After completing this chapter you should be able to

- 1 integrate simple functions
- **2** understand the symbol  $\int dx$
- **3** find the constant of integration by substituting in a given point (x, y).



# Integration



# **8.1** You can integrate functions of the form $f(x) = ax^n$ where $n \in \mathbb{R}$ and a is a constant.

In Chapter 7 you saw that if  $y = x^2$ 

then 
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$$
.

Also if 
$$y = x^2 + 1$$

then 
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$$
.

So if  $y = x^2 + c$  where c is some constant

then 
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$$
.

Integration is the process of finding y when you know  $\frac{dy}{dx}$ .

If 
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$$

then  $y = x^2 + c$  where c is some constant.

■ If  $\frac{dy}{dx} = x^n$ , then  $y = \frac{1}{n+1}x^{n+1} + c$ ,  $n \neq -1$ .

**Hint:** This is called indefinite integration because you cannot find the constant.

#### Example 1

Find *y* for the following:

$$\mathbf{a} \ \frac{\mathrm{d}y}{\mathrm{d}x} = x^4$$

$$\mathbf{b} \ \frac{\mathrm{d}y}{\mathrm{d}x} = x^{-5}$$

$$\mathbf{a} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = x^4$$

$$y = \frac{x^5}{5} + c -$$

$$\mathbf{b} \quad \frac{dy}{dx} = x^{-5}$$

$$y = \frac{x^{-4}}{-4} + c$$

$$=-\frac{1}{4}x^{-4}+c$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^n \text{ where } n = 4.$$

So use 
$$y = \frac{1}{n+1}x^{n+1} + c$$
 for  $n = 4$ .

Raise the power by 1.

Divide by the new power and don't forget to add c.

Remember raising the power by 1 gives -5 + 1 = -4.

Divide by the new power (-4) and add c.

# Example 2

Find *y* for the following:

$$\mathbf{a} \ \frac{\mathrm{d}y}{\mathrm{d}x} = 2x^3$$

**b** 
$$\frac{dy}{dx} = 3x^{\frac{1}{2}}$$

a 
$$\frac{dy}{dx} = 2x^{3}$$

$$= 2 \times x^{3}$$
So 
$$y = 2 \times \frac{x^{4}}{4} + c$$

$$= \frac{x^{4}}{2} + c$$

Use the formula first with n = 3.

Then simplify the  $\frac{2}{4}$  to  $\frac{1}{2}$ .

Check 
$$\frac{dy}{dx} = \frac{4x^3}{2} = 2x^3$$
.

$$b \qquad \frac{dy}{dx} = 3x^{\frac{1}{2}}$$

$$60 \quad y = 3 \times \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c$$

$$= 2x^{\frac{3}{2}} + c$$

It is always worth writing down this line as sometimes marks are given for unsimplified expressions.

Remember  $3 \div \frac{3}{2} = 3 \times \frac{2}{3} = 2$ .

It is always worth simplifying your answers as you may need to use this expression in a later part of the question.

Notice that you treat  $\frac{dy}{dx} = x^n$  and  $\frac{dy}{dx} = kx^n$  in the same way. You only consider the  $x^n$  term when integrating.

So in general

If 
$$\frac{dy}{dx} = kx^n$$
, then  $y = \frac{kx^{n+1}}{n+1} + c$ ,  $n \neq -1$ .

#### Exercise 8A

Find an expression for y when  $\frac{dy}{dx}$  is the following:

1 
$$x^5$$

2 
$$10x^4$$

3 
$$3x^2$$

4 
$$-x^{-2}$$

$$-4x^{-3}$$

**6** 
$$x^{\frac{2}{3}}$$

7 
$$4x^{\frac{1}{2}}$$

$$8 -2x^6$$

9 
$$3x^5$$

10 
$$3x^{-4}$$

11 
$$x^{-\frac{1}{2}}$$

12 
$$5x^{-\frac{3}{2}}$$

13 
$$-2x^{-\frac{3}{2}}$$

**14** 
$$6x^{\frac{1}{3}}$$

15 
$$36x^{11}$$

**16** 
$$-14x^{-8}$$

17 
$$-3x^{-\frac{2}{3}}$$

**20** 
$$2x^{-0.4}$$

# **8.2** You can apply the principle of integration separately to each term of $\frac{dy}{dx}$ .

#### Example 3

Given  $\frac{dy}{dx} = 6x + 2x^{-3} - 3x^{\frac{1}{2}}$ , find *y*.

