Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise A, Question 1

Question:

Simplify each of the following expressions:

(a)
$$1 - \cos^2 \frac{1}{2}\theta$$

(b)
$$5 \sin^2 3\theta + 5 \cos^2 3\theta$$

(c)
$$\sin^2 A - 1$$

(d)
$$\frac{\sin \theta}{\tan \theta}$$

(e)
$$\frac{\sqrt{1-\cos^2 x^{\circ}}}{\cos x^{\circ}}$$

(f)
$$\frac{\sqrt{1-\cos^2 3A}}{\sqrt{1-\sin^2 3A}}$$

(g)
$$(1 + \sin x)^2 + (1 - \sin x)^2 + 2\cos^2 x$$

(h)
$$\sin^4 \theta + \sin^2 \theta \cos^2 \theta$$

(i)
$$\sin^4 \theta + 2 \sin^2 \theta \cos^2 \theta + \cos^4 \theta$$

Solution:

(a) As
$$\sin^2 \frac{1}{2}\theta + \cos^2 \frac{1}{2}\theta \equiv 1$$

So
$$1 - \cos^2 \frac{1}{2}\theta = \sin^2 \frac{1}{2}\theta$$

(b) As
$$\sin^2 3\theta + \cos^2 3\theta \equiv 1$$

So $5 \sin^2 3\theta + 5 \cos^2 3\theta = 5 (\sin^2 3\theta + \cos^2 3\theta) = 5$

(c) As
$$\sin^2 A + \cos^2 A \equiv 1$$

So $\sin^2 A - 1 \equiv -\cos^2 A$

(d)
$$\frac{\sin \theta}{\tan \theta} = \frac{\sin \theta}{\frac{\sin \theta}{\cos \theta}}$$

$$=\sin\theta \times \frac{\cos\theta}{\sin\theta}$$

$$=\cos \theta$$

(e)
$$\frac{\sqrt{1-\cos^2 x^{\circ}}}{\cos x^{\circ}} = \frac{\sqrt{\sin^2 x^{\circ}}}{\cos x^{\circ}} = \frac{\sin x^{\circ}}{\cos x^{\circ}} = \tan x^{\circ}$$

(f)
$$\frac{\sqrt{1-\cos^2 3A}}{\sqrt{1-\sin^2 3A}} = \frac{\sqrt{\sin^2 3A}}{\sqrt{\cos^2 3A}} = \frac{\sin 3A}{\cos 3A} = \tan 3A$$

(g)
$$(1 + \sin x^{\circ})^{2} + (1 - \sin x^{\circ})^{2} + 2 \cos^{2} x^{\circ}$$

 $= 1 + 2 \sin x^{\circ} + \sin^{2} x^{\circ} + 1 - 2 \sin x^{\circ} + \sin^{2} x^{\circ} + 2 \cos^{2} x^{\circ}$
 $= 2 + 2 \sin^{2} x^{\circ} + 2 \cos^{2} x^{\circ}$
 $= 2 + 2 (\sin^{2} x^{\circ} + \cos^{2} x^{\circ})$
 $= 2 + 2$
 $= 4$

(h)
$$\sin^4 \theta + \sin^2 \theta \cos^2 \theta = \sin^2 \theta (\sin^2 \theta + \cos^2 \theta) = \sin^2 \theta$$

(i)
$$\sin^4 \theta + 2 \sin^2 \theta \cos^2 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 = 1^2 = 1$$

[©] Pearson Education Ltd 2008

Solutionbank C2Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise A, Question 2

Question:

Given that 2 sin $\theta = 3 \cos \theta$, find the value of tan θ .

Solution:

Given
$$2 \sin \theta = 3 \cos \theta$$

So $\frac{\sin \theta}{\cos \theta} = \frac{3}{2}$ (divide both sides by $2 \cos \theta$)
So $\tan \theta = \frac{3}{2}$

Solutionbank C2Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise A, Question 3

Question:

Given that $\sin x \cos y = 3 \cos x \sin y$, express $\tan x \sin t$ terms of $\tan y$.

Solution:

As $\sin x \cos y = 3 \cos x \sin y$

$$s_0 \frac{\sin x \cos y}{\cos x \cos y} = 3 \frac{\cos x \sin y}{\cos x \cos y}$$

So $\tan x = 3 \tan y$

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise A, Question 4

Question:

Express in terms of $\sin \theta$ only:

- (a) $\cos^2 \theta$
- (b) $\tan^2 \theta$
- (c) $\cos \theta \tan \theta$
- (d) $\frac{\cos \theta}{\tan \theta}$
- (e) $(\cos \theta \sin \theta) (\cos \theta + \sin \theta)$

Solution:

- (a) As $\sin^2 \theta + \cos^2 \theta \equiv 1$ So $\cos^2 \theta \equiv 1 - \sin^2 \theta$
- (b) $\tan^2 \theta \equiv \frac{\sin^2 \theta}{\cos^2 \theta} \equiv \frac{\sin^2 \theta}{1 \sin^2 \theta}$
- (c) $\cos \theta \tan \theta$

=
$$\cos\theta \times \frac{\sin\theta}{\cos\theta}$$

 $= \sin \theta$

(d)
$$\frac{\cos \theta}{\tan \theta} = \frac{\cos \theta}{\sin \theta} = \cos \theta \times \frac{\cos \theta}{\sin \theta} = \frac{\cos^2 \theta}{\sin \theta}$$

So
$$\frac{\cos \theta}{\tan \theta} = \frac{1 - \sin^2 \theta}{\sin \theta}$$
 or $\frac{1}{\sin \theta} - \sin \theta$

(e)
$$(\cos \theta - \sin \theta)$$
 $(\cos \theta + \sin \theta) = \cos^2 \theta - \sin^2 \theta = (1 - \sin^2 \theta) - \sin^2 \theta = 1 - 2\sin^2 \theta$

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise A, Question 5

Question:

Using the identities $\sin^2 A + \cos^2 A \equiv 1$ and/or $\tan A \equiv \frac{\sin A}{\cos A}$ $\left(\cos A \neq 0\right)$, prove that:

(a)
$$(\sin \theta + \cos \theta)^2 \equiv 1 + 2 \sin \theta \cos \theta$$

(b)
$$\frac{1}{\cos \theta} - \cos \theta \equiv \sin \theta \quad \tan \theta$$

(c)
$$\tan x + \frac{1}{\tan x} \equiv \frac{1}{\sin x \cos x}$$

(d)
$$\cos^2 A - \sin^2 A \equiv 2 \cos^2 A - 1 \equiv 1 - 2 \sin^2 A$$

(e)
$$(2 \sin \theta - \cos \theta)^2 + (\sin \theta + 2 \cos \theta)^2 \equiv 5$$

(f)
$$2 - (\sin \theta - \cos \theta)^2 \equiv (\sin \theta + \cos \theta)^2$$

(g)
$$\sin^2 x \cos^2 y - \cos^2 x \sin^2 y = \sin^2 x - \sin^2 y$$

Solution:

(a) LHS =
$$(\sin \theta + \cos \theta)^2$$

= $\sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta$
= $(\sin^2 \theta + \cos^2 \theta) + 2 \sin \theta \cos \theta$
= $1 + 2 \sin \theta \cos \theta$
= RHS

(b) LHS =
$$\frac{1}{\cos \theta} - \cos \theta$$

= $\frac{1 - \cos^2 \theta}{\cos \theta}$
= $\frac{\sin^2 \theta}{\cos \theta}$
= $\sin \theta \times \frac{\sin \theta}{\cos \theta}$
= $\sin \theta \tan \theta$
= RHS

(c) LHS =
$$\tan x^{\circ} + \frac{1}{\tan x^{\circ}}$$

= $\frac{\sin x^{\circ}}{\cos x^{\circ}} + \frac{\cos x^{\circ}}{\sin x^{\circ}}$
= $\frac{\sin^{2} x^{\circ} + \cos^{2} x^{\circ}}{\sin x^{\circ} \cos x^{\circ}}$

```
\sin x^{\circ} \cos x^{\circ}
= RHS
(d) LHS = \cos^2 A - \sin^2 A
\equiv \cos^2 \quad A - (1 - \cos^2 \quad A)\equiv \cos^2 \quad A - 1 + \cos^2 \quad A
\equiv 2 \cos^2 A - 1
\equiv 2 (1 - \sin^2 A) - 1
\equiv 2 - 2 \sin^2 A - 1
\equiv 1 - 2 \sin^2 A \checkmark
(e) LHS = (2 \sin \theta - \cos \theta)^2 + (\sin \theta + 2 \cos \theta)^2
\equiv 4 \sin^2 \theta - 4 \sin \theta \cos \theta + \cos^2 \theta + \sin^2 \theta + 4 \sin \theta \cos \theta + 4 \cos^2 \theta
\equiv 5 \sin^2 \theta + 5 \cos^2 \theta
\equiv 5 \left( \sin^2 \theta + \cos^2 \theta \right)
≡ 5
■ RHS
(f) LHS \equiv 2 - (\sin \theta - \cos \theta)^2
= 2 - (\sin^2 \theta - 2 \sin \theta \cos \theta + \cos^2 \theta)
=2-(1-2\sin\theta\cos\theta)
= 1 + 2 \sin \theta \cos \theta
=\sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta
= (\sin \theta + \cos \theta)^2
= RHS
(g) LHS = \sin^2 x \cos^2 y - \cos^2 x \sin^2 y
= \sin^2 x (1 - \sin^2 y) - (1 - \sin^2 x) \sin^2 y
= \sin^2 x - \sin^2 x \sin^2 y - \sin^2 y + \sin^2 x \sin^2 y
=\sin^2 x - \sin^2 y
= RHS
```

Solutionbank C2 **Edexcel Modular Mathematics for AS and A-Level**

Trigonometrical identities and simple equations Exercise A, Question 6

Question:

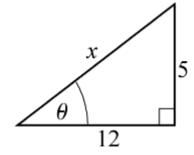
Find, without using your calculator, the values of:

(a) sin θ and cos θ , given that tan $\theta = \frac{5}{12}$ and θ is acute.

(b) $\sin \theta$ and $\tan \theta$, given that $\cos \theta = -\frac{3}{5}$ and θ is obtuse.

(c) cos $\,\theta$ and tan $\,\theta$, given that sin $\,\theta=-\frac{7}{25}$ and 270 $^{\circ}$ $<\theta<$ 360 $^{\circ}$.

Solution:

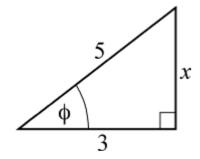


Using Pythagoras' Theorem, $x^2 = 12^2 + 5^2 = 169$ x = 13

$$x^2 = 12^2 + 5^2 = 169$$

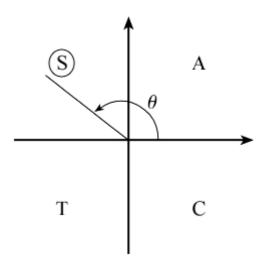
$$x = 13$$

So sin
$$\theta = \frac{5}{13}$$
 and cos $\theta = \frac{12}{13}$



Using Pythagoras' Theorem, x = 4.

So
$$\sin \phi = \frac{4}{5}$$
 and $\tan \phi = \frac{4}{3}$

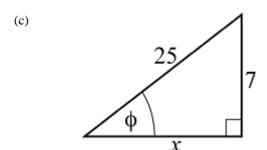


As θ is obtuse,

$$\sin \theta = \sin \phi = \frac{4}{5}$$

and

$$\tan \theta = -\tan \phi = -\frac{4}{3}$$



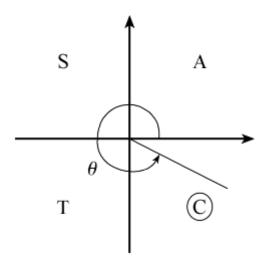
Using Pythagoras' Theorem, $x^2 + 7^2 = 25^2$ $x^2 = 25^2 - 7^2 = 576$ x = 24

$$x^2 + 7^2 = 25^2$$

$$x^2 = 25^2 - 7^2 = 576$$

$$x = 24$$

So cos
$$\phi = \frac{24}{25}$$
 and tan $\phi = \frac{7}{24}$



As θ is in the 4th quadrant,

$$\cos \theta = + \cos \phi = + \frac{24}{25}$$

and

$$\tan \theta = -\tan \phi = -\frac{7}{24}$$

Edexcel Modular Mathematics for AS and A-Level

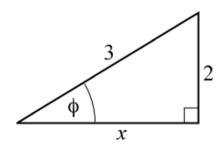
Trigonometrical identities and simple equations Exercise A, Question 7

Question:

Given that $\sin \theta = \frac{2}{3}$ and that θ is obtuse, find the exact value of: (a) $\cos \theta$, (b) $\tan \theta$.

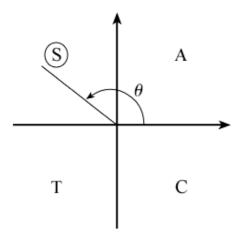
Solution:

Consider the angle ϕ where $\sin \phi = \frac{2}{3}$.



Using Pythagoras' Theorem, $x = \sqrt{5}$

(a) So
$$\cos \phi = \frac{\sqrt{5}}{3}$$



As
$$\theta$$
 is obtuse, $\cos \theta = -\cos \phi = -\frac{\sqrt{5}}{3}$

(b) From the triangle,

$$\tan \phi = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$$

Using the quadrant diagram,

$$\tan \theta = -\tan \phi = -\frac{2\sqrt{5}}{5}$$

Edexcel Modular Mathematics for AS and A-Level

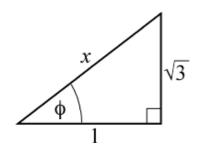
Trigonometrical identities and simple equations Exercise A, Question 8

Question:

Given that $\tan \theta = -\sqrt{3}$ and that θ is reflex, find the exact value of: (a) $\sin \theta$, (b) $\cos \theta$.

