Answer all the questions.

(ii)	Complet	e the table be	low for the two	isotopes of bo	ron.	
		isotope	protons	neutrons	electrons	
		¹⁰ B				
		¹¹ B				
) The			f boron in the s	sample analyse	ed was 10.8.	
		ne term <i>relativ</i>	e atomic mass	S		
	Define th	ne term <i>relativ</i>	e atomic mass	S		
	Define the	ne term <i>relativ</i>	e atomic mass	atomic mass si		
(i)	Define the	ne term <i>relativ</i>	or the relative	atomic mass si		

1

(c)	The	element boron was first isolated in 1808 by reacting boric acid, H ₃ BO ₃ , with potassium.
(-)		
	(i)	In addition to boron, the reaction produces an alkali.
		Suggest a balanced equation for this reaction.
		[1]
	(ii)	Explain, using oxidation numbers, why boron in boric acid has been reduced.
		[0]
		[2]
(d)	The	structure of a molecule of boric acid is shown below.
	Pre	dict values for the bond angles labelled ${\bf X}$ and ${\bf Y}$ in a boric acid molecule.
	Ехр	lain your reasoning.
		H O X O H
	bon	d angle X
	reas	soning

bond angle Y.....

reasoning.....

.....[5]

[Total: 15]

		e, CaO, and slaked lime, $Ca(OH)_2$, are bases made by the chemical industry with uses in and farming.
(a)	(i)	How is quicklime made by the chemical industry?
		[1]
	(ii)	Give one use of slaked lime in farming.
		[1]
(b)	A st	ked lime is slightly soluble in water forming a solution commonly referred to as limewater, sudent carried out a titration to find the concentration of limewater. 25.0 cm ³ of limewater neutralised by 22.45 cm ³ of 0.0105 mol dm ⁻³ nitric acid, HNO ₃ .
	(i)	Balance the equation for the reaction that takes place.
		Ca(OH) ₂ (aq) +HNO ₃ (aq) \longrightarrow Ca(NO ₃) ₂ (aq) +H ₂ O(I) [1]
	(ii)	Calculate how many moles of HNO ₃ were used.
		mol [1]
	(iii)	Determine how many moles of Ca(OH) ₂ reacted with the HNO ₃ .
		mol [1]
	(iv)	Calculate the concentration, in mol dm ⁻³ , of the Ca(OH) ₂ in the limewater.
	(17)	oaloulate the concentration, in the anti-, of the ca(cri)2 in the limewater.
		mol dm ⁻³ [1]
	(v)	After the titration, the student allowed the water to evaporate to obtain a hydrated crystalline solid with a molar mass of $272.1\mathrm{gmol^{-1}}$.
		Determine the formula of the hydrated solid. Show your working.

2

(c)	Lim	ewater	can be made by adding calcium	metal to water.		
	Wri	te an e	quation, with state symbols, for th	is reaction.		
						[2]
(d)	req	uired to	sium metal reacts, each calcium convert Ca atoms into Ca ²⁺ ions and second ionisation energies of c	involves both f	irst and second	
			ionisation number	1st	2nd	
			ionisation energy/kJ mol ⁻¹	578	1145	
	(i)	Write of cald		·		
						[2]
	(ii)	Calcu from C	late how much energy, in kJ, w Ca(g).	ould be need	ed to form 5.0	00g of Ca ²⁺ (g) ions
		Give y	our answer to three significant fig	ures.		
						l. J. [0]
	,,,, ,	T. ('				=kJ [3]
	(iii)	The fil	rst ionisation energies of the elem	ients in Group	2 show a tren	d.
		State	and explain this trend.			
						[4]

© OCR 2008 [Turn over

[Total: 19]

3	stion is about the chemistry of chlorine and its compounds.			
	(a)	Con	nplete the electronic configuration of an atom of Cl.	
		1s ²		.[1]
	(b)		orine reacts with magnesium to form magnesium chloride.	
			$Mg(s) + Cl_2(g) \longrightarrow MgCl_2(s)$	
		(i)	Draw a 'dot-and-cross' diagram for MgCl ₂ .	
				[2]
		/ii\		[~]
		(ii)	Solid MgC <i>l</i> ₂ does not conduct electricity but solid magnesium does.	
			Solid $\mathrm{MgC}l_2$ dissolves in water and the resulting solution does conduct electricity.	
			Explain these observations.	
				••••
				••••
				[3]
	(c)		orine and magnesium are both elements in Period 3 of the Periodic Table. The radius contouring than that of an atom of Mg.	f a
		Ехр	lain why.	

(d)	Bleach is a solution of sodium chlorate(I), NaClO, made by reacting chlorine with aqueous
	sodium hydroxide.

$$Cl_2(g) + 2NaOH(aq) \longrightarrow NaClO(aq) + NaCl(aq) + H_2O(l)$$

A student prepared some bleach by reacting $145\,\mathrm{cm^3}$ of chlorine gas with an aqueous solution containing $0.0100\,\mathrm{mol}$ NaOH.

Under these conditions, 1.00 mol of $\mathrm{C}\mathit{l}_{2}(g)$ has a volume of 24.0 dm³.

Determine whether $\mathrm{C}\mathit{l}_{2}$ or NaOH was in excess of its reacting quantity.

Show all your working.

(e)	You are supplied with two solutions: $NaCl(aq)$ and $NaBr(aq)$.
	Outline how you could distinguish between these two solutions using simple experiments Include relevant equations.
	[4]

[2]

[Total: 15]

© OCR 2008 [Turn over

4	In this question, one mark is available for the quality of spelling, punctuation and grammar.		
	Wat inte	ter, methane and hydrogen chloride all have simple molecular structures but differ in their rmolecular forces.	
	(a)	Describe, with the aid of a diagram, the hydrogen bonding in water.	
		State and explain two anomalous properties of water in terms of this bonding.	
		<u></u>	

(b) The boiling points of methane and hydrogen chloride are shown in the table below.

substance	boiling point/°C
methane	-164
hydrogen chloride	-85

Explain why methane and hydrogen chloride have different boiling points.
[3]
Quality of Written Communication [1]
[Total: 11]

END OF QUESTION PAPER