G	Questi	on	Answer	Marks	Guidance
1	(a)	(i)	Mass of the isotope compared to 1/12th OR mass of the atom compared to 1/12th ✓ (the mass of an atom of) ¹² C ✓	2	 ALLOW for ¹²C: carbon-12 OR C-12 OR C 12 OR 12C ALLOW mass of a mole of the isotope OR mass of a mole of atoms compared to 1/12th the mass of mole or 12 g of ¹²C for two marks ALLOW mass of the isotope or mass of the atom compared to ¹²C which has a mass of 12(.0) for two marks ALLOW one mark for responses which have individual atoms compared to one mole of 12C and vice versa eg mass of the isotope or mass of the atom compared to ¹²C which has a mass of 12(.0) g eg mass of an atom compared to 1/12th mass of one mole of ¹²C eg mass of one mole of atoms compared to 1/12th the mass of an atom of 12C ALLOW 2 marks for responses expressed as a fraction eg mass of the isotope mass of 1/12th mass of ¹²C IGNORE (weighted) mean OR average DO NOT ALLOW mass of element or mass of ion
		(ii)	19p and 20n ✓ ⁴¹ K⁺ and 19p ✓	2	Mark by row ALLOW 41K+
	(b)		(1s ²) 2s ² 2p ⁶ 3s ² 3p ² ✓	1	ALLOW 1s ² repeated ALLOW subscripts AND upper case etc

Question	Answer	Marks	Guidance
1 (c) (First check the answer on the answer line. If answer = 3.01×10^{22} award 3 marks $170.1 \checkmark$ (ALLOW in working shown as $28.1 + 35.5 \times 4$) Correctly calculates amount of molecules $8.505 / 170.1 = 0.05(00) \text{ mol } \checkmark$ Correctly calculates number of molecules $0.05 \times 6.02 \times 10^{23} = 3.01 \times 10^{22} \checkmark$	3	ALLOW 0.301 x 10^{23} for three marks If there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW ECF from incorrect molar mass of SiC/ ₄ ALLOW 0.05(00) (mol) for two marks ALLOW ECF for incorrect number of mol of SiC/ ₄ ALLOW calculator value or rounding to 3 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2. DO NOT ALLOW any marks for: 8.505 x 6.02 x 10^{23} = 5.12 x 10^{24}
	i) (Cl^{-}) (K^{+}) (Cl^{-}) (Cl^{-}) (Cl^{-}) (Cl^{-}) (Cl^{-}) (Cl^{-}) (K^{+}) (Cl^{-}) (K^{+}) $(K$	2	ALLOW the structure with ALL C l^- and K ⁺ transposed ALLOW labels if seen outside circles but linked with an arrow eg K ⁺ \rightarrow
	Tota	l 10	

Q	Question		Answer	Marks	Guidance
2	(a)	(i)	$\begin{array}{c} Al^{3^+} \checkmark \\ SO_4^{2^-} \checkmark \end{array}$	2	
		(ii)	$AI_2O_3(s) + 3H_2SO_4(aq) \rightarrow AI_2(SO_4)_3(aq) + 3H_2O(I)$ Correct species AND correctly balanced \checkmark state symbols on correct species \checkmark	2	ALLOW multiples
		(iii)	(The number of) water(s) of crystallisation ✓	1	IGNORE hydrated OR hydrous OR 'contains water'
		(iv)	First check the answer on the answer line. If answer = 16, award 3 marks Correctly calculates amount of $AI_2(SO_4)_3$: $6.846 / 342.3 = 0.02(00) \text{ mol } \checkmark$ Correctly calculates amount of H_2O : $5.760 / 18.0 = 0.32(0) \text{ mol } \checkmark$ Correctly calculates whole number ratio of mol of H_2O : $AI_2(SO_4)_3$ to give $\mathbf{x} = 16 \checkmark$	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW as ECF from 12.606/342.3 = 0.0368(273) AND 0.32/0.0368(273) To give $\mathbf{x} = 9$ for two marks ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2. ALLOW ECF for calculation of correctly rounded whole number value of H ₂ O from incorrect mol of H ₂ O and / or incorrect mol of Al ₂ (SO ₄) ₃ BUT \mathbf{x} must be a whole number ALLOW alternative method Mol of Al ₂ (SO ₄) ₃ : 6.846 / 342.3 = 0.02(00) mol (first mark) Molar mass of Al ₂ (SO ₄) ₃ • \mathbf{x} H ₂ O: 12.606 / 0.02(00) = 630.3 g mol ⁻¹ (second mark) Mass of water per mol = 630.3 – 342.3 = 288 AND 288/18 to give $\mathbf{x} = 16$ (third mark)