Solution:

Draw a right-angled triangle with tan $\phi = + \sqrt{3} = \frac{\sqrt{3}}{1}$



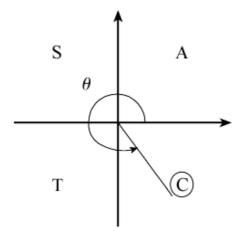
Using Pythagoras' Theorem,

$$x^2 = (\sqrt{3})^2 + 1^2 = 4$$

So $x = 2$

So
$$x = 2$$

(a)
$$\sin \phi = \frac{\sqrt{3}}{2}$$



As θ is reflex and tan θ is - ve, θ is in the 4th quadrant.

So
$$\sin \theta = -\sin \phi = \frac{-\sqrt{3}}{2}$$

(b)
$$\cos \phi = \frac{1}{2}$$

As
$$\cos \theta = \cos \phi$$
, $\cos \theta = \frac{1}{2}$

Edexcel Modular Mathematics for AS and A-Level

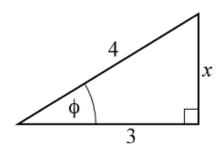
Trigonometrical identities and simple equations Exercise A, Question 9

Question:

Given that $\cos \theta = \frac{3}{4}$ and that θ is reflex, find the exact value of: (a) $\sin \theta$, (b) $\tan \theta$.

Solution:

Draw a right-angled triangle with $\cos \phi = \frac{3}{4}$



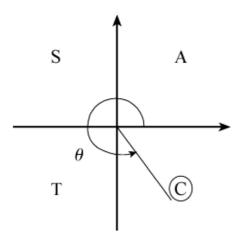
Using Pythagoras' Theorem,

$$x^2 + 3^2 = 4^2$$

$$x^{2} = 4^{2} - 3^{2} = 7$$
$$x = \sqrt{7}$$

$$x = \sqrt{7}$$

So $\sin \phi = \frac{\sqrt{7}}{4}$ and $\tan \phi = \frac{\sqrt{7}}{3}$



As θ is reflex and $\cos \theta$ is +ve, θ is in the 4th quadrant.

(a)
$$\sin \theta = -\sin \phi = -\frac{\sqrt{7}}{4}$$

(b)
$$\tan \theta = -\tan \phi = -\frac{\sqrt{7}}{3}$$

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise A, Question 10

Question:

In each of the following, eliminate θ to give an equation relating x and y:

(a)
$$x = \sin \theta$$
, $y = \cos \theta$

(b)
$$x = \sin \theta$$
, $y = 2 \cos \theta$

(c)
$$x = \sin \theta$$
, $y = \cos^2 \theta$

(d)
$$x = \sin \theta$$
, $y = \tan \theta$

(e)
$$x = \sin \theta + \cos \theta$$
, $y = \cos \theta - \sin \theta$

Solution:

(a) As
$$\sin^2 \theta + \cos^2 \theta \equiv 1$$

 $x^2 + y^2 = 1$

(b)
$$\sin \theta = x$$
 and $\cos \theta = \frac{y}{2}$

So, using
$$\sin^2 \theta + \cos^2 \theta \equiv 1$$

$$x^{2} + \left(\frac{y}{2}\right)^{2} = 1 \text{ or } x^{2} + \frac{y^{2}}{4} = 1 \text{ or } 4x^{2} + y^{2} = 4$$

(c) As
$$\sin \theta = x$$
, $\sin^2 \theta = x^2$
Using $\sin^2 \theta + \cos^2 \theta \equiv 1$
 $x^2 + y = 1$

(d) As
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cos \theta = \frac{\sin \theta}{\tan \theta}$$

So cos
$$\theta = \frac{x}{y}$$

Using
$$\sin^2 \theta + \cos^2 \theta \equiv 1$$

$$x^2 + \frac{x^2}{y^2} = 1$$
 or $x^2y^2 + x^2 = y^2$

(e)
$$\sin \theta + \cos \theta = x$$

$$-\sin \theta + \cos \theta = y$$

Adding up the two equations:
$$2 \cos \theta = x + y$$

So
$$\cos \theta = \frac{x+y}{2}$$

Subtracting the two equations: $2 \sin \theta = x - y$

So sin
$$\theta = \frac{x-y}{2}$$

Using
$$\sin^2 \theta + \cos^2 \theta \equiv 1$$

$$\left(\begin{array}{c} \frac{x-y}{2} \end{array}\right)^2 + \left(\begin{array}{c} \frac{x+y}{2} \end{array}\right)^2 = 1$$

$$x^2 - 2xy + y^2 + x^2 + 2xy + y^2 = 4$$

$$2x^2 + 2y^2 = 4$$

$$x^2 + y^2 = 2$$

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise B, Question 1

Question:

Solve the following equations for θ , in the interval $0 < \theta \le 360^{\circ}$:

(a)
$$\sin \theta = -1$$

(b)
$$\tan \theta = \sqrt{3}$$

(c) cos
$$\theta = \frac{1}{2}$$

(d)
$$\sin \theta = \sin 15^{\circ}$$

(e)
$$\cos \theta = -\cos 40^{\circ}$$

(f)
$$\tan \theta = -1$$

(g)
$$\cos \theta = 0$$

(h)
$$\sin \theta = -0.766$$

(i) 7 sin
$$\theta = 5$$

(i)
$$2 \cos \theta = -\sqrt{2}$$

(k)
$$\sqrt{3} \sin \theta = \cos \theta$$

(1)
$$\sin \theta + \cos \theta = 0$$

(m) 3 cos
$$\theta = -2$$

(n)
$$(\sin \theta - 1) (5 \cos \theta + 3) = 0$$

(o)
$$\tan \theta = \tan \theta (2 + 3 \sin \theta)$$

Solution:

(a) Using the graph of
$$y = \sin \theta$$

 $\sin \theta = -1$ when $\theta = 270^{\circ}$

(b)
$$\tan \theta = \sqrt{3}$$

The calculator solution is 60
$$^{\circ}$$
 (tan $^{-1}$ $\sqrt{3}$) and, as tan θ is +ve, θ lies in the 1st and 3rd quadrants. θ = 60 $^{\circ}$ and (180 $^{\circ}$ + 60 $^{\circ}$) = 60 $^{\circ}$, 240 $^{\circ}$

(c)
$$\cos \theta = \frac{1}{2}$$

Calculator solution is
$$60^\circ$$
 and as $\cos \theta$ is +ve, θ lies in the 1st and 4th quadrants. $\theta = 60^\circ$ and $(360^\circ - 60^\circ) = 60^\circ$, 300°

(d)
$$\sin \theta = \sin 15^{\circ}$$

$$\theta$$
 = 15 $^{\circ}$ and (180 $^{\circ}$ - 15 $^{\circ}$) = 15 $^{\circ}$, 165 $^{\circ}$

(e) A first solution is \cos^{-1} ($-\cos 40^{\circ}$) = 140 $^{\circ}$

A second solution of $\cos \theta = k$ is 360° – 1st solution.

So second solution is 220°

(Use the quadrant diagram as a check.)

(f) A first solution is $\tan^{-1} (-1) = -45^{\circ}$

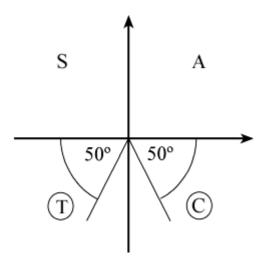
Use the quadrant diagram, noting that as tan is – ve, solutions are in the 2nd and 4th quadrants.

 (-45°) is not in the given interval)

So solutions are 135° and 315°.

- (g) From the graph of $y = \cos \theta$ cos $\theta = 0$ when $\theta = 90^{\circ}$, 270°
- (h) The calculator solution is -50.0° (3 s.f.)

As $\sin \theta$ is - ve, θ lies in the 3rd and 4th quadrants.



Solutions are 230° and 310°.

[These are 180 $^{\circ}$ + α and 360 $^{\circ}$ - α where α = cos $^{-1}$ (-0.766)]

(i)
$$\sin \theta = \frac{5}{7}$$

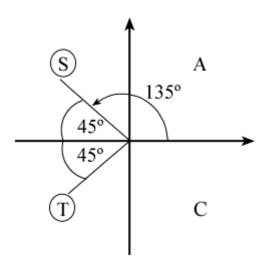
First solution is
$$\sin^{-1}\left(\frac{5}{7}\right) = 45.6^{\circ}$$

Second solution is 180 $^{\circ}$ - 45.6 $^{\circ}$ = 134.4 $^{\circ}$

(j) cos
$$\theta = -\frac{\sqrt{2}}{2}$$

Calculator solution is 135°

As $\cos \theta$ is - ve, θ is in the 2nd and 3rd quadrants.



Solutions are 135° and 225° (135° and 360 ° - 135 °)

(k)
$$\sqrt{3} \sin \theta = \cos \theta$$

So tan $\theta = \frac{1}{\sqrt{3}}$ dividing both sides by $\sqrt{3} \cos \theta$

Calculator solution is 30°

As $\tan \theta$ is +ve, θ is in the 1st and 3rd quadrants.

Solutions are 30° , 210° (30° and $180^{\circ} + 30^{\circ}$)

(1)
$$\sin \theta + \cos \theta = 0$$

So
$$\sin \theta = -\cos \theta \implies \tan \theta = -1$$

Calculator solution (-45°) is not in given interval

As $\tan \theta$ is - ve, θ is in the 2nd and 4th quadrants.

Solutions are 135° and 315° [180 ° + tan^{-1} (-1) , 360 ° + tan^{-1} (-1)]

(m) Calculator solution is
$$\cos^{-1} \left(-\frac{2}{3} \right) = 131.8 ^{\circ} (1 \text{ d.p.})$$

Second solution is 360 $^{\circ}$ - 131.8 $^{\circ}$ = 228.2 $^{\circ}$

(n) As
$$(\sin \theta - 1)$$
 $(5 \cos \theta + 3) = 0$ either $\sin \theta - 1 = 0$ or $5 \cos \theta + 3 = 0$

So sin
$$\theta = 1$$
 or cos $\theta = -\frac{3}{5}$

Use the graph of $y = \sin \theta$ to read off solutions of $\sin \theta = 1$

$$\sin \theta = 1 \Rightarrow \theta = 90^{\circ}$$

For
$$\cos \theta = -\frac{3}{5}$$
,

calculator solution is
$$\cos^{-1} \left(-\frac{3}{5} \right) = 126.9^{\circ}$$

second solution is 360 $^{\circ}$ – 126.9 $^{\circ}$ = 233.1 $^{\circ}$ Solutions are 90 $^{\circ}$, 126.9 $^{\circ}$, 233.1 $^{\circ}$

(o) Rearrange as

$$\tan \theta (2 + 3 \sin \theta) - \tan \theta = 0$$

$$\tan \theta [(2+3 \sin \theta) - 1] = 0$$
 factorising

$$\tan \theta (3 \sin \theta + 1) = 0$$

So
$$\tan \theta = 0$$
 or $\sin \theta = -\frac{1}{3}$

From graph of $y = \tan \theta$, $\tan \theta = 0 \Rightarrow \theta = 180^{\circ}$, 360° (0° not in given interval)

For sin $\theta = -\frac{1}{3}$, calculator solution (-19.5 °) is not in interval.

Solutions are $180^{\circ} - \sin^{-1} \left(-\frac{1}{3} \right)$ and $360^{\circ} + \sin^{-1} \left(-\frac{1}{3} \right)$ or use quadrant diagram.

Complete set of solutions $180^\circ, 199.5^\circ, 340.5^\circ, 360^\circ$

[©] Pearson Education Ltd 2008

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise B, Question 2

Question:

Solve the following equations for x, giving your answers to 3 significant figures where appropriate, in the intervals indicated:

(a)
$$\sin x^{\circ} = -\frac{\sqrt{3}}{2}, -180 \le x \le 540$$

(b)
$$2 \sin x^{\circ} = -0.3, -180 \le x \le 180$$

(c)
$$\cos x^{\circ} = -0.809, -180 \le x \le 180$$

(d)
$$\cos x^{\circ} = 0.84, -360 < x < 0$$

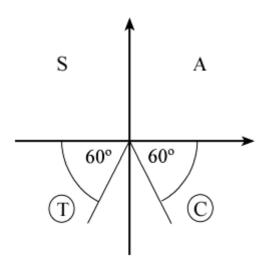
(e)
$$\tan x^{\circ} = -\frac{\sqrt{3}}{3}, 0 \le x \le 720$$

(f)
$$\tan x^{\circ} = 2.90, 80 \le x \le 440$$

Solution:

(a) Calculator solution of sin
$$x^{\circ} = -\frac{\sqrt{3}}{2}$$
 is $x = -60$

As $\sin x \circ is - ve$, x is in the 3rd and 4th quadrants.

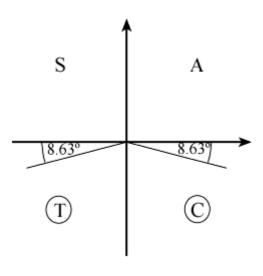


Read off all solutions in the interval $-180 \le x \le 540$ x = -120, -60, 240, 300

(b)
$$2 \sin x^{\circ} = -0.3 \sin x^{\circ} = -0.15$$

First solution is $x = \sin^{-1} (-0.15) = -8.63$ (3 s.f.)

As sin $x \circ$ is – ve, x is in the 3rd and 4th quadrants.

