

After completing this chapter you should be able to

- 1 use Pascal's Triangle to expand expressions of the form $(a + b)^n$
- 2 use combination and factorial notation to expand expressions of the form $(a + b)^n$
- **3** use the expansion of $(1 + x)^n$ to expand $(a + b)^n$.

You will revisit the above techniques in Core 4 when you will expand expressions when n is not a positive integer. In the meantime see if you can solve the problem below.

The binomial expansion

5.1 You can use Pascal's Triangle to quickly expand expressions such as $(x + 2y)^3$.

Consider the following:

$$(a+b)^{1} = a+b$$

$$(a+b)^{2} = (a+b)(a+b) = a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = (a+b)(a+b)^{2} = (a+b)(a^{2} + 2ab + b^{2})$$

$$= a(a^{2} + 2ab + b^{2}) + b(a^{2} + 2ab + b^{2})$$

$$= a^{3} + 2a^{2}b + ab^{2} + ba^{2} + 2ab^{2} + b^{3}$$

$$= a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

Similarly $(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$.

Setting these results out in order starting with $(a + b)^0$ we find that:

$$(a + b)^{0} = 1$$

$$(a + b)^{1} = 1a + 1b$$

$$(a + b)^{2} = 1a^{2} + 2ab + 1b^{2}$$

$$(a + b)^{3} = 1a^{3} + 3a^{2}b + 3ab^{2} + 1b^{3}$$

$$(a + b)^{4} = 1a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + 1b^{4}$$

Hint: The terms all have the same index as the original expression. For example, look at the line for $(a + b)^3$. All of the terms have a total index of 3 $(a^3, a^2b, ab^2$ and b^3).

You should notice the following patterns:

• The coefficients form a pattern that is known as Pascal's Triangle.

Hint: To get from one line to the next you add adjacent pairs of numbers.

Example 1

Use Pascal's Triangle to find the expansions of:

- **a** $(x + 2y)^3$
- **b** $(2x-5)^4$

Index = 3 so look at the 4th line in Pascal's Triangle to find the coefficients.

Use the expansion of $(a + b)^3$. Remember $(2y)^2 = 4y^2$.

The coefficients are 1, 4, 6, 4, 1 and terms are:

$$(2x)^4, (2x)^3(-5)^1, (2x)^2(-5)^2,$$

$$(2x)^1(-5)^3, (-5)^4$$
So $(2x - 5)^4 = 1(2x)^4 + 4(2x)^3(-5)^1 + 6(2x)^2(-5)^2 + 4(2x)^1(-5)^3 + 1(-5)^4$

$$= 16x^4 - 160x^3 + 600x^2 - 1000x + 625$$

Index = 4 so look at the 5th line of Pascal's Triangle.

Use the expansion of $(a + b)^4$.

Careful with the negative numbers!

Example 2

The coefficient of x^2 in the expansion of $(2 - cx)^3$ is 294. Find the possible value(s) of the constant c.

The coefficients are 1, 3, 3, 1

The term in x^2 is $3 \times 2(-cx)^2 = 6c^2x^2$ So $6c^2 = 294$ $c^2 = 49$ $c = \pm 7$

Index = 3, so use the 4th line of Pascal's Triangle to find coefficients.

From the expansion of $(a + b)^3$ the x^2 term is $3ab^2$ where a = 2 and b = -cx.

Set up and solve an equation in c.

Exercise 5A

1 Write down the expansion of:

a
$$(x + y)^4$$

b $(p+a)^5$

c $(a-b)^3$

d $(x+4)^3$

e
$$(2x-3)^4$$

f $(a+2)^5$

g $(3x-4)^4$

h $(2x - 3y)^4$

2 Find the coefficient of x^3 in the expansion of:

a
$$(4+x)^4$$

b $(1-x)^5$

c $(3+2x)^3$

d $(4+2x)^5$

e
$$(2+x)^6$$

f $(4-\frac{1}{2}x)^4$ **g** $(x+2)^5$

h $(3-2x)^4$

- **3** Fully expand the expression $(1 + 3x)(1 + 2x)^3$.
- **4** Expand $(2+y)^3$. Hence or otherwise, write down the expansion of $(2+x-x^2)^3$ in ascending powers of x.
- **5** Find the coefficient of the term in x^3 in the expansion of $(2+3x)^3(5-x)^3$.
- **6** The coefficient of x^2 in the expansion of $(2 + ax)^3$ is 54. Find the possible values of the constant a.
- 7 The coefficient of x^2 in the expansion of $(2-x)(3+bx)^3$ is 45. Find possible values of the constant b.
- **8** Find the term independent of x in the expansion of $\left(x^2 \frac{1}{2x}\right)^3$.
- 5.2 You can use combinations and factorial notation to help you expand binomial expressions. For larger indices, it is quicker than using Pascal's Triangle.