$$y = \frac{6x^2}{2} + \frac{2}{-2}x^{-2} - \frac{3}{\frac{3}{2}}x^{\frac{3}{2}} + c$$
$$= 3x^2 - x^{-2} - 2x^{\frac{3}{2}} + c$$

Apply the rule from Section 8.1 to each term of the expression.

Then simplify each term and don't forget to add c.

In Chapter 7 you saw that if y = f(x), then  $\frac{dy}{dx} = f'(x)$ .

**Hint:** Both types of notation are used in the next exercise. Sometimes we say that the integral of  $\frac{dy}{dx}$  is y or the integral of f'(x) is f(x).

#### Exercise 8B

1 Find y when  $\frac{dy}{dx}$  is given by the following expressions. In each case simplify your answer:

**a** 
$$4x - x^{-2} + 6x^{\frac{1}{2}}$$

**b** 
$$15x^2 + 6x^{-3} - 3x^{-\frac{5}{2}}$$

**c** 
$$x^3 - \frac{3}{2}x^{-\frac{1}{2}} - 6x^{-2}$$

**d** 
$$4x^3 + x^{-\frac{2}{3}} - x^{-2}$$

**e** 
$$4 - 12x^{-4} + 2x^{-\frac{1}{2}}$$

**f** 
$$5x^{\frac{2}{3}} - 10x^4 + x^{-3}$$

$$\mathbf{g} - \frac{4}{3}x^{-\frac{4}{3}} - 3 + 8x$$

**h** 
$$5x^4 - x^{-\frac{3}{2}} - 12x^{-5}$$

**2** Find f(x) when f'(x) is given by the following expressions. In each case simplify your answer:

**a** 
$$12x + \frac{3}{2}x^{-\frac{3}{2}} + 5$$

**b** 
$$6x^5 + 6x^{-7} - \frac{1}{6}x^{-\frac{7}{6}}$$

$$\mathbf{c} \ \frac{1}{2}x^{-\frac{1}{2}} - \frac{1}{2}x^{-\frac{3}{2}}$$

**d** 
$$10x + 8x^{-3}$$

**e** 
$$2x^{-\frac{1}{3}} + 4x^{-\frac{5}{3}}$$

$$\mathbf{f} \ 9x^2 + 4x^{-3} + \frac{1}{4}x^{-\frac{1}{2}}$$

$$\mathbf{g} \ x^2 + x^{-2} + x^{\frac{1}{2}}$$

$$\mathbf{h} - 2x^{-3} - 2x + 2x^{\frac{1}{2}}$$

# You need to be able to use the integral sign.

The integral of  $x^n$  is denoted by  $x^n dx$  and the formula you met in Section 8.1 is:



The elongated S means integrate.

The expression to be integrated.

This dx tells you which letter is the variable to integrate with respect to. See example 4.

#### Example 4

Find:

**a** 
$$\int (x^{\frac{1}{2}} + 2x^3) dx$$
 **b**  $\int (x^{-\frac{3}{2}} + 2) dx$ 

**b** 
$$\int (x^{-\frac{3}{2}} + 2) dx$$

**c** 
$$\int (3x^2 + p^2x^{-2} + q)dx$$
 **d**  $\int (4t^2 + 6)dt$ 

$$\mathbf{d} \int (4t^2 + 6) \mathrm{d}t$$

a 
$$\int (x^{\frac{1}{2}} + 2x^{3}) dx$$

$$= \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + \frac{2x^{4}}{4} + c$$

$$= \frac{2}{3}x^{\frac{3}{2}} + \frac{1}{2}x^{4} + c$$

First apply the rule term by term. Then simplify each term.