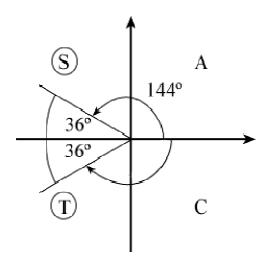


Read off all solutions in the interval $-180 \le x \le 180$ x = -171.37, -8.63 = -171, -8.63 (3 s.f.)

(c)
$$\cos x^{\circ} = -0.809$$

Calculator solution is 144 (3 s.f.)

As $\cos x^{\circ}$ is - ve, x is in the 2nd and 3rd quadrants.



Read off all solutions in the interval $-180 \le x \le 180$

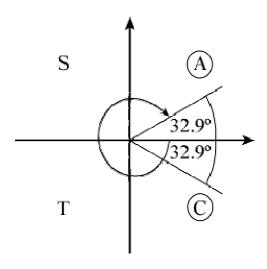
x = -144, +144

[*Note:* Here solutions are \cos^{-1} (-0.809) and { $360 - \cos^{-1}$ (-0.809) { -360]

(d) $\cos x^{\circ} = 0.84$

Calculator solution is 32.9 (3 s.f.) (not in interval)

As $\cos x \circ \text{ is +ve}$, x is in the 1st and 4th quadrants.



Read off all solutions in the interval -360 < x < 0

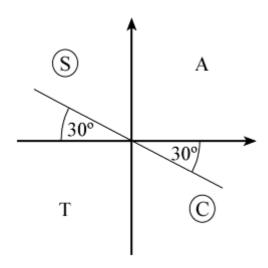
$$x = -327, -32.9$$
 (3 s.f.)

[*Note:* Here solutions are \cos^{-1} (0.84) -360 and { $360 - \cos^{-1}$ (0.84) { -360]

(e)
$$\tan x^{\circ} = -\frac{\sqrt{3}}{3}$$

Calculator solution is $\tan^{-1} \left(-\frac{\sqrt{3}}{3} \right) = -30$ (not in interval)

As $\tan x \circ \text{ is } -\text{ve}$, x is in the 2nd and 4th quadrants.



Read off all solutions in the interval $0 \le x \le 720$ x = 150, 330, 510, 690

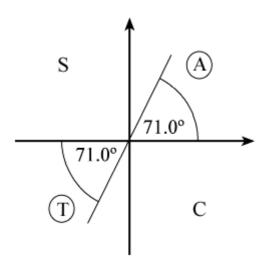
[Note: Here solutions are
$$\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) + 180$$
, $\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) + 360$, $\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$

$$+540, \tan^{-1} \left(-\frac{\sqrt{3}}{3} \right) +720 \right]$$

(f)
$$\tan x^{\circ} = 2.90$$

Calculator solution is \tan^{-1} (2.90) = 71.0 (3 s.f.) (not in interval)

As $\tan x \circ \text{ is +ve}$, x is in the 1st and 3rd quadrants.



Read off all solutions in the interval $80 \le x \le 440$ x = 251, 431

x = 251, 431 [*Note:* Here solutions are \tan^{-1} (2.90) + 180, \tan^{-1} (2.90) + 360]

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise B, Question 3

Question:

Solve, in the intervals indicated, the following equations for θ , where θ is measured in radians. Give your answer in terms of π or 2 decimal places.

(a)
$$\sin \theta = 0, -2\pi < \theta \le 2\pi$$

(b)
$$\cos \theta = -\frac{1}{2}, -2\pi < \theta \le \pi$$

(c)
$$\sin \theta = \frac{1}{\sqrt{2}}, -2\pi < \theta \leq \pi$$

(d)
$$\sin \theta = \tan \theta, 0 < \theta \le 2\pi$$

(e) 2 (1 + tan
$$\theta$$
) = 1 - 5 tan θ , $-\pi < \theta \le 2\pi$

(f) 2 cos
$$\theta = 3 \sin \theta$$
, $0 < \theta \le 2\pi$

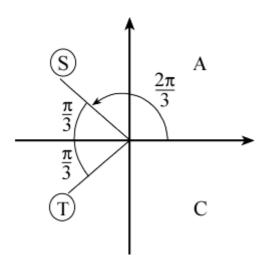
Solution:

(a) Use your graph of $y = \sin \theta$ to read off values of θ for which $\sin \theta = 0$. In the interval $-2\pi < \theta \le 2\pi$, solutions are $-\pi$, 0, π , 2π .

(b) Calculator solution of cos
$$\theta = -\frac{1}{2}$$
 is cos -1 $\left(-\frac{1}{2}\right) = 2.09$ radians

[You should know that
$$\cos^{-1} \left(-\frac{1}{2} \right) = \frac{2\pi}{3}$$
]

As $\cos \theta$ is - ve, θ is in 2nd and 3rd quadrants.

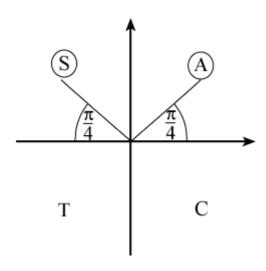


Read off all solutions in the interval $-2\pi < \theta \le \pi$

$$\theta = -\frac{4\pi}{3}, -\frac{2\pi}{3}, \frac{2\pi}{3}$$
 (-4.19, -2.09, +2.09)

(c) Calculator solution of sin $\theta = \frac{1}{\sqrt{2}}$ is si

As $\sin \theta$ is +ve, θ is in the 1st and 2nd quadrants.



Read off all solutions in the interval $-2\pi < \theta \le \pi$

$$\theta = -\frac{7\pi}{4}, -\frac{5\pi}{4}, \frac{\pi}{4}$$

(d)
$$\sin \theta = \tan \theta$$

$$\sin \theta = \frac{\sin \theta}{\cos \theta}$$

(multiply through by $\cos \theta$)

$$\sin \theta \cos \theta = \sin \theta$$

$$\sin \theta \cos \theta - \sin \theta = 0$$

$$\sin \theta (\cos \theta - 1) = 0$$

So sin $\theta = 0$ or cos $\theta = 1$ for $0 < \theta \le 2\pi$

From the graph if $y = \sin \theta$, $\sin \theta = 0$ where $\theta = \pi$, 2π

From the graph of $y = \cos \theta$, $\cos \theta = 1$ where $\theta = 2\pi$

So solutions are π , 2π

(e) 2 (1 + tan
$$\theta$$
) = 1 - 5 tan θ

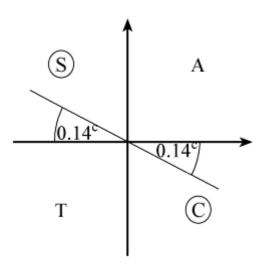
$$\Rightarrow$$
 2 + 2 tan θ = 1 - 5 tan θ

$$\Rightarrow$$
 7 tan $\theta = -1$

$$\Rightarrow$$
 tan $\theta = -\frac{1}{7}$

Calculator solution is $\theta = \tan^{-1} \left(-\frac{1}{7} \right) = -0.14 \text{ radians (2 d.p.)}$

As $\tan \theta$ is - ve, θ is in the 2nd and 4th quadrants.



Read off all solutions in the interval $-\pi < \theta \le 2\pi$

$$\theta = -0.14, 3.00, 6.14 \left[\tan^{-1} \left(-\frac{1}{7} \right), \tan^{-1} \left(-\frac{1}{7} \right) + \pi, \tan^{-1} \left(-\frac{1}{7} \right) + 2\pi \right]$$

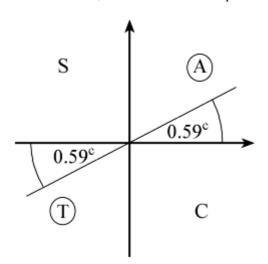
(f) As 2 cos $\theta = 3 \sin \theta$

$$\frac{2\cos\theta}{3\cos\theta} = \frac{3\sin\theta}{3\cos\theta}$$

So
$$\tan \theta = \frac{2}{3}$$

Calculator solution is
$$\theta = \tan^{-1} \left(\frac{2}{3} \right) = 0.59 \text{ radians (2 d.p.)}$$

As $\tan \theta$ is +ve, θ is in the 1st and 3rd quadrants.



Read off all solutions in the interval $0 < \theta \le 2\pi$

$$\theta = 0.59, 3.73$$
 $\left[\tan^{-1} \left(\frac{2}{3} \right), \tan^{-1} \left(\frac{2}{3} \right) + \pi \right]$

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise C, Question 1

Question:

Find the values of θ , in the interval $0 \le \theta \le 360^{\circ}$, for which:

(a)
$$\sin 4\theta = 0$$

(b)
$$\cos 3\theta = -1$$

(c)
$$\tan 2\theta = 1$$

(d)
$$\cos 2\theta = \frac{1}{2}$$

(e)
$$\tan \frac{1}{2}\theta = -\frac{1}{\sqrt{3}}$$

(f)
$$\sin \left(-\theta \right) = \frac{1}{\sqrt{2}}$$

(g)
$$\tan (45^{\circ} - \theta) = -1$$

(h) 2 sin
$$(\theta - 20^{\circ}) = 1$$

(i) tan
$$(\theta + 75^{\circ}) = \sqrt{3}$$

(j) cos
$$(50^{\circ} + 2\theta) = -1$$

Solution:

(a)
$$\sin 4\theta = 0$$
 $0 \le \theta \le 360^{\circ}$
Let $X = 4\theta \text{ so } 0 \le X \le 1440^{\circ}$
Solve $\sin X = 0$ in the interval $0 \le X \le 1440^{\circ}$
From the graph of $y = \sin X$, $\sin X = 0$ where $X = 0$, 180° , 360° , 540° , 720° , 900° , 1080° , 1260° , 1440°
 $\theta = \frac{X}{4} = 0$, 45° , 90° , 135° , 180° , 225° , 270° , 315° , 360°

(b)
$$\cos 3\theta = -1 \quad 0 \leq \theta \leq 360^{\circ}$$

Let $X = 3\theta \text{ so } 0 \leq X \leq 1080^{\circ}$
Solve $\cos X = -1$ in the interval $0 \leq X \leq 1080^{\circ}$
From the graph of $y = \cos X$, $\cos X = -1$ where $X = 180^{\circ}$, 540° , 900°
 $\theta = \frac{X}{3} = 60^{\circ}$, 180° , 300°

(c)
$$\tan 2\theta = 1$$
 $0 \le \theta \le 360^{\circ}$
Let $X = 2\theta$
Solve $\tan X = 1$ in the interval $0 \le X \le 720^{\circ}$
A solution is $X = \tan^{-1} 1 = 45^{\circ}$
As $\tan X$ is +ve, X is in the 1st and 3rd quadrants.
So $X = 45^{\circ}$, 225° , 405° , 585°

$$\theta = \frac{X}{2} = 22\frac{1}{2}$$
°, $112\frac{1}{2}$ °, $202\frac{1}{2}$ °, $292\frac{1}{2}$ °

(d)
$$\cos 2\theta = \frac{1}{2}$$
 0 $\leq \theta \leq 360^{\circ}$

Let
$$X = 2\theta$$

Solve $\cos X = \frac{1}{2}$ in the interval $0 \le X \le 720^{\circ}$

A solution is
$$X = \cos^{-1} \left(\frac{1}{2} \right) = 60^{\circ}$$

As $\cos X$ is +ve, X is in the 1st and 4th quadrants. So $X = 60^{\circ}$, 300° , 420° , 660°

So
$$X = 60^{\circ}$$
, 300° , 420° , 660°

$$\theta = \frac{X}{2} = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$$

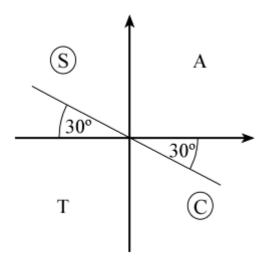
(e)
$$\tan \frac{1}{2}\theta = -\frac{1}{\sqrt{3}}$$
 0 $\leq \theta \leq 360^{\circ}$

Let
$$X = \frac{1}{2}\theta$$

Solve tan
$$X = -\frac{1}{\sqrt{3}}$$
 in the interval $0 \le X \le 180^{\circ}$

A solution is
$$X = \tan^{-1} \left(- \frac{1}{\sqrt{3}} \right) = -30^{\circ}$$
 (not in interval)

As $\tan X$ is - ve, X is in the 2nd and 4th quadrants.