Suppose that three people A, B and C are running a race. There are six different outcomes for their finishing positions.

The number can be calculated as:

A, B, C A, C, B B, A, C B, C, A C, A, B C, B, A

 $3 \times 2 \times 1$ After the winner has crossed the There are three line there are runners in the 2 choices for race: A, B or C. second place.

After the first and second places have been awarded, there is only 1 place left for the third place.

We can represent $3 \times 2 \times 1$ using what is termed factorial notation. 3!, pronounced '3 factorial' = $3 \times 2 \times 1$.

Note: By definition, 0! = 1

Suppose you wish to choose any two letters from A, B and C, where order does not matter. There are three different outcomes. We can represent this by ${}^{3}C_{2}$ or $\binom{3}{2} = \frac{3!}{2!1!}$.

The number of ways of choosing r items from a group of n items is written ${}^{n}C_{r}$ or $\binom{n}{r}$ and is calculated by $\frac{n!}{(n-r)!r!}$

e.g.
$${}^{3}C_{2} = \frac{3!}{(3-2)!2!} = \frac{6}{1 \times 2} = 3$$

Exercise 5B

- **1** Find the values of the following:
 - **a** 4!
- **b** 6!

 $c \frac{8!}{6!}$

d $\frac{10!}{9!}$

- **e** 4C_2
- **f** ${}^{8}C_{6}$

- **g** ${}^{5}C_{2}$
- **h** ${}^{6}C_{3}$

- **i** ${}^{10}C_9$
- **j** ${}^{6}C_{2}$

 $k^{-8}C_5$

 $1 {}^{n}C_{3}$

- **2** Calculate:
 - **a** 4C_0
- b
- $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$
- 4
- \overline{C}_2
- $\binom{4}{3}$
- $\binom{4}{4}$

Now look at line 5 of Pascal's Triangle. Can you find any connection?

- **3** Write using combination notation:
 - **a** Line 3 of Pascal's Triangle.
 - **b** Line 5 of Pascal's Triangle.
- **4** Why is 6C_2 equal to $\binom{6}{4}$?
 - a Answer using ideas on choosing from a group.
 - **b** Answer by calculating both quantities.
- **5.3** You can use $\binom{n}{r}$ to work out the coefficients in the binomial expansion.
- The binomial expansion is

$$(a + b)^n = \underbrace{(a + b)(a + b) \dots (a + b)}_{}$$

n times

$$= {}^{n}C_{0}a^{n} + {}^{n}C_{1}a^{n-1}b + {}^{n}C_{2}a^{n-2}b^{2} + {}^{n}C_{3}a^{n-3}b^{3} + \dots + {}^{n}C_{n}b^{n}$$

or
$$\binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \binom{n}{3}a^{n-3}b + \dots + \binom{n}{n}b^n$$

■ Similarly,

$$(a+bx)^n = {}^nC_0a^n + {}^nC_1a^{n-1}bx + {}^nC_2a^{n-2}b^2x^2 + {}^nC_3a^{n-3}b^3x^3 + \dots {}^nC_nb^nx^n$$

or
$$\binom{n}{0}a^n + \binom{n}{1}a^{n-1}bx + \binom{n}{2}a^{n-2}b^2x^2 + \binom{n}{3}a^{n-3}b^3x^3 + \dots + \binom{n}{n}b^nx^n$$

Hint: You do not need to memorise **both** these forms of the binomial expansion. You should be able to work out this form from the expansion of $(a + b)^n$.

Example 3

Use the binomial theorem to find the expansion of $(3 - 2x)^5$:

$$(3-2x)^5 = 3^5 + {5 \choose 1} 3^4 (-2x) + {5 \choose 2} 3^3 (-2x)^2$$

$$+ {5 \choose 3} 3^2 (-2x)^3 + {5 \choose 4} 3^4 (-2x)^4$$

$$+ (-2x)^5$$

$$= 243 - 810x + 1080x^2 - 720x^3$$

$$+ 240x^4 - 32x^5$$

There will be 6 terms.

