DIFFERENTIATION

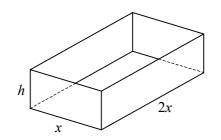
C2

1 In each case, find any values of x for which
$$\frac{dy}{dx} = 0$$
.
a $y = x^2 + 6x$ **b** $y = 4x^2 + 2x + 1$ **c** $y = x^3 - 12x$ **d** $y = 4 + 9x^2 - x^3$
e $y = x^3 - 5x^2 + 3x$ **f** $y = x + \frac{9}{x}$ **g** $y = (x^2 + 3)(x - 3)$ **h** $y = x^{\frac{1}{2}} - 2x$
2 Find the set of values of x for which f(x) is increasing when
a $f(x) = 2x^2 + 2x + 1$ **b** $f(x) = 3x^2 - 2x^3$ **c** $f(x) = 3x^3 - x - 7$
d $f(x) = x^3 + 6x^2 - 15x + 8$ **e** $f(x) = x(x - 6)^2$ **f** $f(x) = 2x + \frac{8}{x}$
3 Find the set of values of x for which f(x) is idecreasing when
a $f(x) = x^3 + 6x^2 - 15x + 8$ **e** $f(x) = 5 + 27x - x^3$ **c** $f(x) = (x^2 - 2)(2x - 1)$
4 $f(x) = x^3 + 4x^2 + 3$.
Given that $(x + 1)$ is a factor of $f(x)$,
a find the value of the constant k,
b find the set of values of x for which $f(x)$ is increasing.
5 Find the coordinates of any stationary points on each curve.
a $y = x^2 + 2x$ **b** $y = 5x^2 - 4x + 1$ **c** $y = x^3 - 3x + 4$
d $y = 4x^3 + 3x^2 + 2$ **e** $y = 2x + 3 + \frac{8}{x}$ **f** $y = x^3 - 9x^2 - 21x + 11$
g $y = \frac{1}{x} - 4x^2$ **h** $y = 2x^{\frac{3}{2}} - 6x$ **i** $y = 9x^2 - 2x + 5$
6 Find the coordinates of any stationary points on each curve. By evaluating $\frac{d^2y}{dx^2}$ at each stationary point, determine whether it is a maximum or minimum point.
a $y = 5 + 4x - x^2$ **b** $y = x^3 - 3x$ **c** $y = x^3 + 9x^2 - 8$
d $y = x^3 - 6x^2 - 36x + 15$ **e** $y = x^4 - 8x^2 - 2$ **f** $y = 9x + \frac{4}{x}$
g $y = x - 6x^{\frac{1}{2}}$ **h** $y = 3 - 8x + 7x^2 - 2x^3$ **i** $y = \frac{x^4 + 16}{2x^2}$
7 Find the coordinates of any stationary points on each curve and determine whether each stationary point is a maximum or minimum point.
a $y = 5^2 - x^3$ **b** $y = x^3 - 3x$ **c** $y = x^4 - 2$
d $y = x - 6x^{\frac{1}{2}}$ **h** $y = 3 - 8x + 7x^2 - 2x^3$ **i** $y = \frac{x^4 + 16}{2x^2}$
7 Find the coordinates of any stationary point is on each curve and determine whether each stationary point is a maximum, minimum or point of inflexion.
a $y = x^2 - x^3$ **b** $y = x^3 + 3x^2 + 3x$ **c** $y = x^4 - 2$
d $y = 4 - 12x +$

a $y = x^3 + 3x^2$ **b** $y = x + \frac{1}{x}$ **c** $y = x^3 - 3x^2 + 3x - 1$ **d** $y = 3x - 4x^{\frac{1}{2}}$ **e** $y = x^3 + 4x^2 - 3x - 5$ **f** $y = (x^2 - 2)(x^2 - 6)$

© Solomon Press

Worksheet B



The diagram shows a baking tin in the shape of an open-topped cuboid made from thin metal sheet. The base of the tin measures x cm by 2x cm, the height of the tin is h cm and the volume of the tin is 4000 cm³.

a Find an expression for h in terms of x.

DIFFERENTIATION

b Show that the area of metal sheet used to make the tin, $A \text{ cm}^2$, is given by

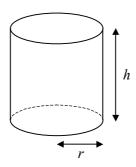
$$A = 2x^2 + \frac{12\,000}{3}$$

- **c** Use differentiation to find the value of x for which A is a minimum.
- **d** Find the minimum value of *A*.
- e Show that your value of A is a minimum.