Remember 
$$\frac{-3}{2} + 1 = -\frac{1}{2}$$
 and the integral of a constant like 2 is  $2x$ .

$$c \int (3x^2 + p^2x^{-2} + q)dx$$

$$= \frac{3x^3}{3} + \frac{p^2}{-1}x^{-1} + qx + c$$

$$= x^3 - p^2x^{-1} + qx + c$$

 $=-2x^{-\frac{1}{2}}+2x+c$ 

The 
$$dx$$
 tells you to integrate with respect to the variable  $x$ , so any other letters must be treated as constants.

$$d \int (4t^2 + 6)dt$$

$$= \frac{4t^3}{3} + 6t + c$$

The dt tells you that this time you must integrate with respect to t.

M

# Exercise 8C

Find the following integrals.

$$\mathbf{1} \quad \int (x^3 + 2x) \mathrm{d}x$$

$$(5x^{\frac{3}{2}} - 3x^2) dx$$

**5** 
$$\int (4x^3 - 3x^{-4} + r) dx$$
 **6**  $\int (3t^2 - t^{-2}) dt$ 

7 
$$\int (2t^2 - 3t^{-\frac{3}{2}} + 1) dt$$

9 
$$\int (px^4 + 2t + 3x^{-2})dx$$

$$\int (2x^{-2} + 3) dx$$

2 
$$\int (2x^{-2} + 3) dx$$
  
4  $\int (2x^{\frac{1}{2}} - 2x^{-\frac{1}{2}} + 4) dx$ 

6 
$$\int (3t^2 - t^{-2}) dt$$

**7** 
$$\int (2t^2 - 3t^{-\frac{3}{2}} + 1)dt$$
 **8**  $\int (x + x^{-\frac{1}{2}} + x^{-\frac{3}{2}})dx$ 

10 
$$\int (pt^3 + q^2 + px^3) dt$$

#### **8.4** You need to simplify an expression into separate terms of the form $x^n$ , $n \in \mathbb{R}$ , before you integrate.

#### Example 5

Find the following integrals:

**a** 
$$\int \left(\frac{2}{x^3} - 3\sqrt{x}\right) dx$$
 **b**  $\int x\left(x^2 + \frac{2}{x}\right) dx$ 

**b** 
$$\int x \left(x^2 + \frac{2}{x}\right) dx$$

$$\mathbf{c} \int \left[ (2x)^2 + \frac{\sqrt{x} + 5}{x^2} \right] \mathrm{d}x$$

a 
$$\int \left(\frac{2}{x^3} - 3\sqrt{x}\right) dx$$
  
=  $\int (2x^{-3} - 3x^{\frac{1}{2}}) dx$  •  
=  $\frac{2}{-2}x^{-2} - \frac{3}{\frac{3}{2}}x^{\frac{3}{2}} + c$  •  
=  $-x^{-2} - 2x^{\frac{3}{2}} + c$  •  
or =  $-\frac{1}{x^2} - 2\sqrt{x^3} + c$  •

First write each term in the form  $x^n$ .

Apply the rule term by term.

Then simplify each term.

Sometimes it is helpful to write the answer in the same form as the question.

$$\int x \left(x^2 + \frac{2}{x}\right) dx$$

$$= \int (x^3 + 2) dx \cdot \cdot \cdot$$

$$= \frac{x^4}{4} + 2x + c \cdot \cdot$$

First multiply out the bracket.

Then apply the rule to each term.

$$c \int \left[ (2x)^2 + \frac{\sqrt{x} + 5}{x^2} \right] dx$$

$$= \int \left[ 4x^2 + \frac{x^{\frac{1}{2}}}{x^2} + \frac{5}{x^2} \right] dx$$

$$= \int (4x^2 + x^{-\frac{3}{2}} + 5x^{-2}) dx$$

$$= \frac{4}{3}x^3 + \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}} + \frac{5x^{-1}}{-1} + c$$

$$= \frac{4}{3}x^3 - 2x^{-\frac{1}{2}} - 5x^{-1} + c$$

$$or = \frac{4}{3}x^3 - \frac{2}{\sqrt{x}} - \frac{5}{x} + c$$

Simplify  $(2x)^2$  and write  $\sqrt{x}$  as  $x^{\frac{1}{2}}$ .

Write each term in the  $x^n$  form.

Apply the rule term by term.

Finally simplify the answer.

