Question		on	Expected Answers	Marks	Additional Guidance
1	(a)	i	20√	1	
		ii	2√	1	
		iii	5 ✓	1	
	(b)	i	69.8 ✓	1	
		ii	96.0 ✓	1	Allow 96
		iii	moles of NaNO ₃ = 0.05 \checkmark	2	4.8 g worth 1 (wrong M_r)
			mass = 0.05 x 85 = 4.25 (g) √		Accept 4.3 but not 4.2
					(ecf for calculated moles x 85)
		iv	$2.51 \times 10^{21} \checkmark$	1	Allow 2.5 x 10 ²¹
					Calc: 2.508333333 x 10 ²¹
					Allow calc value and any degree of correct rounding down to 2.5×10^{21}
	(c)		(+)7 √	1	Sign not required but do not credit '-7'
	(0)				Accept VII
			Total	9	

Question		Expected Answers	Marks	Additional Guidance
2	(a)	Energy change when each atom in 1 mole ✓ of gaseous atoms ✓ Ioses an electron ✓ (to form 1 mole of gaseous 1+ ions)	3	Not 'element' alone Compensate missed marks from correct equation
	(b)	Si ✓ Sharp rise in successive ionisation energy between 4th and 5th IE ✓ marking a change to a new shell / there are 4 electrons in the outer shell ✓	3	Not consequential Not sub-shell
	(c)	atomic radii increases/ there are more shells/atoms get bigger ✓ there is more shielding/ more screening ✓ ionisation energy decreases because the Increased shielding and distance outweigh the increased nuclear charge / the nuclear attraction decreases ✓	3	 USE annotations with ticks, crosses, con, ecf, etc for this part. 'down the group' not required 'more' is essential allow 'more electron repulsion from inner shells' Allow 'nuclear pull' ignore any reference to 'effective nuclear charge'
		Total	9	

Question		n	Expected Answers	Marks	Additional guidance
3	(a)		Ca ²⁺ : 20 protons; 18 electrons ✓ Cl [−] : 17 protons; 18 electrons ✓	2	
	(b)		cation shown with either 8 or 0 electrons AND anion shown with 8 electrons AND correct number of crosses and dots \checkmark Correct charges on both ions \checkmark $\begin{bmatrix} c_a \end{bmatrix}^{2^+} \begin{bmatrix} c_1 \\ c_1 \end{bmatrix}^-$ $\begin{bmatrix} c_1 \\ c_1 \end{bmatrix}^-$	2	For 1st mark, if 8 electrons shown around cation then 'extra' electron(s) around anion must match symbol chosen for electrons in cation. <i>Circles not required</i> Ignore inner shell electrons For charges, Allow: 2[Cl ⁻] 2[Cl] ⁻ [Cl ⁻] ₂ (brackets not required except for last one) Do not allow: for CaCl ₂ , [Cl ₂] ²⁻ [Cl ₂] ⁻ [2Cl] ²⁻ [Cl] Max 1 if only one Cl ⁻
	(c)		solid: ions are fixed (AW) ✓ aqueous: ions are free (to move) (AW) ✓	2	If charge carriers are wrong but comparison is given, then award one mark, <i>e.g.</i> solid: <i>electrons</i> are fixed in lattice <i>AND</i> aqueous: <i>electrons</i> are free to move ✓ (1 mark
	(d)	i	molar mass CaCO ₃ : 100.1 (g mol ⁻¹) ✓ 4.85/100.1 = 0.0485 mol ✓	2	Not 100 for molar mass calc. 0.048451548 Allow rounding of calculator value back to 2 sig figs allow 0.048-0.049 ECF If working shown for an incorrect molar mass, then the 2nd mark can be awarded as 4.85/calculated molar mass
		ï	5.38 or 5.39 g or 5.4 g ✓	1	For information: 0.0485 x 111.1 = 5.39 0.048451548 x 111.1 = 5.38