2

C2

1



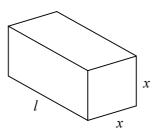
The diagram shows a closed plastic cylinder used for making compost. The radius of the base and the height of the cylinder are r cm and h cm respectively and the surface area of the cylinder is 30 000 cm².

a Show that the volume of the cylinder, $V \text{ cm}^3$, is given by

$$V = 15\ 000r - \pi r^3$$
.

b Find the maximum volume of the cylinder and show that your value is a maximum.

3



The diagram shows a square prism of length *l* cm and cross-section *x* cm by *x* cm. Given that the surface area of the prism is $k \text{ cm}^2$, where *k* is a constant,

- **a** show that $l = \frac{k 2x^2}{4x}$,
- **b** use calculus to prove that the maximum volume of the prism occurs when it is a cube.

DIFFERENTIATION

$$f(x) \equiv 2x^3 + 5x^2 - 1.$$

- **a** Find f'(x).
- **b** Find the set of values of x for which f(x) is increasing.
- 2 The curve C has the equation $y = x^3 x^2 + 2x 4$.
 - **a** Find an equation of the tangent to C at the point (1, -2). Give your answer in the form ax + by + c = 0, where a, b and c are integers.
 - **b** Prove that the curve *C* has no stationary points.

3 A curve has the equation
$$y = \sqrt{x} + \frac{4}{x}$$
.

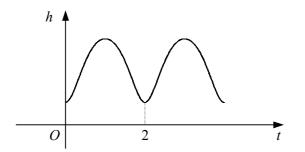
a Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$.

b Find the coordinates of the stationary point of the curve and determine its nature.

$$f(x) \equiv x^3 + 6x^2 + 9x$$

- **a** Find the coordinates of the points where the curve y = f(x) meets the x-axis.
- **b** Find the set of values of x for which f(x) is decreasing.
- **c** Sketch the curve y = f(x), showing the coordinates of any stationary points.

4



The graph shows the height, h cm, of the letters on a website advert t seconds after the advert appears on the screen.

For *t* in the interval $0 \le t \le 2$, *h* is given by the equation

$$h = 2t^4 - 8t^3 + 8t^2 + 1.$$

For larger values of *t*, the variation of *h* over this interval is repeated every 2 seconds.

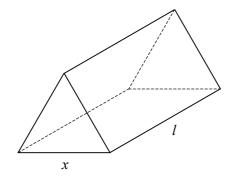
- **a** Find $\frac{dh}{dt}$ for t in the interval $0 \le t \le 2$.
- **b** Find the rate at which the height of the letters is increasing when t = 0.25
- c Find the maximum height of the letters.

6 The curve C has the equation $y = x^3 + 3kx^2 - 9k^2x$, where k is a non-zero constant.

a Show that *C* is stationary when

$$x^2 + 2kx - 3k^2 = 0$$

- **b** Hence, show that C is stationary at the point with coordinates $(k, -5k^3)$.
- **c** Find, in terms of k, the coordinates of the other stationary point on C.



The diagram shows a solid triangular prism. The cross-section of the prism is an equilateral triangle of side x cm and the length of the prism is l cm.

Given that the volume of the prism is 250 cm³,

- **a** find an expression for l in terms of x,
- **b** show that the surface area of the prism, $A \text{ cm}^2$, is given by

$$A = \frac{\sqrt{3}}{2} \left(x^2 + \frac{2000}{x} \right).$$

Given that *x* can vary,

- c find the value of x for which A is a minimum,
- **d** find the minimum value of A in the form $k\sqrt{3}$,
- e justify that the value you have found is a minimum.

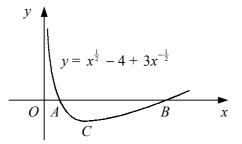
8

$$f(x) \equiv x^3 + 4x^2 + kx + 1.$$

a Find the set of values of the constant k for which the curve y = f(x) has two stationary points. Given that k = -3,

b find the coordinates of the stationary points of the curve y = f(x).

9



The diagram shows the curve with equation $y = x^{\frac{1}{2}} - 4 + 3x^{-\frac{1}{2}}$. The curve crosses the *x*-axis at the points *A* and *B* and has a minimum point at *C*.

- **a** Find the coordinates of *A* and *B*.
- **b** Find the coordinates of C, giving its y-coordinate in the form $a\sqrt{3} + b$, where a and b are integers.

