Question No.						Max Mark
1) (a)(i)	atoms of same element/same atomic number/same number of protons with different numbers of neutrons/different masses v					[1]
						[2]
(ii)	isotope ¹⁰ B ¹¹ B	protons 5 5	neutrons 5 6	electrons 5 5	\checkmark	
(b)(i)	weighted mean mass of an atom/average mass of an atom/average mass of the naturally occurring isotopes \checkmark compared with carbon-12 \checkmark 1/12th of mass of carbon-12/on a scale where carbon-12 is 12 \checkmark mass of 1 mole of atoms of an element compared with 1/12th the mass of 1 mole of carbon-12 is an alternative "mass of the atoms of the element that contains the same number of atoms as are in 1 mole of carbon-12" \longrightarrow 2 marks (mark lost because of mass units)					[3]
	more of ¹¹ E	3 (than ¹⁰ B)	\checkmark			[1]
(c)(i)	H ₃ BO ₃ +	$3K \longrightarrow B$	+ 3KOH ✓			[1]
(ii)	B changes from (+)3 ✓ to 0 ✓ 'oxidation number decreases' with no numbers scores one mark (<i>must be in terms of ox no. Ignore electrons</i>) Mark independently					[2]
(d)	X = 120° ✓ 3 bonded p Y = 104-10 2 lone pair electron pa lone pairs bonds rep	pairs / 3 bor 05° ✓ rs AND (2 b air repulsion airs get as repel (more pel ✓	nds ✓ onded pairs n (anywhere) far apart as p e) / m s repelling	OR 2 bonds) / possible (any contradicts) ✓ ywhere) / 'repel mark'	[5]
			g			15

2) (a)(i)	heating or thermal decomposition of limestone/CaCO ₃ /	
(ii)		[1]
	farming: neutralising acid soils/reduces acidity of soil ✓	
(b)(i)	$Ca(OH_2)(aq) + 2 HNO_3(aq) \longrightarrow Ca(NO_3)_2(aq) + 2 H_2O(I) \checkmark$	[1]
(ii)	2 sig fig minimum throughout $0.0405 \times 22.45(4000 - 2.26 \times 10^{-4})$	[4]
(11)	$0.0105 \times 22.45/1000 = 2.36 \times 10^{\circ}$ (calc. 2.35725 × 10^{\circ})	[']
(111)	ans to (ii) / 2 = 1.18 x 10 ⁻⁺ \checkmark (calc: 1.178625 x 10 ⁻⁺)	[1]
(iv)	ans to (iii) x 40 = 0.00472 \checkmark (calc: 0.0047145 \longrightarrow 0.00471)	[1]
(V)	Ca(NO ₃) ₂ = 40.1 + (14 + 48) x 2 = 164.1 (accept 164) / x = 272.1 - 164.1 = 108 \checkmark x = 6 / Ca(NO ₃) ₂ .6H ₂ O \checkmark	[2]
	If candidate has based this part on $Ca(OH)_2$, '11H ₂ O' would score 1 mark consequentially If (272.1 – incorrect calculated value for $Ca(NO_3)_2$), then 2nd mark can be achieved consequentially but a whole number is required.	
(c)	Ca(s) + 2H ₂ O(I) → Ca(OH) ₂ (aq) + H ₂ (g) ✓ for balanced equation ✓ for state symbols of correct species in equation	[2]
(d)(i)	$Ca^+(g) \longrightarrow Ca^{2+}(g) + e^-$ equation \checkmark state symbols must be (g), (g) but can be for any attempted equation losing electron(s) \checkmark	[2]
(ii)	mol Ca = $5.00/40.1$ or $0.125 (0.12468379) \checkmark$ 1 mol Ca requires $578 + 1145 = 1723 (kJ) \checkmark$ so energy required = answer above derived from IE data x 0.125 1723 x 0.125 = 215 (kJ) 3 sig figs \checkmark	[3]
	eg Use of 1145 only gives 143 kJ consequentially (would score 2)	[4]
(iii)	Assume 'down the group'	
	ionisation energy decreases 🗸	
	atomic radii increases / there are more shells √	
	there is more shielding ✓ 'more' is essential	
	attraction decreases / increased shielding and distance outweigh the increased nuclear charge \checkmark	
		19

3) (a)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵ ✓	[1]
(b)(i)	<pre>// Mg] 2+ [() () () () () () () () () () () () ()</pre>	[2]
(ii)	Mg conducts as there are free/delocalised/mobile electrons ✓ not just 'sea of electrons' MgCl ₂ (s) does not conduct as no free/delocalised/mobile electrons or ions or charge carriers ✓ MgCl ₂ (aq) conducts as ions move ✓ MgCl ₂ dissolves because water is a polar solvent ✓ Any 3 observations above	[3] max
(c)	increasing nuclear charge/number of protons ✓ electrons added to same shell /same or similar shielding ✓ electrons experience greater attraction or greater pull ✓	[3]
(d)	moles $Cl_2 = 145/24000 = 6.04 \times 10^{-3} \text{ mol} \checkmark$ accept 0.006 mol Cl_2 is in excess as 0.00604 > 0.005 mol Cl_2 / Cl_2 is in excess as 0.01208 > 0.01 mol $Cl_2 \checkmark$ Explanation using equation required for 2nd mark	[2]
(e)	Precipitation Add AgNO ₃ / Ag ⁺ (could be in equation) ✓ NaCl/Cl ⁻ → white precipitate / dissolves in dilute NH ₃ ✓ NaBr/Br ⁻ → cream precipitate / dissolves in conc NH ₃ or precipitate does not dissolve in dilute NH ₃ ✓ not 'Cl' or 'Br' or 'chlorine' or 'bromine'	[4]
OR	Displacement Add chlorine / Cl ₂ (could be in equation) ✓ (but not Cl) NaCl → no change/no reaction/pale green ✓ NaBr → goes orange/yellow/brown ✓ If candidate mentions formation of a precipitate do not award observation mark 2Br ⁻ + Cl ₂ → Br ₂ + 2Cl ⁻ ✓ or a full equation, state symbols not required eg: 2NaBr + Cl ₂ → 2NaCl + Br ₂	16

		11
	At least two sentences that show legible text with accurate spelling, punctuation and grammar so that the meaning is clear.✓ (Mark this from anywhere within Q4)	[1]
(b)	 CH₄: van der Waals' forces / interactions based on instantaneous/temporary/transient interactions ✓ HCI: (permanent) dipole – (permanent) dipole interactions ✓ intermolecular forces are stronger in HCI than in CH₄ / more energy required to break the intermolecular forces in HCI than in CH₄ ✓ 	[3]
	 H — O:H → O: H → H Two properties from: Ice is less dense/lighter than water/floats on water/ max density at 4°C ✓ explanation: H bonds hold H₂O molecules apart / open lattice in ice / H-bonds are longer ✓ Higher melting/boiling point than expected ✓ Not just high Accept: 'unusually high/strangely high/relatively high' explanation: H bonds need to be broken ✓ must imply that intermolecular bonds are broken High surface tension ✓ explanationstrength of H bonds across surface ✓ mark 2 properties only: max 4 	[4]
4) (a)	H ₂ O: Hydrogen bonding shown in words or in diagram: H bonding from O of 1 H ₂ O molecule to H of another \checkmark dipoles shown or described \checkmark with lone pair of O involved in the bond \checkmark	[3]