Read off solutions in the interval 0 $\leq X \leq 180^{\circ}$ $X = 150^{\circ}$ So $\theta = 2X = 300^{\circ}$

(f)
$$\sin \left(-\theta \right) = \frac{1}{\sqrt{2}} 0 \le \theta \le 360^{\circ}$$

Let
$$X = -\theta$$

Solve sin
$$X = \frac{1}{\sqrt{2}}$$
 in the interval $0 \ge X \ge -360^{\circ}$

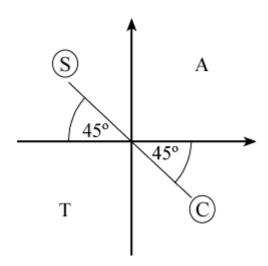
A solution is
$$X = \sin^{-1} \left(\frac{1}{\sqrt{2}} \right) = 45^{\circ}$$

As sin *X* is +ve, *X* is in the 1st and 2nd quadrants. X = -315 °, -225 °

$$X = -315^{\circ}, -225^{\circ}$$

So
$$\theta = -X = 225^{\circ}, 315^{\circ}$$

(g)
$$\tan (45^{\circ} - \theta) = -1$$
 $0 \le \theta \le 360^{\circ}$
Let $X = 45^{\circ} - \theta$ so $0 \ge -\theta \ge -360^{\circ}$
Solve $\tan X = -1$ in the interval $45^{\circ} \ge X \ge -315^{\circ}$
A solution is $X = \tan^{-1}(-1) = -45^{\circ}$
As $\tan X$ is $-\text{ve}$, X is in the 2nd and 4th quadrants.



$$X = -225^{\circ}, -45^{\circ}$$

So $\theta = 45^{\circ} - X = 90^{\circ}, 270^{\circ}$

(h) 2 sin (
$$\theta$$
 – 20°) = 1 so sin $\left(\theta$ – 20° $= \frac{1}{2}$ 0 $\leq \theta \leq 360$ °

Let $X = \theta - 20^{\circ}$

Solve sin $X = \frac{1}{2}$ in the interval $-20^{\circ} \le X \le 340^{\circ}$

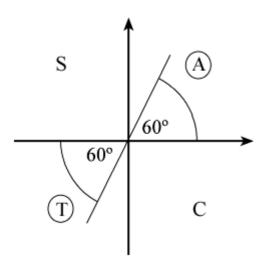
A solution is
$$X = \sin^{-1} \left(\frac{1}{2} \right) = 30^{\circ}$$

As $\sin X$ is +ve, solutions are in the 1st and 2nd quadrants. $X = 30^{\circ}, 150^{\circ}$

So
$$\theta = X + 20^{\circ} = 50^{\circ}, 170^{\circ}$$

(i) Solve
$$\tan X = \sqrt{3}$$
 where $X = (\theta + 75^{\circ})$
Interval for X is $75^{\circ} \le X \le 435^{\circ}$
One solution is $\tan^{-1}(\sqrt{3}) = 60^{\circ}$ (not in the interval)

As $\tan X$ is +ve, X is in the 1st and 3rd quadrants.



$$X = 240^{\circ}, 420^{\circ}$$

So $\theta = X - 75^{\circ} = 165^{\circ}, 345^{\circ}$

(j) Solve $\cos X = -1$ where $X = (50^{\circ} + 2\theta)$ Interval for X is $50^{\circ} \le X \le 770^{\circ}$ From the graph of $y = \cos X$, $\cos X = -1$ where $X = 180^{\circ}$, 540° So $2\theta + 50^{\circ} = 180^{\circ}$, 540° $2\theta = 130^{\circ}$, 490° $\theta = 65^{\circ}$, 245°

Solutionbank C2 Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise C, Question 2

Question:

Solve each of the following equations, in the interval given. Give your answers to 3 significant figures where appropriate.

(a)
$$\sin \left(\theta - 10^{\circ}\right) = -\frac{\sqrt{3}}{2}, 0 < \theta \le 360^{\circ}$$

(b) cos
$$(70 - x)^{\circ} = 0.6, -180 < x \le 180$$

(c)
$$\tan (3x + 25)^{\circ} = -0.51, -90 < x \le 180$$

(d) 5 sin
$$4\theta + 1 = 0$$
, $-90^{\circ} \le \theta \le 90^{\circ}$

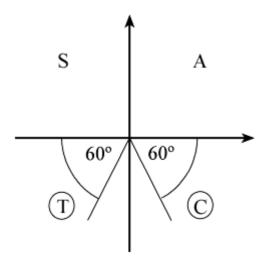
Solution:

(a) Solve sin
$$X = -\frac{\sqrt{3}}{2}$$
 where $X = (\theta - 10^{\circ})$

Interval for X is $-10^{\circ} < X \le 350^{\circ}$

First solution is
$$\sin^{-1} \left(-\frac{\sqrt{3}}{2} \right) = -60^{\circ}$$
 (not in interval)

As $\sin X$ is - ve, X is in the 3rd and 4th quadrants.



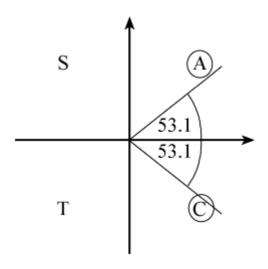
Read off solutions in the interval
$$-10^{\circ} < X \le 350^{\circ}$$

 $X = 240^{\circ}, 300^{\circ}$

So
$$\theta = X + 10^{\circ} = 250^{\circ}, 310^{\circ}$$

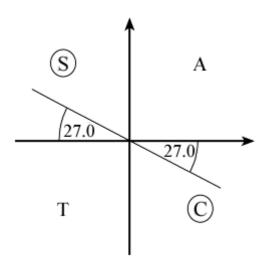
(b) Solve cos
$$X^{\circ} = 0.6$$
 where $X = (70 - x)$
Interval for X is $180 + 70 > X \ge -180 + 70$ i.e. $-110 \le X < 250$
First solution is $\cos^{-1} (0.6) = 53.1^{\circ}$

As $\cos X^{\circ}$ is +ve, X is in the 1st and 4th quadrants.



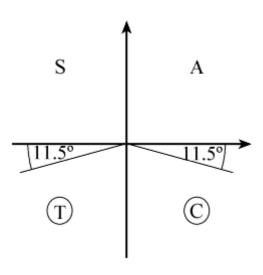
$$X = -53.1$$
, +53.1
So $x = 70 - X = 16.9$, 123 (3 s.f.)

(c) Solve tan $X^{\circ} = -0.51$ where X = 3x + 25 Interval for x is $-90 < x \le 180$ So interval for X is $-245 < X \le 565$ First solution is $\tan^{-1} (-0.51) = -27.0$ As $\tan X$ is - ve, X is in the 2nd and 4th quadrants.



Read off solutions in the interval $-245 < X \le 565$ X = -207, -27, 153, 333, 513 3x + 25 = -207, -27, 153, 333, 513 3x = -232, -52, 128, 308, 488So x = -77.3, -17.3, 42.7, 103, 163

(d) $5 \sin 4\theta + 1 = 0$ $5 \sin 4\theta = -1$ $\sin 4\theta = -0.2$ Solve $\sin X = -0.2$ where $X = 4\theta$ Interval for X is $-360^{\circ} \le X \le 360^{\circ}$ First solution is $\sin^{-1}(-0.2) = -11.5^{\circ}$ As $\sin X$ is - ve, X is in the 3rd and 4th quadrants.



Read off solutions in the interval
$$-360^{\circ} \le X \le 360^{\circ}$$

 $X = -168.5^{\circ}, -11.5^{\circ}, 191.5^{\circ}, 348.5^{\circ}$
So $\theta = \frac{X}{4} = -42.1^{\circ}, -2.88^{\circ}, 47.9^{\circ}, 87.1^{\circ}$

[©] Pearson Education Ltd 2008

Solutionbank C2Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise C, Question 3

Question:

Solve the following equations for θ , in the intervals indicated. Give your answers in radians.

(a)
$$\sin \left(\theta - \frac{\pi}{6}\right) = -\frac{1}{\sqrt{2}}, -\pi < \theta \leq \pi$$

(b) cos
$$(2\theta + 0.2^{c}) = -0.2, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

(c)
$$\tan \left(2\theta + \frac{\pi}{4}\right) = 1, 0 \le \theta \le 2\pi$$

(d)
$$\sin \left(\theta + \frac{\pi}{3}\right) = \tan \frac{\pi}{6}, 0 \le \theta \le 2\pi$$

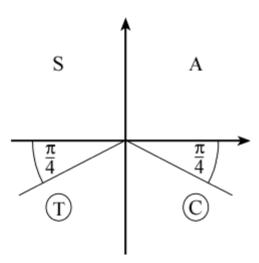
Solution:

(a) Solve sin
$$X = -\frac{1}{\sqrt{2}}$$
 where $X = \theta - \frac{\pi}{6}$

Interval for X is
$$-\frac{7\pi}{6} \le X \le \frac{5\pi}{6}$$

First solution is
$$X = \sin^{-1} \left(-\frac{1}{\sqrt{2}} \right) = -\frac{\pi}{4}$$

As $\sin X$ is - ve, X is in the 3rd and 4th quadrants.

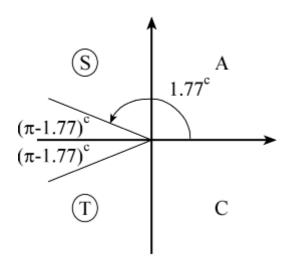


Read off solutions for X in the interval
$$-\frac{7\pi}{6} \le X \le \frac{5\pi}{6}$$

$$X = -\frac{3\pi}{4}, -\frac{\pi}{4}$$

So
$$\theta = X + \frac{\pi}{6} = \frac{\pi}{6} - \frac{3\pi}{4}, \frac{\pi}{6} - \frac{\pi}{4} = -\frac{7\pi}{12}, -\frac{\pi}{12}$$

(b) Solve $\cos X = -0.2$ where $X = 2\theta + 0.2$ radians Interval for X is $-\pi + 0.2 \le X \le \pi + 0.2$ i.e. $-2.94 \le X \le 3.34$ First solution is $X = \cos^{-1} (-0.2) = 1.77$... radians As $\cos X$ is - ve, X is in the 2nd and 3rd quadrants.



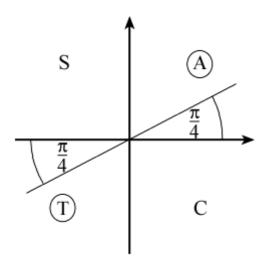
Read off solutions for *X* in the interval $-2.94 \le X \le 3.34$ X = -1.77, +1.77 radians $2\theta + 0.2 = -1.77$, +1.77 $2\theta = -1.97$, +1.57 So $\theta = -0.986$, 0.786

(c) Solve tan
$$X = 1$$
 where $X = 2\theta + \frac{\pi}{4}$

Interval for *X* is
$$\frac{\pi}{4} \le X \le \frac{17\pi}{4}$$

First solution is
$$X = \tan^{-1} 1 = \frac{\pi}{4}$$

As $\tan is + ve$, X is in the 1st and 3rd quadrants.



Read off solutions in the interval $\frac{\pi}{4} \le X \le \frac{17\pi}{4}$

$$X = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}, \frac{17\pi}{4}$$

$$2\theta + \frac{\pi}{4} = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}, \frac{17\pi}{4}$$

$$2\theta=0,\,\pi,\,2\pi,\,3\pi,\,4\pi$$

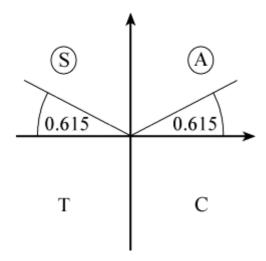
So
$$\theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$$

(d) Solve sin
$$X = \frac{\sqrt{3}}{3}$$
 where $X = \theta + \frac{\pi}{3}$

Interval for X is
$$\frac{\pi}{3} \le X \le \frac{7\pi}{3}$$
 or 1.047 radians $\le X \le 7.33$ radians

First solution is
$$\sin^{-1}\left(\frac{\sqrt{3}}{3}\right) = 0.615$$

As $\sin X$ is +ve, X is in the 1st and 2nd quadrants.



$$X = \pi - 0.615, 2\pi + 0.615 = 2.526, 6.899$$

So
$$\theta = X - \frac{\pi}{3} = 1.48, 5.85$$

[©] Pearson Education Ltd 2008

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise D, Question 1

Question:

Solve for θ , in the interval $0 \le \theta \le 360^{\circ}$, the following equations. Give your answers to 3 significant figures where they are not exact.

(a)
$$4 \cos^2 \theta = 1$$

(b)
$$2 \sin^2 \theta - 1 = 0$$

(c)
$$3 \sin^2 \theta + \sin \theta = 0$$

(d)
$$\tan^2 \theta - 2 \tan \theta - 10 = 0$$

(e)
$$2 \cos^2 \theta - 5 \cos \theta + 2 = 0$$

(f)
$$\sin^2 \theta - 2 \sin \theta - 1 = 0$$

(g)
$$\tan^2 2\theta = 3$$

(h) 4
$$\sin \theta = \tan \theta$$

(i)
$$\sin \theta + 2 \cos^2 \theta + 1 = 0$$

(i)
$$\tan^2 (\theta - 45^{\circ}) = 1$$

(k)
$$3 \sin^2 \theta = \sin \theta \cos \theta$$

(1) 4 cos
$$\theta$$
 (cos $\theta - 1$) = -5 cos θ

(m) 4 (
$$\sin^2 \theta - \cos \theta$$
) = 3 - 2 cos θ

(n)
$$2 \sin^2 \theta = 3 (1 - \cos \theta)$$

(o)
$$4 \cos^2 \theta - 5 \sin \theta - 5 = 0$$

(p)
$$\cos^2 \frac{\theta}{2} = 1 + \sin \frac{\theta}{2}$$

Solution:

(a)
$$4 \cos^2 \theta = 1 \implies \cos^2 \theta = \frac{1}{4}$$

So cos
$$\theta = \pm \frac{1}{2}$$

Solutions are 60°, 120°, 240°, 300°

(b)
$$2 \sin^2 \theta - 1 = 0 \implies \sin^2 \theta = \frac{1}{2}$$

So sin
$$\theta = \pm \frac{1}{\sqrt{2}}$$

Solutions are in all four quadrants at 45° to the horizontal.

So $\theta = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$

(c) Factorising, $\sin \theta (3 \sin \theta + 1) = 0$

So
$$\sin \theta = 0$$
 or $\sin \theta = -\frac{1}{3}$

Solutions of sin $\theta = 0$ are $\theta = 0^{\circ}$, 180° , 360° (from graph)

Solutions of sin $\theta = -\frac{1}{3}$ are $\theta = 199^{\circ}$, 341° (3 s.f.) (3rd and 4th quadrants)

(d)
$$\tan^2 \theta - 2 \tan \theta - 10 = 0$$

So $\tan \theta = \frac{2 \pm \sqrt{4 + 40}}{2} = \frac{2 \pm \sqrt{44}}{2} (= -2.3166 \dots \text{ or } 4.3166 \dots)$

Solutions of tan $\theta = \frac{2 - \sqrt{44}}{2}$ are in the 2nd and 4th quadrants.