C)uesti	on	Answer	Marks	Guidance
2	Questi (b)	on (i)	Answer $Cl_2 + H_2O \rightarrow HCl + HClO \checkmark$ H ⁺ ions are released OR HCl is acidic OR HClO is acidic ✓	Marks 2	Guidance ALLOW HOC/ ALLOW equilibrium sign IGNORE state symbols ALLOW formulae OR names <i>If correct equation is seen:</i> ALLOW 'product is acidic' OR 'acid is produced' IGNORE 'the solution is acidic' but ALLOW 'the solution formed is acidic' DO NOT ALLOW 'chlorine is acidic' ie acidity must be related to the product(s)
		(ii)	C/O- √	1	If an incorrect equation is seen: ALLOW second mark if H ⁺ OR HC <i>l</i> OR HC <i>l</i> O is given as a product in the equation AND is stated as being acidic If no equation is seen: ALLOW second mark if H ⁺ OR HC <i>l</i> OR HC <i>l</i> O is produced AND is stated as being acidic ALLOW OC/ ⁻
			Total	11	

Q	uesti	on	Answer	Marks	Guidance	
Q 3	(a)	on (i)	Answer P in P ₄ is 0 AND in PH ₃ is -3 AND in NaH ₂ PO ₂ is (+)1 \checkmark Phosphorus has been oxidised (from 0) to $+1\checkmark$ Phosphorus has been reduced (from 0) to $-3 \checkmark$	Marks 3	 FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED ALLOW oxidation states written above the equation if not seen in the text BUT IGNORE oxidation states written above the equation if seen in the text ALLOW 3– AND 1+ DO NOT ALLOW ions DO NOT ALLOW p^{3–} in PH₃ OR P⁺ in NaH₂PO₂ DO NOT ALLOW phosphide or phosphine or phosphate in place of phosphorus ALLOW P or P₄ for phosphorus ALLOW ECF for the second and third marks if ONE incorrect oxidation number is assigned but directional changes are correct eg P = 0 and –3 and +2 instead of 0 and –3 and +1. IGNORE references to electron loss / gain If correct oxidation numbers are seen ALLOW second AND third marking points for: 	
					third marking points for: 'Phosphorus is oxidised to form NaH ₂ PO ₂ ' AND	
					'Phosphorus is reduced to form PH ₃ ' IF neither second and third marks have been awarded ALLOW for ONE mark: Phosphorus has been both oxidised and reduced OR Phosphorus's oxidation number has increased and decreased	

Q	uesti	on	Answer	Marks	Guidance
3	(a)	(ii)	First check the answer on the answer line. If answer = 360 (cm^3) award 2 marks Correctly calculates amount of P ₄ = $1.86/124.0$ = $0.015(0) \text{ mol } \checkmark$	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below
			Correctly calculates volume of $PH_3 = 0.015(0) \times 24000 = 360 \text{ (cm}^3) \checkmark$		ALLOW ECF for wrong amount of $P_4 \times 24000$ for second mark ALLOW one mark for (1.86/31.0) x 24000 = 1440 DO NOT ALLOW 2 nd mark for 1.86 x 24000 = 44640
					ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2.
	(b)		$4PH_3 + 8O_2 \rightarrow P_4O_{10} + 6H_2O \checkmark$	1	ALLOW correct multiples IGNORE state symbols
	(c)	(i)	The hydrogen ions OR H ⁺ OR protons (of phosphoric acid) are replaced by sodium ions OR Na ⁺ ✓	1	 ALLOW Na ions OR positive ions replace H ions OR metal ions have replaced hydrogen ions OR protons DO NOT ALLOW Na replaces H. Ions are key in either word or symbol form. DO NOT ALLOW incorrect charge on Na ions (eg Na²⁺)
		(ii)	Correctly calculates 0.100 x 15 / 1000 = 1.5(0) x 10 ⁻³ OR 0.0015(0) ✓	1	
		(iii)	22.5 ✓	1	ALLOW ECF from (ii) Answer from (ii) x (3/0.2) x 1000
	(d)	(i)	hydrogen bonding ✓ Permanent dipole(–dipole interactions) ✓	2	