# **Exercise 8D**

**1** Find the following integrals:

**a** 
$$\int (2x+3)x^2 dx$$
 **b**  $\int \frac{(2x^2+3)}{x^2} dx$  **c**  $\int (2x+3)^2 dx$ 

$$\mathbf{b} \int \frac{(2x^2+3)}{x^2} \, \mathrm{d}x$$

$$\mathbf{c} \int (2x+3)^2 \, \mathrm{d}x$$

**d** 
$$\int (2x+3)(x-1) dx$$
 **e**  $\int (2x+3)\sqrt{x} dx$ 

$$\mathbf{e} \int (2x+3)\sqrt{x}\,\mathrm{d}x$$

**2** Find  $\int f(x) dx$  when f(x) is given by the following:

**a** 
$$(x+2)^2$$

**b** 
$$\left(x+\frac{1}{r}\right)^2$$

**c** 
$$(\sqrt{x} + 2)^2$$

**d** 
$$\sqrt{x}(x+2)$$

$$\mathbf{e} \left( \frac{x+2}{\sqrt{x}} \right)$$

$$\mathbf{f} \left( \frac{1}{\sqrt{x}} + 2\sqrt{x} \right)$$

**3** Find the following integrals:

$$\mathbf{a} \int \left(3\sqrt{x} + \frac{1}{x^2}\right) \mathrm{d}x$$

$$\mathbf{b} \int \left(\frac{2}{\sqrt{x}} + 3x^2\right) \mathrm{d}x$$

$$\mathbf{c} \quad \int \left( x^{\frac{2}{3}} + \frac{4}{x^3} \right) \mathrm{d}x$$

$$\mathbf{d} \int \left(\frac{2+x}{x^3} + 3\right) \mathrm{d}x$$

$$\mathbf{e} \int (x^2+3)(x-1)\mathrm{d}x$$

e 
$$\int (x^2 + 3)(x - 1) dx$$
 f  $\int \left(\frac{2}{\sqrt{x}} + 3x\sqrt{x}\right) dx$ 

$$\mathbf{g} \int (x-3)^2 \, \mathrm{d}x$$

$$\mathbf{h} \int \frac{(2x+1)^2}{\sqrt{x}} \, \mathrm{d}x$$

i 
$$\int \left(3 + \frac{\sqrt{x} + 6x^3}{x}\right) dx$$
 j  $\int \sqrt{x}(\sqrt{x} + 3)^2 dx$ 

$$\mathbf{j} \quad \int \sqrt{x} (\sqrt{x} + 3)^2 \, \mathrm{d}x$$

8.5 You can find the constant of integration, c, when you are given any point (x, y) that the curve of the function passes through.

# Example 6

The curve *C* with equation y = f(x) passes through the point (4, 5). Given that  $f'(x) = \frac{x^2 - 2}{\sqrt{x}}$ , find the equation of *C*.

$$f'(x) = \frac{x^2 - 2}{\sqrt{x}}$$
$$= x^{\frac{3}{2}} - 2x^{-\frac{1}{2}}$$

First write f'(x) in a form suitable for integration.

So 
$$f(x) = \frac{x^{\frac{5}{2}}}{\frac{5}{2}} - 2\frac{x^{\frac{1}{2}}}{\frac{1}{2}} + c$$

Integrate as normal and don't forget the +c.

$$=\frac{2}{5}x^{\frac{5}{2}}-4x^{\frac{1}{2}}+c$$

Use the fact that the curve passes through (4, 5).

But 
$$f(4) = 5$$

Remember  $4^{\frac{5}{2}} = 2^5$ .

So 
$$5 = \frac{2}{5} \times 2^5 - 4 \times 2 + c$$

$$5 = \frac{64}{5} - 8 + c$$

$$5 = \frac{24}{5} + c$$

So 
$$c = \frac{1}{5}$$

Solve for c.

So the equation of the curve is

$$y = \frac{2}{5}x^{\frac{5}{2}} - 4x^{\frac{1}{2}} + \frac{1}{5}.$$

Finally write down the equation of the curve.