So
$$\theta = 113.35^{\circ}, 293.3^{\circ}$$

Solutions of tan $\theta = \frac{2 + \sqrt{44}}{2}$ are in the 1st and 3rd quadrants.

So
$$\theta = 76.95$$
 ... °, 256.95 ... Solution set: 77.0°, 113°, 257°, 293°

(e) Factorise LHS of 2
$$\cos^2 \theta - 5 \cos \theta + 2 = 0$$

$$(2 \cos \theta - 1) (\cos \theta - 2) = 0$$

So 2 cos
$$\theta - 1 = 0$$
 or cos $\theta - 2 = 0$

As $\cos \theta \le 1$, $\cos \theta = 2$ has no solutions.

Solutions of cos
$$\theta = \frac{1}{2}$$
 are $\theta = 60^{\circ}$, 300°

(f)
$$\sin^2 \theta - 2 \sin \theta - 1 = 0$$

So
$$\sin \theta = \frac{2 \pm \sqrt{8}}{2}$$

Solve sin
$$\theta = \frac{2 - \sqrt{8}}{2}$$
 as $\frac{2 + \sqrt{8}}{2} > 1$

$$\theta = 204^{\circ}$$
, 336° (solutions are in 3rd and 4th quadrants as $\frac{2 - \sqrt{8}}{2} < 0$)

(g)
$$\tan^2 2\theta = 3 \implies \tan 2\theta = \pm \sqrt{3}$$

Solve tan
$$X = + \sqrt{3}$$
 and tan $X = - \sqrt{3}$, where $X = 2\theta$

Interval for X is
$$0 \le X \le 720^{\circ}$$

Interval for *X* is
$$0 \le X \le 720^{\circ}$$

For tan $X = \sqrt{3}, X = 60^{\circ}, 240^{\circ}, 420^{\circ}, 600^{\circ}$

So
$$\theta = \frac{X}{2} = 30^{\circ}, 120^{\circ}, 210^{\circ}, 300^{\circ}$$

For tan
$$X = -\sqrt{3}$$
, $X = 120^{\circ}$, 300° , 480° , 660°

So
$$\theta = 60^{\circ}, 150^{\circ}, 240^{\circ}, 330^{\circ}$$

Solution set: $\theta = 30^{\circ}, 60^{\circ}, 120^{\circ}, 150^{\circ}, 210^{\circ}, 240^{\circ}, 300^{\circ}, 330^{\circ}$

(h) 4 sin
$$\theta$$
 = tan θ

So 4 sin
$$\theta = \frac{\sin \theta}{\cos \theta}$$

$$\Rightarrow$$
 4 sin θ cos θ = sin θ

$$\Rightarrow$$
 4 sin θ cos θ - sin θ = 0

$$\Rightarrow$$
 sin θ (4 cos θ – 1) = 0

So
$$\sin \theta = 0$$
 or $\cos \theta = \frac{1}{4}$

Solutions of sin $\theta = 0$ are 0° , 180° , 360°

Solutions of
$$\cos \theta = \frac{1}{4} \operatorname{are} \cos^{-1} \left(\frac{1}{4} \right) \text{ and } 360^{\circ} - \cos^{-1} \left(\frac{1}{4} \right)$$

Solution set: 0°, 75.5°, 180°, 284°, 360°

(i)
$$\sin \theta + 2 \cos^2 \theta + 1 = 0$$

So
$$\sin \theta + 2 (1 - \sin^2 \theta) + 1 = 0 \text{ using } \sin^2 \theta + \cos^2 \theta \equiv 1$$

$$\Rightarrow$$
 2 $\sin^2 \theta - \sin \theta - 3 = 0$

$$\Rightarrow$$
 (2 sin θ – 3) (sin θ + 1) = 0

So sin
$$\theta = -1$$
 (sin $\theta = \frac{3}{2}$ has no solution)

$$\Rightarrow$$
 $\theta = 270^{\circ}$

(j)
$$\tan^2 (\theta - 45^{\circ}) = 1$$

So tan
$$(\theta - 45^{\circ}) = 1$$
 or tan $(\theta - 45^{\circ}) = -1$

So
$$\theta - 45^{\circ} = 45^{\circ}$$
, 225° (1st and 3rd quadrants)

or
$$\theta - 45^{\circ} = -45^{\circ}$$
, 135°, 315° (2nd and 4th quadrants)

$$\Rightarrow \theta = 0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ}$$

(k)
$$3 \sin^2 \theta = \sin \theta \cos \theta$$

$$\Rightarrow$$
 3 sin² θ - sin θ cos θ = 0

$$\Rightarrow$$
 $\sin \theta (3 \sin \theta - \cos \theta) = 0$

So sin
$$\theta = 0$$
 or $\theta = 0$ or $\theta = 0$

Solutions of sin $\theta = 0$ are $\theta = 0^{\circ}$, 180° , 360°

For 3 sin
$$\theta$$
 – cos θ = 0

$$3 \sin \theta = \cos \theta$$

$\frac{3\sin\theta}{3\cos\theta} = \frac{\cos\theta}{3\cos\theta}$

$$\tan \theta = \frac{1}{3}$$

Solutions are
$$\theta = \tan^{-1} \left(\frac{1}{3} \right)$$
 and $180^{\circ} + \tan^{-1} \left(\frac{1}{3} \right) = 18.4^{\circ}$, 198°

Solution set: 0°, 18.4°, 180°, 198°, 360°

(1) 4 cos
$$\theta$$
 (cos $\theta - 1$) = -5 cos θ

$$\Rightarrow$$
 cos θ [4 (cos θ – 1) + 5] = 0

$$\Rightarrow$$
 cos θ (4 cos θ + 1) = 0

So
$$\cos \theta = 0$$
 or $\cos \theta = -\frac{1}{4}$

Solutions of cos
$$\theta = 0$$
 are 90° , 270°

Solutions of cos
$$\theta = -\frac{1}{4}$$
 are 104°, 256° (3 s.f.) (2nd and 3rd quadrants)

Solution set: 90°, 104°, 256°, 270°

(m)
$$4 \sin^2 \theta - 4 \cos \theta = 3 - 2 \cos \theta$$

$$\Rightarrow$$
 4 (1 - cos² θ) - 4 cos θ = 3 - 2 cos θ

$$\Rightarrow$$
 4 cos² θ + 2 cos θ - 1 = 0

So
$$\cos \theta = \frac{-2 \pm \sqrt{20}}{8} \left(= \frac{-1 \pm \sqrt{5}}{4} \right)$$

Solutions of cos $\theta = \frac{-2 + \sqrt{20}}{8}$ are 72°, 288° (1st and 4th quadrants)

Solutions of cos $\theta = \frac{-2 - \sqrt{20}}{8}$ are 144°, 216° (2nd and 3rd quadrants)

Solution set: 72.0°, 144°, 216°, 288°

(n)
$$2 \sin^2 \theta = 3 (1 - \cos \theta)$$

 $\Rightarrow 2 (1 - \cos^2 \theta) = 3 (1 - \cos \theta)$
 $\Rightarrow 2 (1 - \cos^2 \theta) = 3 (1 - \cos \theta)$ or write as $a \cos^2 \theta + b \cos \theta + c \equiv 0$
 $\Rightarrow (1 - \cos \theta) [2 (1 + \cos \theta) - 3] = 0$
 $\Rightarrow (1 - \cos \theta) (2 \cos \theta - 1) = 0$

So
$$\cos \theta = 1$$
 or $\cos \theta = \frac{1}{2}$

Solutions are 0° , 60° , 300° , 360°

(o)
$$4 \cos^2 \theta - 5 \sin \theta - 5 = 0$$

 $\Rightarrow 4 (1 - \sin^2 \theta) - 5 \sin \theta - 5 = 0$
 $\Rightarrow 4 \sin^2 \theta + 5 \sin \theta + 1 = 0$
 $\Rightarrow (4 \sin \theta + 1) (\sin \theta + 1) = 0$

So sin
$$\theta = -1$$
 or sin $\theta = -\frac{1}{4}$

Solution of sin
$$\theta = -1$$
 is $\theta = 270^{\circ}$

Solutions of sin
$$\theta = -\frac{1}{4}$$
 are $\theta = 194$ °, 346° (3 s.f.) (3rd and 4th quadrants)

Solution set: 194°, 270°, 346°

(p)
$$\cos^2 \frac{\theta}{2} = 1 + \sin \frac{\theta}{2}$$

$$\Rightarrow 1 - \sin^2 \frac{\theta}{2} = 1 + \sin \frac{\theta}{2}$$

$$\Rightarrow \sin^2 \frac{\theta}{2} + \sin \frac{\theta}{2} = 0$$

$$\Rightarrow \sin \frac{\theta}{2} \left(\sin \frac{\theta}{2} + 1 \right) = 0$$
So $\sin \frac{\theta}{2} = 0$ or $\sin \frac{\theta}{2} = -1$

Solve sin
$$X = 0$$
 and sin $X = -1$ where $X = \frac{\theta}{2}$

Interval for *X* is
$$0 \le X \le 180^{\circ}$$

 $X = 0^{\circ}$, 180° (sin $X = -1$ has no solutions in the interval)
 So $\theta = 2X = 0^{\circ}$, 360°

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise D, Question 2

Question:

Solve for θ , in the interval $-180^{\circ} \le \theta \le 180^{\circ}$, the following equations. Give your answers to 3 significant figures where they are not exact.

- (a) $\sin^2 2\theta = 1$
- (b) $\tan^2 \theta = 2 \tan \theta$
- (c) $\cos \theta$ ($\cos \theta 2$) = 1
- (d) $\sin^2 (\theta + 10^{\circ}) = 0.8$
- (e) $\cos^2 3\theta \cos 3\theta = 2$
- (f) $5 \sin^2 \theta = 4 \cos^2 \theta$
- (g) $\tan \theta = \cos \theta$
- (h) $2 \sin^2 \theta + 3 \cos \theta = 1$

Solution:

(a) Solve
$$\sin^2 X = 1$$
 where $X = 2\theta$
Interval for X is $-360^{\circ} \le X \le 360^{\circ}$
 $\sin X = +1$ gives $X = -270^{\circ}$, 90°
 $\sin X = -1$ gives $X = -90^{\circ}$, $+270^{\circ}$
 $X = -270^{\circ}$, -90° , $+90^{\circ}$, $+270^{\circ}$
So $\theta = \frac{X}{2} = -135^{\circ}$, -45° , $+45^{\circ}$, $+135^{\circ}$

(b)
$$\tan^2 \theta = 2 \tan \theta$$

 $\Rightarrow \tan^2 \theta - 2 \tan \theta = 0$
 $\Rightarrow \tan \theta (\tan \theta - 2) = 0$
So $\tan \theta = 0$ or $\tan \theta = 2$ (1st and 3rd quadrants)
Solutions are $(-180^{\circ}, 0^{\circ}, 180^{\circ})$, $(-116.6^{\circ}, 63.4^{\circ})$
Solution set: $-180^{\circ}, -117^{\circ}, 0^{\circ}, 63.4^{\circ}, 180^{\circ}$

(c)
$$\cos^2 \theta - 2 \cos \theta = 1$$

$$\Rightarrow \cos^2 \theta - 2 \cos \theta - 1 = 0$$

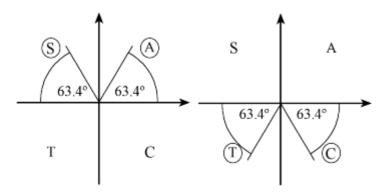
So
$$\cos \theta = \frac{2 \pm \sqrt{8}}{2}$$

$$\Rightarrow \cos \theta = \frac{2 - \sqrt{8}}{2} (as \frac{2 + \sqrt{8}}{2} > 1)$$

Solutions are \pm 114 $^{\circ}$ (2nd and 3rd quadrants)

(d)
$$\sin^2 (\theta + 10^{\circ}) = 0.8$$

 $\Rightarrow \sin (\theta + 10^{\circ}) = +\sqrt{0.8} \text{ or } \sin (\theta + 10^{\circ}) = -\sqrt{0.8}$
Either $(\theta + 10^{\circ}) = 63.4^{\circ}, 116.6^{\circ} \text{ or } (\theta + 10^{\circ}) = -116.6^{\circ}, -63.4^{\circ}$



So
$$\theta = -127^{\circ}$$
, -73.4° , 53.4° , 107° (3 s.f.)

