Integration Exercise A, Question 1

Question:

Evaluate the following definite integrals:

(a)
$$\int_{1}^{2} \left(\frac{2}{x^3} + 3x \right) dx$$

(b)
$$\int_0^2 (2x^3 - 4x + 5) dx$$

(c)
$$\int_4^9 \left(\sqrt{x - \frac{6}{x^2}} \right) dx$$

(d)
$$\int_{1}^{2} \left(6x - \frac{12}{x^4} + 3 \right) dx$$

(e)
$$\int_{1}^{8} \left(x^{-\frac{1}{3}} + 2x - 1 \right) dx$$

Solution:

(a)
$$\int_{1}^{2} \left(\frac{2}{x^{3}} + 3x \right) dx$$

$$= \int_{1}^{2} (2x^{-3} + 3x) dx$$

$$= \left[\frac{2x^{-2}}{-2} + \frac{3x^{2}}{2} \right]_{1}^{2}$$

$$= \left[-x^{-2} + \frac{3}{2}x^{2} \right]_{1}^{2}$$

$$= \left(-\frac{1}{4} + \frac{3}{2} \times 4 \right) - \left(-1 + \frac{3}{2} \right)$$

$$= \left(-\frac{1}{4} + 6 \right) - \frac{1}{2}$$

$$= 5\frac{1}{4}$$

(b)
$$\int_0^2 (2x^3 - 4x + 5) dx$$

= $\left[\frac{2x^4}{4} - \frac{4x^2}{2} + 5x \right]_0^2$
= $\left[\frac{x^4}{2} - 2x^2 + 5x \right]_0^2$

$$= \left(\frac{16}{2} - 2 \times 4 + 10 \right) - \left(0 \right)$$

$$= 8 - 8 + 10$$

$$= 10$$

(c)
$$\int_{4}^{9} \left(\sqrt{x} - \frac{6}{x^{2}} \right) dx$$

$$= \int_{4}^{9} \left(x^{\frac{1}{2}} - 6x^{-2} \right) dx$$

$$= \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{6x^{-1}}{-1} \right]_{4}^{9}$$

$$= \left[\frac{2}{3}x^{\frac{3}{2}} + 6x^{-1} \right]_{4}^{9}$$

$$= \left(\frac{2}{3} \times 9^{\frac{3}{2}} + \frac{6}{9} \right) - \left(\frac{2}{3} \times 4^{\frac{3}{2}} + \frac{6}{4} \right)$$

$$= \left(\frac{2}{3} \times 3^{3} + \frac{2}{3} \right) - \left(\frac{2}{3} \times 2^{3} + \frac{3}{2} \right)$$

$$= 18 + \frac{2}{3} - \frac{16}{3} - \frac{3}{2}$$

$$= 16 \frac{1}{2} - \frac{14}{3}$$

$$= 11 \frac{5}{6}$$

(d)
$$\int_{1}^{2} \left(6x - \frac{12}{x^{4}} + 3 \right) dx$$

$$= \int_{1}^{2} (6x - 12x^{-4} + 3) dx$$

$$= \left[\frac{6x^{2}}{2} - \frac{12x^{-3}}{-3} + 3x \right]_{1}^{2}$$

$$= \left[3x^{2} + 4x^{-3} + 3x \right]_{1}^{2}$$

$$= \left(3 \times 4 + \frac{4}{8} + 6 \right) - \left(3 + 4 + 3 \right)$$

$$= 12 + \frac{1}{2} + 6 - 10$$

$$= 8 \frac{1}{2}$$

(e)
$$\int_{1}^{8} \left(x^{-\frac{1}{3}} + 2x - 1 \right) dx$$

$$= \left[\begin{array}{c} \frac{x^{\frac{2}{3}}}{\frac{2}{3}} + \frac{2x^{2}}{2} - x \end{array} \right]_{1}^{8}$$

$$= \left[\begin{array}{c} \frac{3}{2}x^{\frac{2}{3}} + x^{2} - x \end{array} \right]_{1}^{8}$$

$$= \left(\begin{array}{c} \frac{3}{2} \times 2^{2} + 64 - 8 \end{array} \right) - \left(\begin{array}{c} \frac{3}{2} + 1 - 1 \end{array} \right)$$

$$= 62 - \frac{3}{2}$$

$$= 60 \frac{1}{2}$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise A, Question 2