#### Exercise 8E

Find the equation of the curve with the given derivative of y with respect to x that passes through the given point:

**a** 
$$\frac{dy}{dx} = 3x^2 + 2x;$$
 point (2, 10)

**b** 
$$\frac{dy}{dx} = 4x^3 + \frac{2}{x^3} + 3;$$
 point (1, 4)

$$\mathbf{c} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{x} + \frac{1}{4}x^2; \qquad \text{point } (4, 11)$$

$$\mathbf{d} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{\sqrt{x}} - x; \qquad \text{point } (4, 0)$$

**e** 
$$\frac{dy}{dx} = (x+2)^2$$
; point (1, 7)

$$\mathbf{f} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 + 3}{\sqrt{x}}; \qquad \text{point } (0, 1)$$

- The curve *C*, with equation y = f(x), passes through the point (1, 2) and  $f'(x) = 2x^3 \frac{1}{x^2}$ . Find the equation of *C* in the form y = f(x).
- The gradient of a particular curve is given by  $\frac{dy}{dx} = \frac{\sqrt{x} + 3}{x^2}$ . Given that the curve passes through the point (9, 0), find an equation of the curve.
- A set of curves, that each pass through the origin, have equations  $y = f_1(x)$ ,  $y = f_2(x)$ ,  $y = f_3(x)$  ... where  $f'_n(x) = f_{n-1}(x)$  and  $f_1(x) = x^2$ .
  - **a** Find  $f_2(x)$ ,  $f_3(x)$ .
  - **b** Suggest an expression for  $f_n(x)$ .
- A set of curves, with equations  $y = f_1(x)$ ,  $y = f_2(x)$ ,  $y = f_3(x)$  ... all pass through the point (0, 1) and they are related by the property  $f'_n(x) = f_{n-1}(x)$  and  $f_1(x) = 1$ . Find  $f_2(x)$ ,  $f_3(x)$ ,  $f_4(x)$ .

#### Mixed exercise 8F

**1** Find:

**a** 
$$\int (x+1)(2x-5)dx$$

**b** 
$$\int (x^{\frac{1}{3}} + x^{-\frac{1}{3}}) dx$$
.

- The gradient of a curve is given by  $f'(x) = x^2 3x \frac{2}{x^2}$ . Given that the curve passes through the point (1, 1), find the equation of the curve in the form y = f(x).
- **3** Find:

**a** 
$$\int (8x^3 - 6x^2 + 5) dx$$

**b** 
$$\int (5x+2)x^{\frac{1}{2}} dx$$
.

Given 
$$y = \frac{(x+1)(2x-3)}{\sqrt{x}}$$
, find  $\int y dx$ .

- Given that  $\frac{dx}{dt} = 3t^2 2t + 1$  and that x = 2 when t = 1, find the value of x when t = 2.
- **6** Given  $y = 3x^{\frac{1}{2}} + 2x^{-\frac{1}{2}}$ , x > 0, find  $\int y dx$ .
- Given that  $\frac{dx}{dt} = (t+1)^2$  and that x = 0 when t = 2, find the value of x when t = 3.

- **8** Given that  $y^{\frac{1}{2}} = x^{\frac{1}{3}} + 3$ :
  - **a** show that  $y = x^{\frac{2}{3}} + Ax^{\frac{1}{3}} + B$ , where A and B are constants to be found
  - **b** hence find  $\int y dx$ .

E

- **9** Given that  $y = 3x^{\frac{1}{2}} 4x^{-\frac{1}{2}}$  (x > 0):
  - **a** find  $\frac{\mathrm{d}y}{\mathrm{d}x}$
  - **b** find  $\int y dx$ .

E

10 Find  $\int (x^{\frac{1}{2}} - 4)(x^{-\frac{1}{2}} - 1) dx$ .

F

# **Summary of key points**

- **1** If  $\frac{dy}{dx} = x^n$ , then  $y = \frac{1}{n+1}x^{n+1} + c$   $(n \neq -1)$ .
- **2** If  $\frac{dy}{dx} = kx^n$ , then  $y = \frac{kx^{n+1}}{n+1} + c \ (n \neq -1)$ .
- 3  $\int x^n dx = \frac{x^{n+1}}{n+1} + c \quad (n \neq -1).$