(e)
$$\cos^2 3\theta - \cos 3\theta - 2 = 0$$

($\cos 3\theta - 2$) ($\cos 3\theta + 1$) = 0
So $\cos 3\theta = -1$ ($\cos 3\theta \neq 2$)
Solve $\cos X = -1$ where $X = 3\theta$
Interval for X is $-540^{\circ} \leq X \leq 540^{\circ}$
From the graph of $y = \cos X$, $\cos X = -1$ where $X = -540^{\circ}$, -180° , 180° , 540°
So $\theta = \frac{X}{3} = -180^{\circ}$, -60° , $+60^{\circ}$, $+180^{\circ}$

(f)
$$5 \sin^2 \theta = 4 \cos^2 \theta$$

$$\Rightarrow \tan^2 \theta = \frac{4}{5} \operatorname{as} \tan \theta = \frac{\sin \theta}{\cos \theta}$$
So $\tan \theta = \pm \sqrt{\frac{4}{5}}$

There are solutions from each of the quadrants (angle to horizontal is 41.8°) $\theta = \pm 138$ °, ± 41.8 °

(g)
$$\tan \theta = \cos \theta$$

$$\Rightarrow \frac{\sin \theta}{\cos \theta} = \cos \theta$$

$$\Rightarrow \sin \theta = \cos^2 \theta$$

$$\Rightarrow \sin \theta = 1 - \sin^2 \theta$$

$$\Rightarrow \sin^2 \theta + \sin \theta - 1 = 0$$
So $\sin \theta = \frac{-1 \pm \sqrt{5}}{2}$

Only solutions from sin
$$\theta = \frac{-1 + \sqrt{5}}{2}$$
 (as $\frac{-1 - \sqrt{5}}{2}$ < -1)

Solutions are $\theta = 38.2^{\circ}$, 142° (1st and 2nd quadrants)

(h)
$$2 \sin^2 \theta + 3 \cos \theta = 1$$

 $\Rightarrow 2 (1 - \cos^2 \theta) + 3 \cos \theta = 1$
 $\Rightarrow 2 \cos^2 \theta - 3 \cos \theta - 1 = 0$
So $\cos \theta = \frac{3 \pm \sqrt{17}}{4}$

Only solutions of cos
$$\theta = \frac{3 - \sqrt{17}}{4} (as \frac{3 + \sqrt{17}}{4} > 1)$$

Solutions are $\theta = \pm 106$ ° (2nd and 3rd quadrants)

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise D, Question 3

Question:

Solve for x, in the interval $0 \le x \le 2\pi$, the following equations.

Give your answers to 3 significant figures unless they can be written in the form $\frac{a}{b}\pi$, where a and b are integers.

(a)
$$\tan^2 \frac{1}{2}x = 1$$

(b)
$$2 \sin^2 \left(x + \frac{\pi}{3}\right) = 1$$

(c) 3
$$\tan x = 2 \tan^2 x$$

(d)
$$\sin^2 x + 2 \sin x \cos x = 0$$

(e)
$$6 \sin^2 x + \cos x - 4 = 0$$

(f)
$$\cos^2 x - 6 \sin x = 5$$

(g)
$$2 \sin^2 x = 3 \sin x \cos x + 2 \cos^2 x$$

Solution:

(a)
$$\tan^2 \frac{1}{2}x = 1$$

$$\Rightarrow \tan \frac{1}{2}x = \pm 1$$

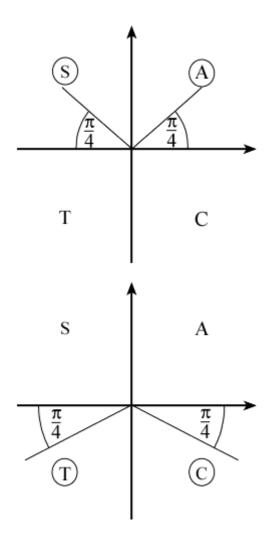
$$\Rightarrow \frac{1}{2}x = \frac{\pi}{4}, \frac{3\pi}{4} \qquad \left(0 \le \frac{1}{2}x \le \pi \right)$$

So
$$x = \frac{\pi}{2}, \frac{3\pi}{2}$$

(b)
$$2 \sin^2 \left(x + \frac{\pi}{3} \right) = 1 \text{ for } \frac{\pi}{3} \le x + \frac{\pi}{3} \le \frac{7\pi}{3}$$

$$\Rightarrow \sin^2 \left(x + \frac{\pi}{3} \right) = \frac{1}{2}$$

So sin
$$\left(x + \frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}$$
 or sin $\left(x + \frac{\pi}{3}\right) = -\frac{1}{\sqrt{2}}$



$$x + \frac{\pi}{3} = \frac{3\pi}{4}, \frac{9\pi}{4} \text{ or } x + \frac{\pi}{3} = +\frac{5\pi}{4}, +\frac{7\pi}{4}$$

$$\text{So } x = \frac{3\pi}{4} - \frac{\pi}{3}, \frac{9\pi}{4} - \frac{\pi}{3} \text{ or } x = \frac{5\pi}{4} - \frac{\pi}{3}, \frac{7\pi}{4} - \frac{\pi}{3}$$

$$\text{Solutions are } x = \frac{5\pi}{12}, \frac{11\pi}{12}, \frac{17\pi}{12}, \frac{23\pi}{12}$$

(c)
$$3 \tan x = 2 \tan^2 x$$

 $\Rightarrow 2 \tan^2 x - 3 \tan x = 0$
 $\Rightarrow \tan x (2 \tan x - 3) = 0$
So $\tan x = 0$ or $\tan x = \frac{3}{2}$
 $x = (0, \pi, 2\pi), (0.983, \pi + 0.983) = 0, 0.983, \pi, 4.12, 2\pi$

(d)
$$\sin^2 x + 2 \sin x \cos x = 0$$

 $\Rightarrow \sin x (\sin x + 2 \cos x) = 0$
So $\sin x = 0$ or $\sin x + 2 \cos x = 0$
 $\sin x = 0$ gives $x = 0$, π , 2π
 $\sin x + 2 \cos x = 0 \Rightarrow \tan x = -2$
Solutions are 2.03, 5.18 radians (2nd and 4th quadrants)
Solution set: 0, 2.03, π , 5.18, 2π

(e) $6 \sin^2 x + \cos x - 4 = 0$

(e)
$$6 \sin^2 x + \cos x - 4 = 0$$

 $\Rightarrow 6 (1 - \cos^2 x) + \cos x - 4 = 0$
 $\Rightarrow 6 \cos^2 x - \cos x - 2 = 0$

$$\Rightarrow$$
 (3 cos $x-2$) (2 cos $x+1$) = 0

So
$$\cos x = + \frac{2}{3} \operatorname{or} \cos x = - \frac{1}{2}$$

Solutions of cos
$$x = +\frac{2}{3} \operatorname{are} \cos^{-1} \left(\frac{2}{3}\right)$$
, $2\pi - \cos^{-1} \left(\frac{2}{3}\right) = 0.841$, 5.44

Solutions of cos
$$x = -\frac{1}{2} \operatorname{are} \cos^{-1} \left(-\frac{1}{2} \right)$$
, $2\pi - \cos^{-1} \left(-\frac{1}{2} \right) = \frac{2\pi}{3}$, $\frac{4\pi}{3}$

Solutions are 0.841, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, 5.44

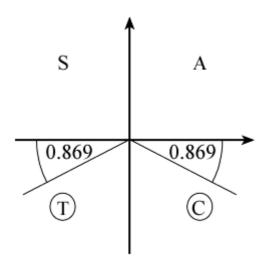
(f)
$$\cos^2 x - 6 \sin x = 5$$

 $\Rightarrow (1 - \sin^2 x) - 6 \sin x = 5$
 $\Rightarrow \sin^2 x + 6 \sin x + 4 = 0$

So sin
$$x = \frac{-6 \pm \sqrt{20}}{2}$$
 $\left(= -3 \pm \sqrt{5} \right)$

As
$$\frac{-6-\sqrt{20}}{2} < -1$$
, there are no solutions of $\sin x = \frac{-6-\sqrt{20}}{2}$

Consider solutions of
$$\sin x = \frac{-6 + \sqrt{20}}{2}$$



$$\sin^{-1}\left(\frac{-6+\sqrt{20}}{2}\right) = -0.869$$
 (not in given interval)

Solutions are $\pi + 0.869$, $2\pi - 0.869 = 4.01$, 5.41

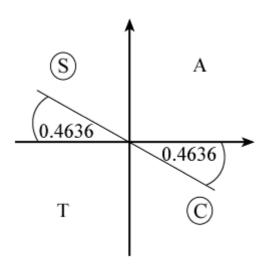
(g)
$$2 \sin^2 x - 3 \sin x \cos x - 2 \cos^2 x = 0$$

 $\Rightarrow (2 \sin x + \cos x) (\sin x - 2 \cos x) = 0$
 $\Rightarrow 2 \sin x + \cos x = 0 \text{ or } \sin x - 2 \cos x = 0$

So
$$\tan x = -\frac{1}{2}$$
 or $\tan x = 2$

Consider solutions of tan $x = -\frac{1}{2}$

First solution is
$$\tan^{-1} \left(-\frac{1}{2} \right) = -0.4636 \dots$$
 (not in interval)



Solutions are $\pi - 0.4636$, $2\pi - 0.4636 = 2.68$, 5.82 Solutions of tan x = 2 are tan $^{-1}$ 2, $\pi + \tan^{-1}$ 2 = 1.11, 4.25 Solution set: x = 1.11, 2.68, 4.25, 5.82 (3 s.f.)

[©] Pearson Education Ltd 2008

Trigonometrical identities and simple equations Exercise E, Question 1

Question:

Given that angle A is obtuse and cos $A = -\sqrt{\frac{7}{11}}$, show that $A = \frac{-2\sqrt{7}}{7}$.

Solution:

Using
$$\sin^2 A + \cos^2 A \equiv 1$$

$$\sin^2 A + \left(-\sqrt{\frac{7}{11}}\right)^2 = 1$$

$$\sin^2 A = 1 - \frac{7}{11} = \frac{4}{11}$$

$$\sin A = \pm \frac{2}{\sqrt{11}}$$

But A is in the second quadrant (obtuse), so $\sin A$ is + ve.

So sin
$$A = + \frac{2}{\sqrt{11}}$$

Using tan
$$A = \frac{\sin A}{\cos A}$$

$$\tan A = \frac{\left(\frac{2}{\sqrt{11}}\right)}{-\sqrt{\frac{7}{11}}} = -\frac{2}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{7}} = -\frac{2}{\sqrt{7}} = -\frac{2\sqrt{7}}{7} \text{ (rationalising the denominator)}$$

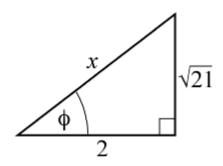
Trigonometrical identities and simple equations Exercise E, Question 2

Question:

Given that angle B is reflex and tan $B = + \frac{\sqrt{21}}{2}$, find the exact value of: (a) sin B, (b) cos B.

Solution:

Draw a right-angled triangle with an angle ϕ where tan $\phi = + \frac{\sqrt{21}}{2}$.



Using Pythagoras' Theorem to find the hypotenuse: $x^2 = 2^2 + (\sqrt{21})^2 = 4 + 21 = 25$

$$x^2 = 2^2 + (\sqrt{21})^2 = 4 + 21 = 25$$

So $x = 5$

(a)
$$\sin \phi = \frac{\sqrt{21}}{5}$$

As B is reflex and $\tan B$ is + ve, B is in the third quadrant.

So sin
$$B = -\sin \phi = -\frac{\sqrt{21}}{5}$$

(b) From the diagram
$$\cos \phi = \frac{2}{5}$$

B is in the third quadrant, so cos
$$B = -\cos \phi = -\frac{2}{5}$$

Edexcel Modular Mathematics for AS and A-Level

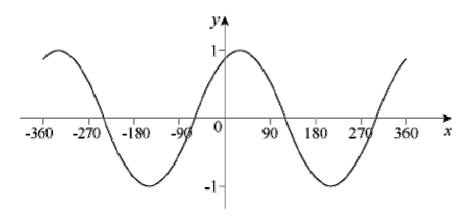
Trigonometrical identities and simple equations Exercise E, Question 3

Question:

- (a) Sketch the graph of $y = \sin(x + 60)^\circ$, in the interval $-360 \le x \le 360$, giving the coordinates of points of intersection with the axes.
- (b) Calculate the values of the x-coordinates of the points in which the line $y = \frac{1}{2}$ intersects the curve.

Solution:

(a) The graph of $y = \sin (x + 60)^{\circ}$ is the graph of $y = \sin x^{\circ}$ translated by 60 to the left.



The curve meets the *x*-axis at

$$(-240,0)$$
, $(-60,0)$, $(120,0)$ and $(300,0)$

The curve meets the y-axis, where x = 0.

So
$$y = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$

Coordinates are
$$\left(0, \frac{\sqrt{3}}{2}\right)$$

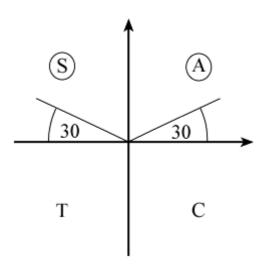
(b) The line meets the curve where $\sin \left(x + 60\right)^{\circ} = \frac{1}{2}$

Let
$$(x + 60) = X$$
 and solve $\sin X^{\circ} = \frac{1}{2}$ where $-300 \le X \le 420$

$$\sin X^{\circ} = \frac{1}{2}$$

First solution is X = 30 (your calculator solution)

As $\sin X$ is + ve, X is in the 1st and 2nd quadrants.