10

$$f(x) = x^3 - 3x^2 + 4$$

- **a** Show that (x + 1) is a factor of f(x).
- **b** Fully factorise f(x).
- **c** Hence state, with a reason, the coordinates of one of the turning points of the curve y = f(x).
- **d** Using differentiation, find the coordinates of the other turning point of the curve y = f(x).

DIFFERENTIATION

C2

1

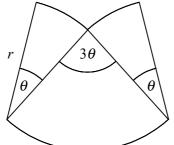
2

3

4

(2)

<i>x</i>). set of values of <i>x</i> for which $f(x)$ is increasing. with equation $y = x^3 + ax^2 - 24x + b$, where <i>a</i> and <i>b</i> are constants, passes point <i>P</i> (-2, 30).	(2) (4)
with equation $y = x^3 + ax^2 - 24x + b$, where <i>a</i> and <i>b</i> are constants, passes	(4)
at $4a + b + 10 = 0$.	(2)
hat <i>P</i> is a stationary point of the curve,	
values of <i>a</i> and <i>b</i> ,	(4)
coordinates of the other stationary point on the curve.	(3)
$f(x) \equiv x^2 + \frac{16}{x}, \ x \neq 0.$	
٢).	(2)
	(6)
t ,	that P is a stationary point of the curve, values of a and b , coordinates of the other stationary point on the curve.



The diagram shows a design to be used on a new brand of cat-food. The design consists of three circular sectors, each of radius r cm. The angle of two of the sectors is θ radians and the angle of the third sector is 3θ radians as shown.

Given that the area of the design is 25 cm^2 ,

a show that $\theta = \frac{10}{r^2}$,	(3)
b find the perimeter of the design, P cm, in terms of r .	(3)
Given that <i>r</i> can vary,	

- c find the value of r for which P takes it minimum value, (4)
- $\mathbf{d} \quad \text{find the minimum value of } P, \tag{1}$
- e justify that the value you have found is a minimum.
- 5 The curve *C* has the equation

 $y = 2x - x^{\frac{3}{2}}, x \ge 0.$

a	Find the coordinates of any points where C meets the x-axis.	(3)
b	Find the <i>x</i> -coordinate of the stationary point on <i>C</i> and determine whether it is a	
	maximum or a minimum point.	(6)
c	Sketch the curve <i>C</i> .	(2)

C2 DIFFERENTIATION

- 6 The curve $y = x^3 3x + 1$ is stationary at the points P and Q.
 - **a** Find the coordinates of the points P and Q.
 - **b** Find the length of PQ in the form $k\sqrt{5}$.

7

8

- $f(x) \equiv 2x 5 + \frac{2}{x}, x \neq 0.$
- a Solve the equation f(x) = 0.
 b Solve the equation f'(x) = 0.

(4)

(4)

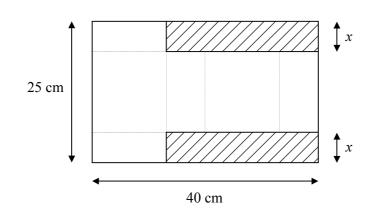
(3)

(2)

(5)

(3)

c Sketch the curve y = f(x), showing the coordinates of any turning points and of any points where the curve crosses the coordinate axes. (3)



Two identical rectangles of width x cm are removed from a rectangular piece of card measuring 25 cm by 40 cm as shown in the diagram above. The remaining card is the net of a cuboid of height x cm.

- **a** Find expressions in terms of *x* for the length and width of the base of the cuboid formed from the net.
- **b** Show that the volume of the cuboid is $(2x^3 65x^2 + 500x)$ cm³. (2)
- c Find the value of x for which the volume of the cuboid is a maximum. (5)
- d Find the maximum volume of the cuboid and show that it is a maximum. (3)
- 9 a Find the coordinates of the stationary points on the curve

$$y = 2 + 9x + 3x^2 - x^3.$$
 (6)

- **b** Determine whether each stationary point is a maximum or minimum point. (2)
- c State the set of values of k for which the equation

$$2 + 9x + 3x^2 - x^3 = k$$

has three solutions.

10

$$f(x) = 4x^3 + ax^2 - 12x + b$$

Given that *a* and *b* are constants and that when f(x) is divided by (x + 1) there is a remainder of 15,

a find the value of (a+b). (2)

Given also that when f(x) is divided by (x - 2) there is a remainder of 42,

- **b** find the values of a and b, (3)
- c find the coordinates of the stationary points of the curve y = f(x). (6)