Q	uesti	on	Answer	Marks	Guidance
3	(d)	on (ii)	Answer the intermolecular forces are weaker in PH ₃ ✓	1 1	Guidance ALLOW the energy needed to overcome the intermolecular forces in NH ₃ is greater Check table in part (i) IF NH ₃ = hydrogen bonds AND PH ₃ = permanent dipoles OR van der Waal's forces; ALLOW 'Hydrogen Bonds are stronger' ORA IF NH ₃ = permanent dipoles AND PH ₃ = van der Waal's forces; ALLOW 'permanent dipoles are stronger' ORA IF NH ₃ = permanent dipoles are stronger' ORA IF NH ₃ = permanent dipoles are stronger 'ORA IF NH ₃ = permanent dipoles are stronger 'ORA DO NOT ALLOW PH ₃ has weaker vdW's than NH ₃ DO NOT ALLOW NH ₃ has stronger hydrogen bonds than PH ₃
	(e)	(i)	Both electrons have been donated by one atom ✓	1	DO NOT ALLOW implication that covalent bonds are broken ALLOW 'they' for electrons
					IGNORE elements for atom DO NOT ALLOW 'transfer' in place of 'donated' DO NOT ALLOW more than one electron pair is donated

Question	Answer	Marks	Guidance
3 (e) (ii)	H → F ↔ + × • × • × • • • H × N → B × F ↔ + → F ↔ H → F ↔ • • • Correct ' <i>dot-and-cross</i> ' arrangement of B covalently ' <i>dot-and-cross</i> ' bonded to three F atoms, including full octet on F atoms AND Correct ' <i>dot-and-cross</i> ' arrangement of N covalently ' <i>dot-and-cross</i> ' bonded to three H atoms ✓ Dative covalent shown between N and B atoms ✓	2	 Must be 'dot-and-cross', but ALLOW other symbols for electrons of third and fourth atoms eg △, +, o, etc Circles for outer shells are not needed IGNORE inner shells IGNORE use of charges Non-bonding electrons of F do not need to be seen as pairs IGNORE dative-covalent arrows from N to B, but DO NOT ALLOW arrow from B to N DO NOT ALLOW two separate molecules for first mark DO NOT ALLOW dative covalent bond mark if electron pair matches the B electrons ie to be correct the dative pair must be the same symbol as non-bonding electrons on F atoms if only two symbols are used DO NOT ALLOW dative covalent bond mark if F atoms have no non-bonding electrons UNLESS B has different electron symbol to N or H atoms
(iii)	$BF_3 = 120(\circ) \checkmark$ $H_3NBF_3 = 109.5(\circ) \checkmark$	2	ALLOW 109–110(°) for H ₃ NBF ₃

Q	Question		Answer	Marks	Guidance
3	(e)	(iv)	(N in) NH ₃ has three bonding pairs and one lone pair of electrons \checkmark	3	ALLOW 'bonds' for 'bonding pairs'
			 (N in) H₃NBF₃ has four bonding pairs (and no lone pairs) of electrons OR Lone pair on N now becomes bonding pair ✓ 		
			Lone pair of electrons repels more than bonding pairs \checkmark		IGNORE 'electrons repel' DO NOT ALLOW 'atoms repel'
			Total	20	