Question:

Evaluate the following definite integrals:

(a)
$$\int_{1}^{3} \left(\frac{x^3 + 2x^2}{x} \right) dx$$

(b)
$$\int_{1}^{4} (\sqrt{x-3})^{2} dx$$

(c)
$$\int_{3}^{6} \left(x - \frac{3}{x}\right)^{2} dx$$

(d)
$$\int_0^1 x^2 \left(\sqrt{x + \frac{1}{x}} \right) dx$$

(e)
$$\int_{1}^{4} \frac{2 + \sqrt{x}}{x^2} dx$$

Solution:

(a)
$$\int_{1}^{3} \left(\frac{x^{3} + 2x^{2}}{x} \right) dx$$

$$= \int_{1}^{3} (x^{2} + 2x) dx$$

$$= \left[\frac{x^{3}}{3} + x^{2} \right]_{1}^{3}$$

$$= \left(\frac{27}{3} + 9 \right) - \left(\frac{1}{3} + 1 \right)$$

$$= 18 - \frac{4}{3}$$

$$= 16 \frac{2}{3}$$

(b)
$$\int_{1}^{4} (\sqrt{x-3})^{2} dx$$

= $\int_{1}^{4} (x-6\sqrt{x+9}) dx$
= $\int_{1}^{4} \left(x-6x^{\frac{1}{2}}+9\right) dx$
= $\left[\frac{x^{2}}{2} - \frac{6x^{\frac{3}{2}}}{\frac{3}{2}} + 9x\right]_{1}^{4}$

$$= \left[\frac{x^2}{2} - 4x^{\frac{3}{2}} + 9x \right]_1^4$$

$$= \left(\frac{16}{2} - 4 \times 2^3 + 36 \right) - \left(\frac{1}{2} - 4 + 9 \right)$$

$$= 8 - 32 + 36 - 5 \frac{1}{2}$$

$$= 12 - 5 \frac{1}{2}$$

$$= 6 \frac{1}{2}$$

(c)
$$\int_{3}^{6} \left(x - \frac{3}{x}\right)^{2} dx$$

$$= \int_{3}^{6} \left(x^{2} - 6 + \frac{9}{x^{2}}\right) dx$$

$$= \int_{3}^{6} (x^{2} - 6 + 9x^{-2}) dx$$

$$= \left[\frac{x^{3}}{3} - 6x + \frac{9x^{-1}}{-1}\right]_{3}^{6}$$

$$= \left[\frac{x^{3}}{3} - 6x - 9x^{-1}\right]_{3}^{6}$$

$$= \left(\frac{216}{3} - 36 - \frac{9}{6}\right) - \left(\frac{27}{3} - 18 - \frac{9}{3}\right)$$

$$= 72 - 36 - \frac{3}{2} - 9 + 18 + 3$$

$$= 48 - \frac{3}{2}$$

$$= 46 \frac{1}{2}$$

(d)
$$\int_0^1 x^2 \left(\sqrt{x + \frac{1}{x}} \right) dx$$

= $\int_0^1 \left(x^{\frac{5}{2}} + x \right) dx$
= $\left[\frac{x^{\frac{7}{2}}}{\frac{7}{2}} + \frac{x^2}{2} \right]_0^1$
= $\left[\frac{2}{7} x^{\frac{7}{2}} + \frac{x^2}{2} \right]_0^1$
= $\left(\frac{2}{7} + \frac{1}{2} \right) - \left(0 \right)$
= $\frac{4}{14} + \frac{7}{14}$

$$=\frac{11}{14}$$

(e)
$$\int_{1}^{4} \left(\frac{2 + \sqrt{x}}{x^{2}} \right) dx$$

$$= \int_{1}^{4} \left(\frac{2}{x^{2}} + \frac{1}{\frac{3}{2}} \right) dx$$

$$= \int_{1}^{4} \left(2x^{-2} + x^{-\frac{3}{2}} \right) dx$$

$$= \left[\frac{2x^{-1}}{-1} + \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}} \right]_{1}^{4}$$

$$= \left[-2x^{-1} - 2x^{-\frac{1}{2}} \right]_{1}^{4}$$

$$= \left(-\frac{2}{4} - \frac{2}{2} \right) - \left(-2 - 2 \right)$$

$$= -1\frac{1}{2} + 4$$

$$= 2\frac{1}{2}$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise B, Question 1