The terms have a total index of 5. Use $(a + bx)^n$ where a = 3, b = -2x and n = 5.

There are $\binom{5}{2}$ ways of choosing 2 '-2x' terms from 5 brackets.

Example 4

Find the first four terms in ascending powers of x of $\left(1 - \frac{x}{4}\right)^{10}$ and, by using a suitable substitution, use your result to find an approximate value to $(0.975)^{10}$. Use your calculator to find the degree of accuracy of your approximation.

$$\left(1 - \frac{x}{4}\right)^{10}$$
Terms are 1^{10} , $1^9\left(-\frac{x}{4}\right)^1$, $1^8\left(-\frac{x}{4}\right)^2$, and $1^7\left(-\frac{x}{4}\right)^3$.

Coefficients are $^{10}C_0$ $^{10}C_1$ $^{10}C_2$ $^{10}C_3$

Combining, we get the first four terms to equal:

$${}^{10}C_01^{10} + {}^{10}C_1(1)^9 \left(-\frac{x}{4}\right)^1 + {}^{10}C_2(1)^8 \left(-\frac{x}{4}\right)^2 + \\ {}^{10}C_3(1)^7 \left(-\frac{x}{4}\right)^3 + \dots$$

$$= 1 - 2.5x + 2.8125x^2 - 1.875x^3 \dots$$

We want
$$\left(1 - \frac{x}{4}\right) = 0.975$$
 \leftarrow $\frac{x}{4} = 0.025$

$$x = 0.1$$

Substitute x = 0.1 into the expansion for $\left(1 - \frac{x}{4}\right)^{10}$:

$$0.975^{10} = 1 - 0.25 + 0.028125 - 0.001875$$

= 0.77625

Using a calculator $(0.975)^{10} = 0.77632962$

So approximation is correct to 4 decimal places.

All terms have total index = 10.

You are selecting $2' - \frac{x'}{4}$'s from 10 brackets.

Calculate the value of x.

Substitute x = 0.1 into your expansion.

Exercise 5C

1 Write down the expansion of the following:

a
$$(2x + y)^4$$

b
$$(p-q)^5$$

c
$$(1+2x)^4$$

d
$$(3+x)^4$$

a
$$(2x + y)^4$$
 b $(p - q)^5$ **e** $(1 - \frac{1}{2}x)^4$ **f** $(4 - x)^4$

$$f (4-x)^4$$

g
$$(2x + 3y)^5$$

h
$$(x+2)^6$$

2 Find the term in x^3 of the following expansions:

a
$$(3+x)^5$$

b
$$(2x + y)^5$$

c
$$(1-x)^6$$

d
$$(3+2x)^5$$

e
$$(1+x)^{10}$$

f
$$(3-2x)^6$$

c
$$(1-x)^6$$
 g $(1+x)^{20}$

h
$$(4-3x)^7$$

3 Use the binomial theorem to find the first four terms in the expansion of:

a
$$(1+x)^{10}$$

b
$$(1-2x)^5$$

c
$$(1+3x)^6$$

d
$$(2-x)^8$$

e
$$(2-\frac{1}{2}x)^{10}$$

f
$$(3-x)^7$$

$$g (x + 2y)^8$$

h
$$(2x - 3y)^9$$

- The coefficient of x^2 in the expansion of $(2 + ax)^6$ is 60. Find possible values of the constant a.
- The coefficient of x^3 in the expansion of $(3 + bx)^5$ is -720. Find the value of the constant *b*.
- **6** The coefficient of x^3 in the expansion of $(2 + x)(3 ax)^4$ is 30. Find the values of the constant *a*.
- 7 Write down the first four terms in the expansion of $\left(1 \frac{x}{10}\right)^6$. By substituting an appropriate value for x, find an approximate value to $(0.99)^6$. Use your calculator to find the degree of accuracy of your approximation.
- Write down the first four terms in the expansion of $\left(2+\frac{x}{5}\right)^{10}$. By substituting an appropriate value for x, find an approximate value to $(2.1)^{10}$. Use your calculator to find the degree of accuracy of your approximation.