Read off all solutions in the interval $-300 \le X \le 420$ X = -210, 30, 150, 390 x + 60 = -210, 30, 150, 390So x = -270, -30, 90, 330

Trigonometrical identities and simple equations Exercise E, Question 4

Question:

Simplify the following expressions:

(a)
$$\cos^4 \theta - \sin^4 \theta$$

(b)
$$\sin^2 3\theta - \sin^2 3\theta \cos^2 3\theta$$

(c)
$$\cos^4 \theta + 2 \sin^2 \theta \cos^2 \theta + \sin^4 \theta$$

Solution:

```
(a) Factorise \cos^4 \theta - \sin^4 \theta (difference of two squares) \cos^4 \theta - \sin^4 \theta = (\cos^2 \theta + \sin^2 \theta) (\cos^2 \theta - \sin^2 \theta) = (1) (\cos^2 \theta - \sin^2 \theta) (as \sin^2 \theta + \cos^2 \theta = 1) So \cos^4 \theta - \sin^4 \theta = \cos^2 \theta - \sin^2 \theta (b) Factorise \sin^2 3\theta - \sin^2 3\theta \cos^2 3\theta \sin^2 3\theta - \sin^2 3\theta \cos^2 3\theta = \sin^2 3\theta (1 - \cos^2 3\theta) use \sin^2 3\theta + \cos^2 3\theta = 1 = \sin^2 3\theta (\sin^2 3\theta) = \sin^4 3\theta
```

```
(c) \cos^4 \theta + 2 \sin^2 \theta \cos^2 \theta + \sin^4 \theta = (\cos^2 \theta + \sin^2 \theta)^2 = 1
since \sin^2 \theta + \cos^2 \theta = 1
```

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise E, Question 5

Question:

- (a) Given that 2 ($\sin x + 2 \cos x$) = $\sin x + 5 \cos x$, find the exact value of $\tan x$.
- (b) Given that $\sin x \cos y + 3 \cos x \sin y = 2 \sin x \sin y 4 \cos x \cos y$, express $\tan y \sin x \cos x \cos y$, express $\tan y \sin x \cos x \cos y \cos x \cos y$, express $\tan y \sin x \cos x \cos y \cos x \cos y$.

Solution:

(a) 2 (
$$\sin x + 2 \cos x$$
) = $\sin x + 5 \cos x$
 $\Rightarrow 2 \sin x + 4 \cos x = \sin x + 5 \cos x$
 $\Rightarrow 2 \sin x - \sin x = 5 \cos x - 4 \cos x$
 $\Rightarrow \sin x = \cos x$ divide both sides by $\cos x$
So $\tan x = 1$

(b)
$$\sin x \cos y + 3 \cos x \sin y = 2 \sin x \sin y - 4 \cos x \cos y$$

$$\Rightarrow \frac{\sin x \cos y}{\cos x \cos y} + \frac{3 \cos x \sin y}{\cos x \cos y} = \frac{2 \sin x \sin y}{\cos x \cos y} - \frac{4 \cos x \cos y}{\cos x \cos y}$$

$$\Rightarrow$$
 tan $x + 3$ tan $y = 2$ tan x tan $y - 4$

$$\Rightarrow$$
 2 tan x tan y - 3 tan y = 4 + tan x

$$\Rightarrow$$
 tan y (2 tan x - 3) = 4 + tan x

So
$$\tan y = \frac{4 + \tan x}{2 \tan x - 3}$$

Trigonometrical identities and simple equations Exercise E, Question 6

Question:

Show that, for all values of θ :

(a)
$$(1 + \sin \theta)^2 + \cos^2 \theta = 2(1 + \sin \theta)$$

(b)
$$\cos^4 \theta + \sin^2 \theta = \sin^4 \theta + \cos^2 \theta$$

Solution:

(a) LHS =
$$(1 + 2 \sin \theta + \sin^2 \theta) + \cos^2 \theta$$

= $1 + 2 \sin \theta + 1 \text{ since } \sin^2 \theta + \cos^2 \theta \equiv 1$
= $2 + 2 \sin \theta$
= $2 (1 + \sin \theta)$
= RHS

(b) LHS =
$$\cos^4 \theta + \sin^2 \theta$$

= $(\cos^2 \theta)^2 + \sin^2 \theta$
= $(1 - \sin^2 \theta)^2 + \sin^2 \theta$ since $\sin^2 \theta + \cos^2 \theta \equiv 1$
= $1 - 2 \sin^2 \theta + \sin^4 \theta + \sin^2 \theta$
= $(1 - \sin^2 \theta)^2 + \sin^4 \theta$
= $\cos^2 \theta + \sin^4 \theta$ using $\sin^2 \theta + \cos^2 \theta \equiv 1$
= RHS

Trigonometrical identities and simple equations Exercise E, Question 7

Question:

Without attempting to solve them, state how many solutions the following equations have in the interval $0 \le \theta \le 360^{\circ}$. Give a brief reason for your answer.

(a)
$$2 \sin \theta = 3$$

(b)
$$\sin \theta = -\cos \theta$$

(c)
$$2 \sin \theta + 3 \cos \theta + 6 = 0$$

(d)
$$\tan \theta + \frac{1}{\tan \theta} = 0$$

Solution:

(a)
$$\sin \theta = \frac{3}{2}$$
 has no solutions as $-1 \le \sin \theta \le 1$

(b)
$$\sin \theta = -\cos \theta$$

 $\Rightarrow \tan \theta = -1$

Look at graph of $y = \tan \theta$ in the interval $0 \le \theta \le 360^{\circ}$.

There are 2 solutions

(c) The minimum value of 2 sin θ is -2

The minimum value of 3 cos θ is -3

Each minimum value is for a different θ .

So the minimum value of 2 sin $\theta + 3 \cos \theta > -5$.

There are no solutions of 2 sin $\theta + 3 \cos \theta + 6 = 0$ as the LHS can never be zero.

- (d) Solving $\tan \theta + \frac{1}{\tan \theta} = 0$ is equivalent to solving $\tan^2 \theta = -1$, which has no real solutions, so there are no solutions.
- © Pearson Education Ltd 2008

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise E, Question 8

Question:

- (a) Factorise $4xy y^2 + 4x y$.
- (b) Solve the equation $4 \sin \theta \cos \theta \cos^2 \theta + 4 \sin \theta \cos \theta = 0$, in the interval $0 \le \theta \le 360^{\circ}$.

Solution:

(a)
$$4xy - y^2 + 4x - y \equiv y (4x - y) + (4x - y) = (4x - y) (y + 1)$$

(b) Using (a) with
$$x = \sin \theta$$
, $y = \cos \theta$
 $4 \sin \theta \cos \theta - \cos^2 \theta + 4 \sin \theta - \cos \theta = 0$
 $\Rightarrow (4 \sin \theta - \cos \theta) (\cos \theta + 1) = 0$
So $4 \sin \theta - \cos \theta = 0 \text{ or } \cos \theta + 1 = 0$

$$4 \sin \theta - \cos \theta = 0 \Rightarrow \tan \theta = \frac{1}{4}$$

Calculator solution is $\theta = 14.0^{\circ}$ tan θ is +ve so θ is in the 1st and 3rd quadrants So $\theta = 14.0^{\circ}$, 194° cos $\theta + 1 = 0 \Rightarrow \cos \theta = -1$ So $\theta = +180^{\circ}$ (from graph) Solutions are $\theta = 14.0^{\circ}$, 180° , 194°

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise E, Question 9

Question:

- (a) Express 4 cos 3θ ° sin (90 3θ) ° as a single trigonometric function.
- (b) Hence solve 4 cos 3θ ° sin (90 3θ) ° = 2 in the interval 0 $\leq \theta \leq 360$. Give your answers to 3 significant figures.

Solution:

(a) As sin
$$(90-\theta)^{\circ} \equiv \cos\theta^{\circ}$$
, sin $(90-3\theta)^{\circ} \equiv \cos3\theta^{\circ}$
So $4\cos3\theta^{\circ} - \sin(90-3\theta)^{\circ} = 4\cos3\theta^{\circ} - \cos3\theta^{\circ} = 3\cos3\theta^{\circ}$

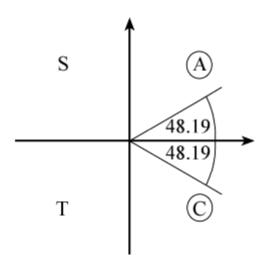
(b) Using (a) 4 cos
$$3\theta$$
 ° - sin (90 - 3θ) ° = 2 is equivalent to 3 cos 3θ ° = 2

so
$$\cos 3\theta \circ = \frac{2}{3}$$

Let
$$X = 3\theta$$
 and solve $\cos X^{\circ} = \frac{2}{3}$ in the interval $0 \le X \le 1080$

The calculator solution is X = 48.19

As $\cos X^{\circ}$ is +ve, X is in the 1st and 4th quadrant.



Read off all solutions in the interval $0 \le X \le 1080$ X = 48.19, 311.81, 408.19, 671.81, 768.19, 1031.81

So
$$\theta = \frac{1}{3}X = 16.1, 104, 136, 224, 256, 344 (3 s.f.)$$

Trigonometrical identities and simple equations Exercise E, Question 10

Question:

Find, in radians to two decimal places, the value of x in the interval $0 \le x \le 2\pi$, for which $3 \sin^2 x + \sin x - 2 = 0$. **[E]**

Solution:

3
$$\sin^2 x + \sin x - 2 = 0$$

(3 $\sin x - 2$) ($\sin x + 1$) = 0 factorising
So $\sin x = \frac{2}{3}$ or $\sin x = -1$

For $\sin x = \frac{2}{3}$ your calculator answer is 0.73 (2 d.p.)

As $\sin x$ is +ve, x is in the 1st and 2nd quadrants. So second solution is $(\pi - 0.73) = 2.41$ (2 d.p.) For $\sin x = -1$, $x = \frac{3\pi}{2} = 4.71$ (2 d.p.)

So
$$x = 0.73, 2.41, 4.71$$

Trigonometrical identities and simple equations Exercise E, Question 11

Question:

Given that $2 \sin 2\theta = \cos 2\theta$:

- (a) Show that $\tan 2 \theta = 0.5$.
- (b) Hence find the value of θ , to one decimal place, in the interval $0 \le \theta < 360^{\circ}$ for which $2 \sin 2\theta^{\circ} = \cos 2\theta^{\circ}$. **[E]**

Solution:

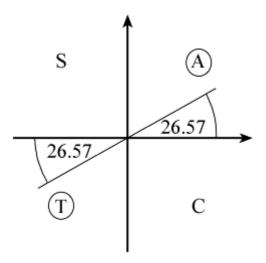
(a)
$$2 \sin 2\theta = \cos 2\theta$$

$$\Rightarrow \frac{2 \sin 2\theta}{\cos 2\theta} = 1$$

$$\Rightarrow 2 \tan 2\theta = 1 \tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta}$$

So tan $2\theta = 0.5$

(b) Solve tan 2θ ° = 0.5 in the interval $0 \le \theta < 360$ or tan X° = 0.5 where $X = 2\theta$, $0 \le X < 720$ The calculator solution for tan $^{-1}$ 0.5 = 26.57 As tan X is +ve, X is in the 1st and 3rd quadrants.



Read off solutions for X in the interval $0 \le X < 720$ X = 26.57, 206.57, 386.57, 566.57 $X = 2\theta$

So
$$\theta = \frac{1}{2}X = 13.3, 103.3, 193.3, 283.3 (1 d.p.)$$

Trigonometrical identities and simple equations Exercise E, Question 12

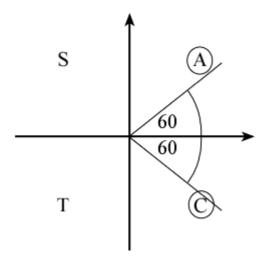
Question:

Find all the values of θ in the interval $0 \le \theta < 360$ for which: (a) cos $(\theta + 75)^{\circ} = 0.5$.

(b) $\sin 2\theta \circ = 0.7$, giving your answers to one decimal place. **[E]**

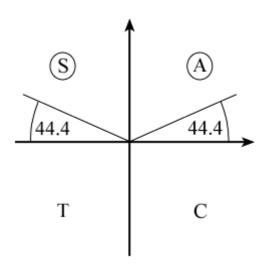
Solution:

(a) $\cos (\theta + 75)^{\circ} = 0.5$ Solve $\cos X^{\circ} = 0.5$ where $X = \theta + 75, 75 \le X < 435$ Your calculator solution for X is 60As $\cos X$ is +ve, X is in the 1st and 4th quadrants.



Read off all solutions in the interval 75 $\leq X < 435$ X = 300, 420 $\theta + 75 = 300, 420$ So $\theta = 225, 345$

(b) $\sin 2\theta$ ° = 0.7 in the interval 0 $\leq \theta < 360$ Solve $\sin X$ ° = 0.7 where $X = 2\theta$, 0 $\leq X < 720$ Your calculator solution is 44.4 As $\sin X$ is +ve, X is in the 1st and 2nd quadrants.



Read off solutions in the interval $0 \le X < 720$ X = 44.4, 135.6, 404.4, 495.6 $X = 2\theta$ So $\theta = \frac{1}{2}X = 22.2, 67.8, 202.2, 247.8 (1 d.p.)$

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise E, Question 13

Question:

(a) Find the coordinates of the point where the graph of $y = 2 \sin \left(2x + \frac{5}{6}\pi \right)$ crosses the y-axis.

(b) Find the values of x, where $0 \le x \le 2\pi$, for which $y = \sqrt{2}$. **[E]**

Solution:

(a)
$$y = 2 \sin \left(2x + \frac{5}{6}\pi \right)$$
 crosses the y-axis where $x = 0$

So
$$y = 2 \sin \frac{5}{6}\pi = 2 \times \frac{1}{2} = 1$$

Coordinates are (0, 1)

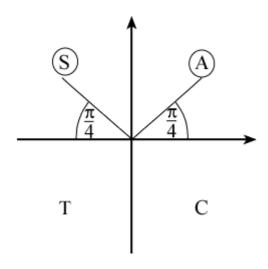
(b) Solve 2 sin
$$\left(2x + \frac{5}{6}\pi\right) = \sqrt{2}$$
 in the interval $0 \le x \le 2\pi$

So sin
$$\left(2x + \frac{5}{6}\pi\right) = \frac{\sqrt{2}}{2}$$

or sin
$$X = \frac{\sqrt{2}}{2}$$
 where $\frac{5}{6}\pi \le X \le 4 \frac{5}{6}\pi$

Your calculator solution is $\frac{\pi}{4}$

As $\sin X$ is +ve, X lies in the 1st and 2nd quadrants.