Q	uestion	Answer	Marks	Guidance	
4	(a)		5	FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED 'Down the group' is not required ORA throughout	
		Reactivity increases (down the group) \checkmark		ALLOW alternative phrases for 'reactivity increases'	
		Increasing size mark Atomic radius increases OR There are more shells ✓		ALLOW 'there are more energy levels' ALLOW 'electrons are in higher energy levels' ALLOW 'electrons are further from the nucleus' IGNORE there are more orbitals OR more sub-shells ALLOW 'different shell' OR 'new shell'	
		<i>Increased shielding mark</i> There is more shielding ✓		There must be clear comparison ie 'more shielding' OR 'increased shielding' ALLOW there is more electron repulsion from inner shells DO NOT ALLOW responses which have no comparative eg 'there is shielding'	
		<i>Nuclear attraction (to electron) mark</i> Nuclear attraction (to electron) decreases OR		ALLOW 'there is less nuclear pull' OR 'electrons less tightly held'	
		(outermost) electrons experience less attraction (to nucleus) OR		IGNORE there is less effective nuclear charge IGNORE 'nuclear charge' for 'nuclear attraction'	
		Increased nuclear charge is outweighed by increased shielding/distance ✓		If question is answered in terms of only Group 7, then ONLY marks 2, 3 and 4 can be awarded	
		Ease of electron loss mark Easier to remove (outer) electron(s) OR Ionisation energy decreases ✓		ALLOW easier to oxidise	
		Quality of written communication electron(s) OR ionisation OR ionization OR oxidise OR oxidize spelled correctly at least once for last marking point			

C	Question		Answer	Marks	Guidance
4	(b)	(i)	AgNO ₃ (aq) OR silver nitrate OR AgNO ₃ ✓	1	ALLOW Ag ⁺ (aq)
		(ii)	Yellow AND precipitate ✓	1	ALLOW shades of yellow but not creamy yellow ALLOW ppt or solid for precipitate
		(iii)	Ag⁺ (aq) + I⁻(aq) ➔ AgI(s) ✓	1	ALLOW correct multiples
		(iv)	concentrated (aqueous) NH ₃ ✓	1	
			Total	9	

Q	Question		Answer	Marks	Guidance
5	(a)	(i)		3	FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED
			Nuclear charge mark		
			(Across the period) number of protons increases OR		Comparison should be used for each mark
			greater nuclear charge ✓		IGNORE atomic number increases, but ALLOW proton number increases
			Quality of written communication – nuclear OR		IGNORE nucleus gets bigger
			proton(s) OR nucleus spelled correctly ONCE for the first		IGNORE 'effective nuclear charge increases'
			marking point		DO NOT ALLOW 'charge' increases without reference to nuclear
			Distance / shielding mark		
			(Outermost) electrons are in the same shell OR		
			(Outermost) electrons experience the same shielding		
			OR		ALLOW shielding is similar BUT IGNORE 'there is shielding'
			Atomic radius decreases ✓		DO NOT ALLOW sub-shells OR orbitals
			Nuclear attraction (to electron) mark		
			Greater nuclear attraction (on outermost electrons)		
			OR		ALLOW greater nuclear pull for greater nuclear attraction
			(outer) electrons are attracted more strongly (to the nucleus) ✓		DO NOT ALLOW use of greater nuclear charge for greater nuclear attraction for third mark
		(ii)	(Diamond and graphite form) gaseous atoms (of carbon when they are ionised) ✓	1	ALLOW the atoms are in the gaseous state

F321

Question	Answer				Marks	Guidance
(b)		Lithium	Carbon (diamond)	Fluorine	6	ALLOW shared pair of electrons for covalent (bond)
	Structure	Giant	Giant 🗸	Simple		ALLOW vdw for van der Waals' ALLOW temporary–induced or instantaneous–induced for
	Force or bond overcome on melting	Metallic bond	Covalent (bond) ✓	van der Waals' (forces) OR induced dipoles ✓		van der Waals' ALLOW Positive ions for Li ⁺ ions IGNORE 'Lithium ions' but ALLOW 'Positive lithium ions' DO NOT ALLOW Li ²⁺
	Particles between which the force or bond is acting	Li ⁺ ions and (delocalised) electrons ✓	Atoms ✓	Molecules ✓		 IGNORE C and IGNORE F₂ IGNORE diagrams but ALLOW names of particles if seen as a label on a diagram DO NOT ALLOW implication that covalent bonds are broken in fluorine for the <i>particles</i> mark of fluorine as this implies the
	Total				10	particles are atoms

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