5.4 You need to be able to expand $(1+x)^n$ and $(a+bx)^n$ using the binomial expansion.

$$= (1+x)^n = \binom{n}{0} 1^n + \binom{n}{1} 1^{n-1} x^1 + \binom{n}{2} 1^{n-2} x^2 + \binom{n}{3} 1^{n-3} x^3 + \binom{n}{4} 1^{n-4} x^4 + \dots + \binom{n}{r} 1^{n-r} x^r$$

$$= 1 + nx + \frac{n(n-1)}{2!} x^2 + \frac{n(n-1)(n-2)}{3!} x^3 + \frac{n(n-1)(n-2)(n-3)}{4!} x^4 + \dots$$

Example 5

Find the first four terms in the binomial expansion of **a** $(1 + 2x)^5$ and **b** $(2 - x)^6$:

a
$$(1+2x)^5 = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$

$$= 1 + 5(2x) + \frac{5(4)}{2!}(2x)^2 + \frac{5(4)(3)}{3!}(2x)^3 + \dots$$
Replace n by 5 and ' x ' by $2x$.
$$= 1 + 10x + 40x^2 + 80x^3 + \dots$$

Compare $(1 + x)^n$ with $(1 + 2x)^n$.

$$b (2-x)^{6} = \left[2\left(1-\frac{x}{2}\right)\right]^{6}$$

$$= 2^{6}\left(1-\frac{x}{2}\right)^{6}$$

$$= 2^{6}\left(1+6\left(-\frac{x}{2}\right)+\frac{6\times5}{2!}\left(-\frac{x}{2}\right)^{2}$$

$$+\frac{6\times5\times4}{3!}\left(-\frac{x}{2}\right)^{3}+\ldots\right)$$

$$= 2^{6}\left(1-3x+\frac{15}{4}x^{2}-\frac{5}{2}x^{3}+\ldots\right)$$

$$= 64-192x+240x^{2}-160x^{3}+\ldots$$

The expansion only works for $(1 + x)^n$, so take out a common factor of 2.

Replace *n* by 6 and 'x' by $-\frac{x'}{2}$ in the expansion of $(1 + x)^n$.

Multiply terms in bracket by 26.

Exercise 5D

- 1 Use the binomial expansion to find the first four terms of
 - **a** $(1+x)^8$
- **b** $(1-2x)^6$
- **c** $\left(1 + \frac{x}{2}\right)^{10}$

- **d** $(1-3x)^5$ **e** $(2+x)^7$ **f** $(3-2x)^3$
- **g** $(2-3x)^6$ **h** $(4+x)^4$ **i** $(2+5x)^7$
- **2** If x is so small that terms of x^3 and higher can be ignored, show that:

$$(2+x)(1-3x)^5 \approx 2-29x+165x^2$$

3 If x is so small that terms of x^3 and higher can be ignored, and

$$(2-x)(3+x)^4 \approx a + bx + cx^2$$

find the values of the constants a, b and c.

- When $(1 2x)^p$ is expanded, the coefficient of x^2 is 40. Given that p > 0, use this information to find:
 - **a** The value of the constant p.
 - **b** The coefficient of x.
 - **c** The coefficient of x^3 .
- Write down the first four terms in the expansion of $(1 + 2x)^8$. By substituting an appropriate value of x (which should be stated), find an approximate value of 1.02^8 . State the degree of accuracy of your answer.

Mixed exercise **5E**

- 1 When $(1-\frac{3}{2}x)^p$ is expanded in ascending powers of x, the coefficient of x is -24.
 - **a** Find the value of p.
 - **b** Find the coefficient of x^2 in the expansion.
 - **c** Find the coefficient of x^3 in the expansion.

E

2 Given that:

$$(2-x)^{13} \equiv A + Bx + Cx^2 + \dots$$

find the values of the integers *A*, *B* and *C*.

E

- **a** Expand $(1 2x)^{10}$ in ascending powers of x up to and including the term in x^3 , simplifying each coefficient in the expansion.
 - **b** Use your expansion to find an approximation to $(0.98)^{10}$, stating clearly the substitution which you have used for x.

E

- **4 a** Use the binomial series to expand $(2 3x)^{10}$ in ascending powers of x up to and including the term in x^3 , giving each coefficient as an integer.
 - **b** Use your series expansion, with a suitable value for x, to obtain an estimate for 1.97¹⁰, giving your answer to 2 decimal places.

E

- **5** a Expand $(3 + 2x)^4$ in ascending powers of x, giving each coefficient as an integer.
 - **b** Hence, or otherwise, write down the expansion of $(3 2x)^4$ in ascending powers of x.
 - **c** Hence by choosing a suitable value for x show that $(3 + 2\sqrt{2})^4 + (3 2\sqrt{2})^4$ is an integer and state its value.

