidance
1	(h)	(i)	Sulfur has six bonded pairs (and no lone pairs) \checkmark	2	ALLOW 'It has six bonded pairs' ALLOW bonds for bonded pairs IGNORE regions OR areas of negative charge
			Electron pairs repel (one another equally) ✓		ALLOW 'bonds repel' DO NOT ALLOW 'Atoms repel' or 'electrons repel' 'Lone pairs repel more than bonded pairs' would score the second mark but would contradict the first mark if there is no reference to no lone pairs
		(ii)	 The ability of an atom to attract electrons ✓ in a (covalent) bond ✓ (The octahedral shape) is symmetrical ✓ 	3	ALLOW dipoles cancel out IGNORE polar bonds repel IGNORE charges cancel
			Total	23	

C	Question	Answer	Marks	Guidance
2	(a)	Periodicity ✓	1	ALLOW phonetic versions
	(b)	AI bonding mark AI has metallic (bonding) OR has (electrostatic) attraction between positive ions and (delocalised) electrons ✓ Si bonding mark Si has covalent (bonding) OR has shared pairs of electrons between atoms ✓ P bonding mark P has induced dipoles OR has van der Waals' forces (between molecules) ✓ Structure mark 1 AI AND Si are Giant ✓	6	Use annotations with ticks, crosses, ECF etc for this part DO NOT ALLOW marking point 1 if Al has dipoles OR intermolecular forces OR molecules OR atoms OR attraction between nuclei and electrons OR attraction between oppositely charged ions DO NOT ALLOW marking point 2 if Si has dipoles OR intermolecular forces OR molecules but IGNORE 'molecule' Must be induced dipoles ALLOW vdW for van der Waals' IGNORE P has covalent bonds for marking point 3 Quality of Written Communication: 'giant' spelled correctly once and used in context for the fourth
		 Structure mark 2 P is Simple molecular OR simple covalent ✓ Bond strength mark Metallic AND covalent are stronger than vdWs OR Bonds broken in Al AND in Si are stronger than the forces broken in P OR More energy is needed to overcome bonds in Al AND Si than the forces in P ✓ 		marking point DO NOT ALLOW covalent bonds are broken in phosphorus for marking point 6, but ALLOW answers that inform AI and Si are stronger than P, ignoring incorrect forces or bonds used above IGNORE 'heat' but ALLOW 'heat energy'

F321

C	Questi	on	Answer	Marks	Guidance	
2	(c)	(i)	Increasing straight line OR curve from Na to Ar ✓	1	ALLOW bar charts OR points IGNORE the standard of drawing as long as the trend is clear IGNORE decrease between Mg/AI and P/S	
			Na Mg Al Si P S Cl Ar		Essentially the mark is for Na < Mg < Si < P < Cl < Ar AND Al < Si AND S< Cl	
		(ii)	Decreasing straight line OR curve from Na to Ar ✓ atomic radius Na Mg Al Si P S CI Ar	1	ALLOW bar charts OR points IGNORE the standard of drawing as long as the trend is clear IGNORE Ar Essentially the mark is for Na > Mg > Al > Si > P > S > Cl	
			Tota	I 9		

G	Questi	ion	Answer	Marks	Guidance	
3	(a)		$(1s^2) 2s^2 2p^6 3s^2 \checkmark$	1	IGNORE 1s ² seen twice ALLOW subscripts	
	(b)	(i)	$Mg^+(g) \rightarrow Mg^{2+}(g) + e^-$ Equation correct ✓ State symbols correct ✓	2	ALLOW $Mg^+(g) - e^- \rightarrow Mg^{2+}(g)$ for 2 marks The second mark is dependent upon the first mark except for the following close attempts for the first mark: ALLOW the following for one mark as states are correct $Mg(g) \rightarrow Mg^{2+}(g) + 2e^-$ $Mg(g) + e^- \rightarrow Mg^{2+}(g) + 2e^-$ ALLOW e for electron IGNORE states on electron	
		(ii)	<i>Ionic radius mark</i> Mg ⁽⁺⁾ has smaller (ionic) radius OR has less shells ✓ <i>Shielding mark</i> (outermost electron) of Mg ⁽⁺⁾ experience less shielding ✓	3	Use annotations with ticks, crosses, ECF etc for this part ALLOW Mg ⁽⁺⁾ has less energy levels ALLOW Mg ⁽⁺⁾ has electrons in lower energy level ALLOW Mg ⁽⁺⁾ has electrons closer to nucleus IGNORE Mg ⁽⁺⁾ has less orbitals OR less sub-shells IGNORE atomic for ionic IGNORE 'different shell' ALLOW screening for shielding	
			 Nuclear attraction mark More nuclear attraction on (outermost electrons) OR Outer electrons are attracted more strongly (to the nucleus) ✓ ORA throughout 		 ALLOW Mg⁽⁺⁾ has less electron repulsion from inner shells Quality of Written Communication: 'nuclear' OR 'nucleus' OR 'electron(s)' spelled correctly once and used in context for the third marking point ALLOW Mg⁽⁺⁾ has more nuclear pull IGNORE Mg⁽⁺⁾ has more effective nuclear charge DO NOT ALLOW more nuclear charge for more nuclear attraction for the third mark 	