Question:

Find the area between the curve with equation y = f(x), the x-axis and the lines x = a and x = b in each of the following cases:

(a) f (x) =
$$3x^2 - 2x + 2$$
; $a = 0, b = 2$

(b) f (x) =
$$x^3 + 4x$$
; $a = 1, b = 2$

(c) f (x) =
$$\sqrt{x+2x}$$
; $a = 1, b = 4$

(d) f (x) =
$$7 + 2x - x^2$$
; $a = -1$, $b = 2$

(e) f
$$\left(x\right) = \frac{8}{x^3} + \sqrt{x}$$
; $a = 1, b = 4$

Solution:

(a)
$$A = \int_0^2 (3x^2 - 2x + 2) dx$$

$$= \left[\frac{3x^3}{3} - \frac{2x^2}{2} + 2x \right]_0^2$$

$$= \left[x^3 - x^2 + 2x \right]_0^2$$

$$= (8 - 4 + 4) - (0)$$

$$= 8$$

(b)
$$A = \int_{1}^{2} (x^{3} + 4x) dx$$

$$= \left[\frac{x^{4}}{4} + \frac{4x^{2}}{2} \right]_{1}^{2}$$

$$= \left(\frac{16}{4} + 2 \times 4 \right) - \left(\frac{1}{4} + 2 \right)$$

$$= 4 + 8 - 2\frac{1}{4}$$

$$= 9\frac{3}{4}$$

(c)
$$A = \int_{1}^{4} (\sqrt{x + 2x}) dx$$

 $= \int_{1}^{4} (x^{\frac{1}{2}} + 2x) dx$
 $= \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + x^{2} \right]_{1}^{4}$

$$= \left[\frac{2}{3}x^{\frac{3}{2}} + x^{2} \right]_{1}^{4}$$

$$= \left(\frac{2}{3} \times 2^{3} + 16 \right) - \left(\frac{2}{3} + 1 \right)$$

$$= \frac{16}{3} + 16 - \frac{2}{3} - 1$$

$$= 15 + \frac{14}{3}$$

$$= 19^{\frac{2}{3}}$$

(d)
$$A = \int_{-1}^{2} (7 + 2x - x^{2}) dx$$

$$= \left[7x + x^{2} - \frac{x^{3}}{3} \right]_{-1}^{2}$$

$$= \left(14 + 4 - \frac{8}{3} \right) - \left(-7 + 1 + \frac{1}{3} \right)$$

$$= 18 - \frac{8}{3} + 6 - \frac{1}{3}$$

$$= 24 - \frac{9}{3}$$

$$= 21$$

(e)
$$A = \int_{1}^{4} \left(\frac{8}{x^{3}} + \sqrt{x} \right) dx$$

$$= \int_{1}^{4} \left(8x^{-3} + x^{\frac{1}{2}} \right) dx$$

$$= \left[\frac{8x^{-2}}{-2} + \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{1}^{4}$$

$$= \left[-4x^{-2} + \frac{2}{3}x^{\frac{3}{2}} \right]_{1}^{4}$$

$$= \left(-\frac{4}{16} + \frac{2}{3} \times 2^{3} \right) - \left(-4 + \frac{2}{3} \right)$$

$$= -\frac{1}{4} + \frac{16}{3} + 4 - \frac{2}{3}$$

$$= 3\frac{3}{4} + 4\frac{2}{3}$$

$$= 8\frac{5}{12}$$

Integration

Exercise B, Question 2

Question:

The sketch shows part of the curve with equation y = x ($x^2 - 4$). Find the area of the shaded region.

Solution:

$$A = \int_{-2}^{0} x (x^{2} - 4) dx$$

$$= \int_{-2}^{0} (x^{3} - 4x) dx$$

$$= \left[\frac{x^{4}}{4} - \frac{4x^{2}}{2} \right]_{-2}^{0}$$

$$= \left[\frac{x^{4}}{4} - 2x^{2} \right]_{-2}^{0}$$

$$= \left(0 \right) - \left(\frac{16}{4} - 2 \times 4 \right)$$

$$= -4 + 8$$

$$= 4$$

Integration

Exercise B, Question 3

Question:

The diagram shows a sketch of the curve with equation $y = 3x + \frac{6}{x^2} - 5$, x > 0.

The region R is bounded by the curve, the x-axis and the lines x = 1 and x = 3. Find the area of R.