E

- The coefficient of x^2 in the binomial expansion of $\left(1 + \frac{x}{2}\right)^n$, where n is a positive integer, is 7.
 - **a** Find the value of *n*.
 - **b** Using the value of n found in part **a**, find the coefficient of x^4 .

E

- **7 a** Use the binomial theorem to expand $(3 + 10x)^4$ giving each coefficient as an integer.
 - **b** Use your expansion, with an appropriate value for x, to find the exact value of $(1003)^4$. State the value of x which you have used.

E

- **8** a Expand $(1 + 2x)^{12}$ in ascending powers of x up to and including the term in x^3 , simplifying each coefficient.
 - **b** By substituting a suitable value for x, which must be stated, into your answer to part **a**, calculate an approximate value of $(1.02)^{12}$.
 - **c** Use your calculator, writing down all the digits in your display, to find a more exact value of $(1.02)^{12}$.
 - **d** Calculate, to 3 significant figures, the percentage error of the approximation found in part **b**.

9 Expand $\left(x - \frac{1}{x}\right)^5$, simplifying the coefficients.

- In the binomial expansion of $(2k + x)^n$, where k is a constant and n is a positive integer, the coefficient of x^2 is equal to the coefficient of x^3 .
 - **a** Prove that n = 6k + 2.
 - **b** Given also that $k = \frac{2}{3}$, expand $(2k + x)^n$ in ascending powers of x up to and including the term in x^3 , giving each coefficient as an exact fraction in its simplest form.

- **11 a** Expand $(2 + x)^6$ as a binomial series in ascending powers of x, giving each coefficient as an integer.
 - **b** By making suitable substitutions for x in your answer to part **a**, show that $(2 + \sqrt{3})^6 (2 \sqrt{3})^6$ can be simplified to the form $k\sqrt{3}$, stating the value of the integer k.

- The coefficient of x^2 in the binomial expansion of $(2 + kx)^8$, where k is a positive constant, is 2800.
 - **a** Use algebra to calculate the value of k.
 - **b** Use your value of k to find the coefficient of x^3 in the expansion.

13 a Given that

$$(2+x)^5 + (2-x)^5 \equiv A + Bx^2 + Cx^4$$

find the value of the constants A, B and C.

b Using the substitution $y = x^2$ and your answers to part **a**, solve $(2 + x)^5 + (2 - x)^5 = 240$

- $(2+x)^5 + (2-x)^5 = 349.$
- In the binomial expansion of $(2 + px)^5$, where p is a constant, the coefficient of x^3 is 135. Calculate:
 - **a** The value of p,
 - **b** The value of the coefficient of x^4 in the expansion.

Summary of key points

- 1 You can use Pascal's Triangle to multiply out a bracket.
- You can use combinations and factional notation to help you expand binomial expressions. For larger indices it is quicker than using Pascal's Triangle.
- **3** $n! = n \times (n-1) \times (n-2) \times (n-3) \times ... \times 3 \times 2 \times 1$
- The number of ways of choosing r items from a group of n items is written ${}^{n}C_{r}$ or $\binom{n}{r}$. e.g. ${}^{3}C_{2} = \frac{3!}{(3-2)!2!} = \frac{6}{1 \times 2} = 3$
- **5** The binomial expansion is

$$(a+b)^{n} = {}^{n}C_{0}a^{n} + {}^{n}C_{1}a^{n-1}b + {}^{n}C_{2}a^{n-2}b + {}^{n}C_{3}a^{n-3}b^{3} + \dots + {}^{n}C_{n}b^{n}$$

or $\binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \binom{n}{3}a^{n-3}b^{3} + \dots + \binom{n}{n}b^{n}$

6 Similarly,

$$(a + bx)^{n} = {}^{n}C_{0}a^{n} + {}^{n}C_{1}a^{n-1}bx + {}^{n}C_{2}a^{n-2}b^{2}x^{2} + {}^{n}C_{3}a^{n-3}b^{3}x^{3} + \dots {}^{n}C_{n}b^{n}x^{n}$$

or
$$\binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}bx + \binom{n}{2}a^{n-2}b^{2}x^{2} + \binom{n}{3}a^{n-3}b^{3}x^{3} + \dots + \binom{n}{n}b^{n}x^{n}$$

7
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \frac{n(n-1)(n-2)(n-3)}{4!}x^4 + \dots$$