Read off solutions for X in the interval $\frac{5}{6}\pi \le X \le 4 \frac{5}{6}\pi$

(**Note**: first value of *X* in interval is on second revolution.)

$$X = \frac{9\pi}{4}, \frac{11\pi}{4}, \frac{17\pi}{4}, \frac{19\pi}{4}$$

$$2x + \frac{5}{6}\pi = \frac{9\pi}{4}, \frac{11\pi}{4}, \frac{17\pi}{4}, \frac{19\pi}{4}$$

$$2x = \frac{9\pi}{4} - \frac{5\pi}{6}, \frac{11\pi}{4} - \frac{5\pi}{6}, \frac{17\pi}{4} - \frac{5\pi}{6}, \frac{19\pi}{4} - \frac{5\pi}{6}$$

$$2x = \frac{17\pi}{12}, \frac{23\pi}{12}, \frac{41\pi}{12}, \frac{47\pi}{12}$$

$$So x = \frac{17\pi}{24}, \frac{23\pi}{24}, \frac{41\pi}{24}, \frac{47\pi}{24}$$

Trigonometrical identities and simple equations Exercise E, Question 14

Question:

Find, giving your answers in terms of π , all values of θ in the interval $0 < \theta < 2\pi$, for which:

(a)
$$\tan \left(\theta + \frac{\pi}{3}\right) = 1$$

(b)
$$\sin 2\theta = -\frac{\sqrt{3}}{2} [E]$$

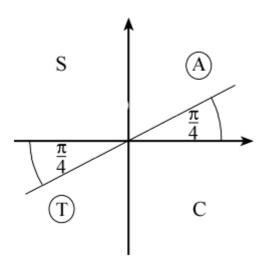
Solution:

(a)
$$\tan \left(\theta + \frac{\pi}{3}\right) = 1$$
 in the interval $0 < \theta < 2\pi$

Solve tan
$$X = 1$$
 where $\frac{\pi}{3} < X < \frac{7\pi}{3}$

Calculator solution is
$$\frac{\pi}{4}$$

As $\tan X$ is +ve, X is in the 1st and 3rd quadrants.



Read off solutions for *X* in the interval $\frac{\pi}{3} < X < \frac{7\pi}{3}$

$$X = \frac{5\pi}{4}, \frac{9\pi}{4}$$

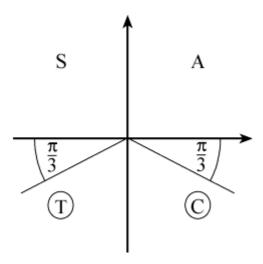
$$\theta + \frac{\pi}{3} = \frac{5\pi}{4}, \frac{9\pi}{4}$$

So
$$\theta = \frac{5\pi}{4} - \frac{\pi}{3}, \frac{9\pi}{4} - \frac{\pi}{3} = \frac{11\pi}{12}, \frac{23\pi}{12}$$

(b) Solve sin
$$X = \frac{-\sqrt{3}}{2}$$
 where $X = 2\theta$, $0 < \theta < 4\pi$

Calculator answer is $-\frac{\pi}{3}$

As $\sin X$ is - ve, X is in the 3rd and 4th quadrants.



Read off solutions for *X* in the interval $0 < \theta < 4\pi$

$$X = \frac{4\pi}{3}, \frac{5\pi}{3}, \frac{10\pi}{3}, \frac{11\pi}{3}$$

So
$$\theta = \frac{1}{2}X = \frac{2\pi}{3}, \frac{5\pi}{6}, \frac{5\pi}{3}, \frac{11\pi}{6}$$

Trigonometrical identities and simple equations Exercise E, Question 15

Question:

Find the values of x in the interval $0 < x < 270^{\circ}$ which satisfy the equation $\cos^{2}x + 0.5$

$$\frac{\cos 2x + 0.5}{1 - \cos 2x} = 2$$

Solution:

Multiply both sides of equation by $(1 - \cos 2x)$ (providing $\cos 2x \neq 1$)

(**Note**: In the interval given $\cos 2x$ is never equal to 1.)

So
$$\cos 2x + 0.5 = 2 - 2 \cos 2x$$

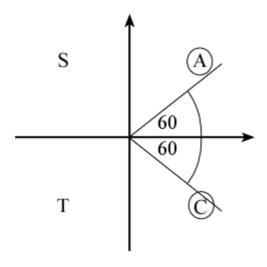
$$\Rightarrow$$
 3 cos $2x = \frac{3}{2}$

So
$$\cos 2x = \frac{1}{2}$$

Solve cos
$$X = \frac{1}{2}$$
 where $X = 2x$, $0 < X < 540$

Calculator solution is 60°

As $\cos X$ is +ve, X is in 1st and 4th quadrants.



Read off solutions for *X* in the interval 0 < X < 540

$$X=60^{\circ}$$
, 300°, 420°

So
$$x = \frac{1}{2}X = 30^{\circ}, 150^{\circ}, 210^{\circ}$$

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise E, Question 16

Question:

Find, to the nearest integer, the values of x in the interval $0 \le x < 180^\circ$ for which $3 \sin^2 3x - 7 \cos 3x - 5 = 0$.

[E]

Solution:

Using
$$\sin^2 3x + \cos^2 3x \equiv 1$$

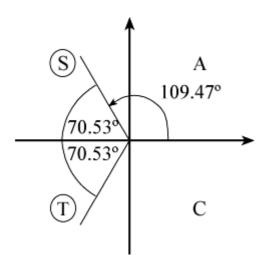
 $3(1 - \cos^2 3x) - 7 \cos 3x - 5 = 0$
 $\Rightarrow 3 \cos^2 3x + 7 \cos 3x + 2 = 0$
 $\Rightarrow (3 \cos 3x + 1) (\cos 3x + 2) = 0$ factorising
So $3 \cos 3x + 1 = 0$ or $\cos 3x + 2 = 0$
As $\cos 3x = -2$ has no solutions, the only solutions are from $3 \cos 3x + 1 = 0$ or $\cos 3x = -\frac{1}{3}$
Let $X = 3x$

Let
$$X = 3x$$

Solve cos
$$X = -\frac{1}{3}$$
 in the interval $0 \le X < 540^{\circ}$

The calculator solution is $X = 109.47^{\circ}$

As $\cos X$ is - ve, X is in the 2nd and 3rd quadrants.



Read off values of *X* in the interval
$$0 \le X < 540^{\circ}$$

 $X = 109.47^{\circ}, 250.53^{\circ}, 469.47^{\circ}$
So $x = \frac{1}{3}X = 36.49^{\circ}, 83.51^{\circ}, 156.49^{\circ} = 36^{\circ}, 84^{\circ}, 156^{\circ}$ (to the nearest integer)

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise E, Question 17

Question:

Find, in degrees, the values of θ in the interval $0 \le \theta < 360^{\circ}$ for which $2 \cos^2 \theta - \cos \theta - 1 = \sin^2 \theta$ Give your answers to 1 decimal place, where appropriate.

[E]

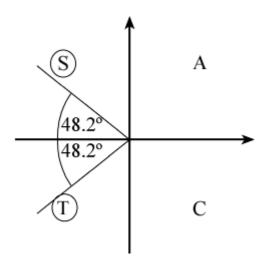
Solution:

Using
$$\sin^2 \theta + \cos^2 \theta \equiv 1$$

 $2 \cos^2 \theta - \cos \theta - 1 = 1 - \cos^2 \theta$
 $\Rightarrow 3 \cos^2 \theta - \cos \theta - 2 = 0$
 $\Rightarrow (3 \cos \theta + 2) (\cos \theta - 1) = 0$
So $3 \cos \theta + 2 = 0$ or $\cos \theta - 1 = 0$
For $3 \cos \theta + 2 = 0$, $\cos \theta = -\frac{2}{3}$

Calculator solution is 131.8°

As $\cos \theta$ is - ve, θ is in the 2nd and 3rd quadrants.



 $\theta = 131.8^{\circ}, 228.2^{\circ}$

For cos θ = 1, θ = 0 ° (see graph and note that 360° is not in given interval) So solutions are θ = 0°, 131.8°, 228.2°

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise E, Question 18

Question:

Consider the function f(x) defined by $f(x) \equiv 3 + 2 \sin((2x + k))^\circ$, 0 < x < 360 where k is a constant and 0 < k < 360. The curve with equation y = f(x) passes through the point with coordinates (15, $3 + \sqrt{3}$).

- (a) Show that k = 30 is a possible value for k and find the other possible value of k.
- (b) Given that k = 30, solve the equation f(x) = 1.

[E]

Solution:

(a)
$$(15, 3 + \sqrt{3})$$
 lies on the curve $y = 3 + 2 \sin(2x + k)$ °
So $3 + \sqrt{3} = 3 + 2 \sin(30 + k)$ °
 $2 \sin(30 + k)$ ° = $\sqrt{3}$
 $\sin\left(30 + k\right)$ ° = $\frac{\sqrt{3}}{2}$

A solution, from your calculator, is 60° So 30 + k = 60 is a possible result

$$\Rightarrow k = 30$$

As sin (30 + k) is +ve, answers lie in the 1st and 2nd quadrant.

The other angle is 120° , so 30 + k = 120

$$\Rightarrow k = 90$$

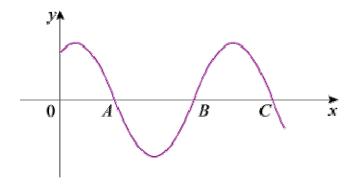
(b) For
$$k = 30$$
, f (x) = 1 is
 $3 + 2 \sin (2x + 30)$ ° = 1
 $2 \sin (2x + 30)$ ° = -2
 $\sin (2x + 30)$ ° = -1
Let $X = 2x + 30$
Solve $\sin X$ ° = -1 in the interval $30 < X < 750$
From the graph of $y = \sin X$ °
 $X = +270$, 630
 $2x + 30 = 270$, 630
 $2x = 240$, 600
So $x = 120$, 300

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise E, Question 19

Question:

(a) Determine the solutions of the equation $\cos (2x - 30)^\circ = 0$ for which $0 \le x \le 360$.



(b) The diagram shows part of the curve with equation $y = \cos(px - q)^{\circ}$, where p and q are positive constants and q < 180. The curve cuts the x-axis at points A, B and C, as shown.

Given that the coordinates of A and \vec{B} are (100, 0) and (220, 0) respectively:

- (i) Write down the coordinates of *C*.
- (ii) Find the value of p and the value of q.

[E]

Solution:

(a) The graph of $y = \cos x$ ° crosses x-axis (y = 0) where $x = 90, 270, \dots$ Let X = 2x - 30Solve $\cos X$ ° = 0 in the interval $-30 \le X \le 690$ X = 90, 270, 450, 6302x - 30 = 90, 270, 450, 6302x = 120, 300, 480, 660

2x = 120, 300, 480, 660So x = 60, 150, 240, 330

(b) (i) As AB = BC, C has coordinates (340, 0)

(ii) When x = 100, cos $(100p - q)^{\circ} = 0$, so 100p - q = 90

When x = 220, 220p - q = 270

When x = 340, 340p - q = 450

Solving the simultaneous equations $\bigcirc -\bigcirc : 120p = 180 \implies p = \frac{3}{2}$

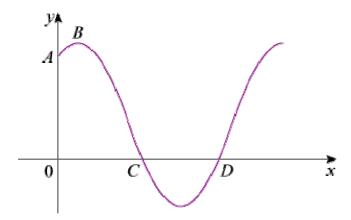
Substitute in \bigcirc : $150 - q = 90 \implies q = 60$

Edexcel Modular Mathematics for AS and A-Level

Trigonometrical identities and simple equations Exercise E, Question 20

Question:

The diagram shows part of the curve with equation y = f(x), where $f(x) = 1 + 2 \sin(px^\circ + q^\circ)$, p and q being positive constants and $q \le 90$. The curve cuts the y-axis at the point A and the x-axis at the points C and D. The point B is a maximum point on the curve.



Given that the coordinates of A and C are (0, 2) and (45, 0) respectively:

- (a) Calculate the value of q.
- (b) Show that p = 4.
- (c) Find the coordinates of *B* and *D*.

[E]

Solution:

(a) Substitute (0, 2) is
$$y = f(x)$$
:
 $2 = 1 + 2 \sin q^{\circ}$
 $2 \sin q^{\circ} = +1$
 $\sin q^{\circ} = +\frac{1}{2}$
As $q \leq 90, q = 30$

(b) C is where $1 + 2 \sin (px^\circ + q^\circ) = 0$ for the first time.

Solve sin
$$\left(px^{\circ} + 30^{\circ}\right) = -\frac{1}{2}$$
 (use only first solution)
 $45p^{\circ} + 30^{\circ} = 210^{\circ}$ ($x = 45$ at C)
 $45p = 180$
 $p = 4$

(c) At B f (x) is a maximum. $1 + 2 \sin (4x^{\circ} + 30^{\circ})$ is a maximum when $\sin (4x^{\circ} + 30^{\circ}) = 1$ So y value at B = 1 + 2 = 3For x value, solve $4x^{\circ} + 30^{\circ} = 90^{\circ}$ (as B is first maximum) $\Rightarrow x = 15$

Coordinates of B are (15, 3).

D is the second x value for which
$$1+2 \sin (4x^\circ + 30^\circ) = 0$$

Solve $\sin \left(4x^\circ + 30^\circ\right) = -\frac{1}{2}$ (use second solution)
 $4x^\circ + 30^\circ = 330^\circ$
 $4x^\circ = 300^\circ$
 $x = 75$

Coordinates of D are (75, 0).