G	Questi	on	Answer	Marks	Guidance
3	(c)	(i)	Sr ²⁺ ✓ OH ⁻ ✓	2	ALLOW 2OH ⁻ ALLOW 2 marks for Sr(OH) ₂ \rightarrow Sr ²⁺ + 2OH ⁻ ALLOW 1 mark for Sr ²⁺ + 2OH ⁻ \rightarrow Sr(OH) ₂ IGNORE H ⁺
		(ii)	Sr has lost (two) electron s 	1	ALLOW Sr \rightarrow Sr ²⁺ + 2e ⁻ IGNORE references to oxidation numbers
		(iii)	SrO AND H₂O ✓	1	ALLOW acceptable alternatives from Sr salts and alkalis eg SrC I_2 + NaOH
	(d)	(i)	It shows the oxidation number of the sulfur OR the name without the IV is ambiguous ✓	1	DO NOT ALLOW 'the charge on sulfur' DO NOT ALLOW 'shows the oxidation number of the sulfate' ALLOW Otherwise it could be SrSO ₄ ALLOW Sulfur has different oxidation numbers AW
		(ii)	H₂SO ₃ ✓	1	
			Total	12	

C	luesti	on	Answer	Marks	Guidance
4	(a)	(i)	$CI_2 + H_2O \rightarrow HCIO + HCI \checkmark$	1	
		(ii)	 (Chlorine compounds are) carcinogenic OR (Chlorine compounds are) toxic OR poisonous ✓ 	1	 ALLOW 'they' OR 'chlorinated hydrocarbons' OR 'it' for 'chlorine compounds' IGNORE harmful OR dangerous IGNORE references to HCI or HCIO IGNORE chlorine is toxic DO NOT ALLOW chlorine is carcinogenic
	(b)	(i)	Precipitation ✓	1	
		(ii)	$Ag^{+}(aq) + CI^{-}(aq) \rightarrow AgCI(s) \checkmark$	1	Equation AND state symbols required for mark DO NOT ALLOW spectator ions
	(c)	(i)	8.604/143.4 = 0.06(00) (mol) ✓	1	

Question	Answer	Marks	Guidance	
Question 4 (C) (ii)	AnswerIf a Group 2 chloride is used amount of Group 2 chloride = $\frac{1}{2} \times 0.0600$ OR = 0.0300 mol \checkmark Mass of 1 mol of Group 2 chloride = $\frac{2.86}{0.0300}$ = 95.3(3) \checkmark 	Marks 3	GuidanceDO NOT ALLOW 24.3 and Mg without appropriate workingCheck to see if there is any ECF credit possible using working belowALLOW calculator value or rounding to 2 significant figures or more but IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2ALLOW ECF for correctly calculated $\frac{1}{2}$ x answer to (c)(i)Must be at least 1 decimal place for second marking point ALLOW ECF for 2.86/mol of metal chloride seen above eg MCI will give 0.0600 mol of metal chloride and this will likely give 2.86/0.0600 = 47.7 eg MCl ₃ will give 0.0200 mol of metal chloride and this will likely give 2.86/0.0200 = 143.0ALLOW ECF for mass of Group 2 chloride – 71.0 provided it is not a negative value ALLOW ECF for mass of chloride was given as a whole number aboveALLOW ECF for mass of metal chloride – 35.5 if amount of metal chloride = 0.0600 mol eg 47.7 – 35.5 = 12.2 AND Be ALLOW ECF for mass of metal chloride – 106.5 if amount of metal chloride = 0.0200 mol eg 143.0 – 106.5 = 36.5 AND Ca	

G	luesti	ion	Answer	Marks	Guidance
4	(d)	(i)	A shared pair of electrons AND both electrons are donated by one atom ✓	1	
		(ii)	NH₄ ⁺ AND CI [−] ✓	1	ALLOW $NH_4CI \rightarrow NH_4^+ + CI^-$ OR $NH_4^+ + CI^- \rightarrow NH_4CI$
		(iii)	Ammonium ion with three covalent ' <i>dot-and-cross</i> ' bonds AND one dative covalent bond ✓	2	
			Chloride ion with $8e^-$ AND 1 of these electrons different \checkmark		ALLOW other symbols for dots and crosses eg triangles
			$\begin{bmatrix} H \\ \bullet \times \\ H & \bullet \times \\ H & \bullet \times \\ H \\ & \times \bullet \\ H \end{bmatrix} + \begin{bmatrix} \bullet \bullet \\ \bullet \bullet \\ \bullet \bullet \\ \bullet \bullet \end{bmatrix} -$		IGNORE charges IGNORE 'dative' arrow within the lone pair of the N atom
	(e)	(i)	(Thermal) decomposition ✓	1	

C	Question		Answer	Marks	Guidance
4	(e)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 242 (cm ³) award 3 marks	3	IGNORE over rounding to two significant figures once DO NOT ALLOW over rounding to two significant figures twice eg ALLOW the following answer for 3 marks 241 (cm ³) (0.00672 was rounded to 0.0067 OR 0.0101 was rounded to 0.010) ALLOW the following answers for 2 marks 240 (cm ³) (0.00672 was rounded to 0.0067 AND 0.0101 was rounded to 0.010) 252 (cm ³) (0.00672 was rounded to 0.007) 161 cm ³ (no multiplying by 3/2)
			(amount of KClO₃) = 0.824/122.6 OR = 0.00672 (mol) ✓		If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW up to correctly rounded calculator value of 0.006721044046
			(amount O_2) = (mol of KClO ₃) 0.00672 × 3/2 OR = 0.0101 (mol)		ALLOW up to correctly rounded calculator value ALLOW ECF for mol of KClO ₃ × $3/2$ for 2nd mark
			(volume of O_2) = 0.0101 × 24 000 = 242 (cm ³) \checkmark		ALLOW ECF for (mol of KClO ₃) × $3/2 \times 24000$
			Total	16	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