Question		on	Expected Answers	Marks	Additional guidance
					ECF : moles from (i) x 111.1 or 111
		iii	0.0970 or 0.097 or 0.0969 ✓	2	For information: $2 \times 0.0485 = 0.0970 \text{ mol}$ $2 \times 0.048451548 = 0.0969$ ECF moles from (i) x 2
			volume = 64.7 or 64.6 cm ³ or 65 \checkmark		For information ($0.0970/1.50$) x 1000 = 64.7 cm ³ ($0.0969/1.50$) x 1000 = 64.6 cm ³ ECF (moles above/1.50) x 1000
	(e)		$\begin{array}{rcl} Ca/CaO/Ca(OH)_2 \checkmark \\ Ca + 2HCI &\longrightarrow CaCl_2 + H_2 / \\ CaO + 2HCI &\longrightarrow CaCl_2 + H_2O / \\ Ca(OH)_2 + 2HCI &\longrightarrow CaCl_2 + 2H_2O \checkmark \end{array}$	2	Ignore state symbols Allow any other suitable alternatives
	(f)	i	Ca : H : S : O = $19.82/40.1$: $0.99/1$: $31.74/32.1$: $47.45/16$ or 1 : 2 : 2 : 6 \checkmark empirical formula = CaH ₂ S ₂ O ₆ \checkmark	2	Using atomic numbers gives CaHS ₂ O ₆ worth 1 Allow Ca(HSO ₃) ₂ !
		ii	$Ca(OH)_2 + 2SO_2 \longrightarrow CaH_2S_2O_6 \checkmark$	1	If you see it, allow Ca(HSO ₃) ₂ !
			Total	16	

Q	Question		Expected Answers	Marks	Additional Guidance
4	(a)		down group/from CI to I/, number of electrons/shells increases ✓	3	Answers involving ionisation energies score 0
			more/ stronger/ van der Waals'/ intermolecular forces/ induced dipoles/ instantaneous dipoles √		
			greater forces to break/more energy has to be put in to break forces \checkmark		
	(b)		$I_2 \rightarrow IO^-$, 0 to +1 \checkmark : oxidised	3	Sign not required but do not credit '-1'
			$I_2 \rightarrow I^-$, 0 to $-1 \checkmark$: reduced		'' Sign required here
			correct 'oxidised' and 'reduced' above/I is both oxidised and reduced / disproportionation \checkmark		
	(c)	i	goes orange/red/yellow ✓	2	Ignore brown
			$Cl_2 + 2Br^- \longrightarrow Br_2 + 2Cl^- \checkmark$		Ignore spectator ions
		ii	$Ag^{+}(aq) + CI^{-}(aq) \longrightarrow AgCI(s)$ correct equation \checkmark correct state symbols \checkmark	2	Allow state symbols for (slightly) incorrect equations
	(d)	i	attraction of an atom for electrons \checkmark in a (covalent) bond/ bonding pair \checkmark	2	
		ii	correct 3-D tetrahedral shape shown showing one outward wedge and 1 inward wedge; 3 bonds below horizontal \checkmark	2	For bond into paper, accept:
			correct dipoles: δ + on C and δ – on each Cl \checkmark		
					Allow correct chang with no storp labeles.
			$\mathcal{S} = \mathcal{C}^{\delta +}_{\mathcal{C},\mathcal{H}}$		Allow correct shape with no atom labels.
					Only need to show one dipole
		iii	the polarities/ dipoles cancel out / the molecule is symmetrical	1	
			Total	15	

Question	Expected Answers	Marks	Additional Guidance
5	Magnesium structure/bonding: giant ✓ metallic ✓ conducts by delocalised/free/mobile electrons ✓ melting point high because of the electrostatic attraction / attraction between (positive) ions and electrons ✓ Diamond does not conduct/poor conductor: no mobile charge carriers/electrons/ions ✓ structure/bonding: giant (✓) covalent ✓ melting point: high because strong/ lots of (covalent) bonds are broken ✓	10	USE annotations with ticks, crosses, con, ecf, etc for this part. Credit information if given in annotated diagrams Watch out for contradictions, especially of bonding type Allow: positive ions with a sea of electrons for both structure and bonding marks if labelled, one if not. Giant only awarded if not given above
	 Ice does not conduct: no mobile charge carriers/electrons/ions ✓ structure/bonding: H-bonds/intermolecular forces/ simple molecular ✓ melting point: Low because H bonds/intermolecular/ weak forces between molecules (are broken)/ higher than expected because H-bonds broken/ H-bonds stronger than other (named) intermolecular forces ✓ QWC – At least two sentences that show legible text with accurate spelling, punctuation and grammar so that the meaning is clear. ✓ 	1	must refer to bonds being broken once QWC mark must be indicated with a tick or cross through the Quality of Written Communication prompt at the bottom of page 9. Then scroll up to start of (b), counting ticks.