

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary GCE

CHEMISTRY A

Unit F321: Atoms, Bonds and Groups

Specimen Mark Scheme

The maximum mark for this paper is **60**.

F321

Question Number	Answer	Max Mark			
1(a)(i)	atoms of the same element with different numbers of neutrons/different masses ✓	[1]			
(ii)	⁷⁹ Br 35 protons, 44 neutrons, 35 electrons ✓ ⁸¹ Br 35 protons, 46 neutrons, 35 electrons ✓	[2]			
(iii)	$(1s^2)2s^22p^63s^23p^63d^{10}4s^24p^5\checkmark$				
(b)(i)	iodide has been converted to iodine ✓ (with correct use and spelling of iodide and iodine) The 1st experiment shows that bromine is more reactive than iodine ✓ The 2nd experiment shows that chlorine is more reactive than bromine ✓ Accept 1 mark for 2nd and 3rd marking points if the correct reactivity order of chlorine > bromine > iodine has been stated.	[3]			
(ii)	$Br_2 + 2l^- \longrightarrow 2Br^- + l_2 \checkmark$	[1]			
(c)	add $AgNO_3/Ag^+$ (to a solution of the food) \checkmark $Ag^+(aq) + Cl^-(aq) \longrightarrow AgCl(s) \checkmark$ degree of cloudiness/whiteness/intensity indicates relative quantity \checkmark sodium ion content needs to be determined as well \checkmark	[4]			
2(a)(i)	S 🗸	[1]			
(ii)	Al✓	[1]			
(iii)	B✓	[1]			
(iv)	Ca✓	[1]			
(v)	K ✓	[1]			
(vi)	K✓	[1]			
(b)(i)	atomic radii decrease /similar shielding /electrons added to same shell ✓ number of protons in the nucleus increases ✓ nuclear attraction increases ✓	[3]			
(b)(ii)	$Na^{2+}(g) \longrightarrow Na^{3+}(g) + e^-$: equation and state symbols \checkmark	[1]			
(b)(iii)	large jump (in energy) between the 4th and 5th ionisation energies ✓ four electrons in outer shell so element is Si ✓	[2]			

Question Number	Answer	Max Mark
3(a)(i)	⊕ - ⊕ - ⊕ ⊕ - ⊕ - ⊕ ⊕ - ⊕ - ⊕	
	positive ions ✓ electrons ✓ (must be labelled)	[2]
(ii)	the electrons move ✓	[1]
(b)(i)	attraction between oppositely charged ions ✓	[1]
(ii)	Mg and Cl both with 8 electrons in outer shell, (accept 0 electrons for Mg) Cl must have one dot to seven crosses or vice versa ✓ correct charges on each ion ✓	[2]
(iii)	MgCl₂ does not conduct when solid because ions are fixed in lattice ✓ H₂O does not conduct as there are no free charge carriers/water molecules are uncharged ✓ MgCl₂ conducts when aqueous because ions are free to move ✓	[3]
(c)	 ✓ To boil Cl₂, van der Waals' forces/intermolecular forces are broken (with van der Waals/intermolecular spelt correctly) To boil C, covalent bonds are broken ✓ 	
	covalent bonds are stronger than van der Waals' forces ✓	[3]

Question Number	Answer	Max Mark
4(a)(i)	Molar mass of CaCO ₃ = 100.1 g mol ⁻¹ \checkmark	
-1 (a)(1)	2.68/100.1 = 0.0268/0.027 ✓	[2]
(ii)	$0.0268 \text{ mol x } 24,000 = 643 \text{ cm}^3 \checkmark$	[1]
(iii)	moles $HNO_3 = 2 \times 0.0268$	
	= 0.0536 /0.054 mol ✓	
	(i.e. answer to (i) x 2)	[2]
	volume of HNO ₃ = $0.0536 \times 1000/2.50 = 21.4 \text{ cm}^3 \checkmark$	[2]
(b)	Molar mass of anhydrous calcium nitrate = 164.1 g mol ⁻¹ \checkmark Ratio Ca(NO ₃) ₂ : H ₂ O = 69.50/164.1 : 30.50/18 or 0.4235 : 1.694 or 1 : 4 \checkmark	
	Formula = $Ca(NO_3)_2 \cdot 4H_2O \checkmark$	[3]
	Formula - Ca(NO _{3/2} -4 _{F12} O V	[၁]
(c)(i)	because Ca has changed from 0 to +2 ✓	
. , , ,	and H has changed from +1 to 0 ✓	[2]
(ii)	Calcium reacts with water producing hydrogen/H₂/calcium/hydroxide/Ca(OH)₂ ✓ (i.e. one product)	
	$Ca(s) + H_2O(I) \longrightarrow Ca(OH)_2(aq) + H_2(g) \checkmark (i.e. full equation)$	
	Equation would subsume both two marks	[2]

Question Number	Answer	Max Mark			
5(a)(i)	H_2O NH_3				
	2 3 ✓				
	2 1 🗸	[2]			
(ii)	::				
	H 107°				
	shape ✓ bond angle labelled on diagram as 107 ° ✓				
	0 120 0				
	shape ✓ bond angle labelled on diagram as 110–120° ✓				
(b)	H bonding from lone pair on O of 1 H₂O molecule to H of another ✓ dipoles shown ✓				
	Two properties:				
	lce is lighter than water/ max density at 4°C ✓				
	explanation: H bonds hold H₂O molecules apart				
	/ open lattice in ice				
	/ H-bonds are longer ✓				
	Higher melting/boiling point than expected ✓				
	explanation: strength of H bonds that need to be broken ✓				
	must imply that intermolecular bonds are broken				
	High surface tension/viscosity ✓				
	explanation:strength of H bonds across surface ✓	[6]			
	Paper Total	[60]			

Assessment Objectives Grid (includes QWC)

Question	AO1	AO2	AO3	Total
1(a)(i)	1			1
1(a)(ii)	2			2
1(a)(iii)		1		1
1(b)(i)		3		3
1(b)(ii)	1			1
1(c)			4	4
2(a)(i)		1		1
2(a)(ii)		1		1
2(a)(iii)	1			1
2(a)(iv)		1		1
2(a)(v)	1			1
2(a)(vi)	1			1
2(b)(i)	3			3
2(b)(ii)	1			1
2(b)(iii)		2		2
3(a)(i)	2			2
3(a)(ii)	1			1
3(b)(i)	1			1
3(b)(ii)		2		2
3(b)(iii)		3		3
3(c)	3			3
4(a)(i)		2		2
4(a)(ii)		1		1
4(a)(iii)		2		2
4(b)		3		3
4(c)(i)		2		2
4(c)(ii)		2		2
5(a)(i)	2			2
5(a)(ii)	2	2		4
5(b)	6			6
Totals	28	28	4	60

BLANK PAGE

BLANK PAGE