Solution:

$$A = \int_{1}^{3} \left(3x + \frac{6}{x^{2}} - 5 \right) dx$$

$$= \int_{1}^{3} (3x + 6x^{-2} - 5) dx$$

$$= \left[\frac{3x^{2}}{2} + \frac{6x^{-1}}{-1} - 5x \right]_{1}^{3}$$

$$= \left[\frac{3}{2}x^{2} - 6x^{-1} - 5x \right]_{1}^{3}$$

$$= \left(\frac{3}{2} \times 9 - \frac{6}{3} - 15 \right) - \left(\frac{3}{2} - 6 - 5 \right)$$

$$= \frac{27}{2} - 17 - \frac{3}{2} + 11$$

$$= \frac{24}{2} - 6$$

$$= 6$$

Integration Exercise B, Question 4

Question:

Find the area of the finite region between the curve with equation y = (3 - x) (1 + x) and the x-axis.

Solution:

$$y = (3-x)(1+x)$$
 is \cap shaped
 $y = 0 \Rightarrow x = 3, -1$
 $x = 0 \Rightarrow y = 3$

$$A = \int_{-1}^{3} (3 - x) (1 + x) dx$$

$$= \int_{-1}^{3} (3 + 2x - x^{2}) dx$$

$$= \left[3x + x^{2} - \frac{x^{3}}{3} \right]_{-1}^{3}$$

$$= \left(9 + 9 - \frac{27}{3} \right) - \left(-3 + 1 + \frac{1}{3} \right)$$

$$= 9 + 1\frac{2}{3}$$

$$= 10\frac{2}{3}$$

Integration Exercise B, Question 5

Question:

Find the area of the finite region between the curve with equation $y = x (x - 4)^2$ and the x-axis.

Solution:

$$y = x (x - 4)^2$$

 $y = 0 \Rightarrow x = 0, 4 \text{ (twice)}$
Turning point at $(4, 0)$

Area =
$$\int_0^4 x (x - 4)^2 dx$$

= $\int_0^4 x (x^2 - 8x + 16) dx$
= $\int_0^4 (x^3 - 8x^2 + 16x) dx$
= $\left[\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2 \right]_0^4$
= $\left(64 - \frac{8}{3} \times 64 + 128 \right) - \left(0 \right)$
= $\frac{64}{3}$ or $21\frac{1}{3}$

Integration Exercise B, Question 6

Question:

Find the area of the finite region between the curve with equation $y = x^2 (2 - x)$ and the x-axis.

Solution:

$$y = x^2 (2 - x)$$

 $y = 0 \Rightarrow x = 0 \text{ (twice)}, 2$
Turning point at $(0, 0)$
 $x \to -\infty, y \to \infty$
 $x \to \infty, y \to -\infty$

Area =
$$\int_0^2 x^2 (2 - x) dx$$

= $\int_0^2 (2x^2 - x^3) dx$
= $\left[\frac{2x^3}{3} - \frac{x^4}{4} \right]_0^2$
= $\left(\frac{16}{3} - \frac{16}{4} \right) - \left(0 \right)$
= $\frac{4}{3}$ or $1\frac{1}{3}$

Integration

Exercise C, Question 1

Question:

Sketch the following and find the area of the finite region or regions bounded by the curve and the *x*-axis:

$$y = x (x + 2)$$

Solution:

$$y = x (x + 2)$$
 is \cup shaped
 $y = 0 \Rightarrow x = 0, -2$

Area =
$$-\int_{-2}^{0} x (x + 2) dx$$

= $-\int_{-2}^{0} (x^2 + 2x) dx$
= $-\left[\frac{x^3}{3} + x^2\right]_{-2}^{0}$
= $-\left\{\left(0\right) - \left(-\frac{8}{3} + 4\right)\right\}$
= $-\left(-\frac{4}{3}\right)$
= $\frac{4}{3}$ or $1\frac{1}{3}$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise C, Question 2

Question:

Sketch the following and find the area of the finite region or regions bounded by the curve and the x-axis:

$$y = (x + 1) (x - 4)$$

Solution:

$$y = (x + 1) (x - 4)$$
 is \cup shaped
 $y = 0 \implies x = -1, 4$

$$\int_{-1}^{4} (x+1) (x-4) dx$$

$$= \int_{-1}^{4} (x^{2} - 3x - 4) dx$$

$$= \left[\frac{x^{3}}{3} - \frac{3x^{2}}{2} - 4x \right]_{-1}^{4}$$

$$= \left(\frac{64}{3} - \frac{3}{2} \times 16 - 16 \right) - \left(-\frac{1}{3} - \frac{3}{2} + 4 \right)$$

$$= \frac{64}{3} - 40 + \frac{11}{6} - 4$$

$$= -20 \frac{5}{6}$$

So area =
$$20 \frac{5}{6}$$

Integration

Exercise C, Question 3

Question:

Sketch the following and find the area of the finite region or regions bounded by the curve and the x-axis:

$$y = (x + 3) x (x - 3)$$

Solution:

$$y = (x+3)x(x-3)$$

$$y = 0 \Rightarrow x = -3, 0, 3$$

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$

$$\int y dx = \int \left(x^3 - 9x \right) dx = \left[\frac{x^4}{4} - \frac{9}{2}x^2 \right]$$

$$\int_{-3}^{0} y dx = \left(0 \right) - \left(\frac{81}{4} - \frac{9}{2} \times 9 \right) = + \frac{81}{4}$$

$$\int_{0}^{3} y dx = \left(\frac{81}{4} - \frac{9}{2} \times 9 \right) - \left(0 \right) = - \frac{81}{4}$$
So area = $\frac{81}{4} + \frac{81}{4} = \frac{81}{2}$ or $40\frac{1}{2}$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise C, Question 4

Question:

Sketch the following and find the area of the finite region or regions bounded by the curves and the x-axis:

$$y = x^2 (x - 2)$$

Solution:

$$y = x^{2} (x - 2)$$

$$y = 0 \Rightarrow x = 0 \text{ (twice)}, 2$$

Turning point at (0, 0)

$$x \to \infty, y \to \infty$$

 $x \to -\infty, y \to -\infty$

Area =
$$-\int_0^2 x^2 (x - 2) dx$$

= $-\int_0^2 (x^3 - 2x^2) dx$
= $-\left[\frac{x^4}{4} - \frac{2}{3}x^3\right]_0^2$
= $-\left\{\left(\frac{16}{4} - \frac{2}{3} \times 8\right) - \left(0\right)\right\}$
= $-\left(4 - \frac{16}{3}\right)$
= $\frac{4}{3}$ or $1\frac{1}{3}$

Integration

Exercise C, Question 5

Question:

Sketch the following and find the area of the finite region or regions bounded by the curve and the x-axis:

$$y = x (x - 2) (x - 5)$$

Solution:

$$y = x (x - 2) (x - 5)$$

$$y = 0 \Rightarrow x = 0, 2, 5$$

$$x \rightarrow \infty, y \rightarrow \infty$$

$$x \rightarrow -\infty, y \rightarrow -\infty$$

$$\int y dx = \int x (x^2 - 7x + 10) dx = \int (x^3 - 7x^2 + 10x) dx$$

$$\int y dx = \left[\frac{x^4}{4} - \frac{7}{3}x^3 + 5x^2 \right]$$

$$\int_0^2 y dx = \left(\frac{16}{4} - \frac{7}{3} \times 8 + 20 \right) - \left(0 \right) = 24 - \frac{56}{3} = 5\frac{1}{3}$$

$$\int_2^5 y dx = \left(\frac{625}{4} - \frac{7}{3} \times 125 + 125 \right) - \left(5\frac{1}{3} \right) = -15\frac{3}{4}$$

So area =
$$5\frac{1}{3} + 15\frac{3}{4} = 21\frac{1}{12}$$

Integration Exercise D, Question 1

Question:

The diagram shows part of the curve with equation $y = x^2 + 2$ and the line with equation y = 6. The line cuts the curve at the points A and B.

- (a) Find the coordinates of the points A and B.
- (b) Find the area of the finite region bounded by AB and the curve.
- © Pearson Education Ltd 2008

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise D, Question 2

Question:

The diagram shows the finite region, R, bounded by the curve with equation $y = 4x - x^2$ and the line y = 3. The line cuts the curve at the points A and B.

- (a) Find the coordinates of the points A and B.
- (b) Find the area of *R*.

Solution:

(a)
$$A$$
, B are given by
 $3 = 4x - x^2$
 $x^2 - 4x + 3 = 0$
 $(x - 3) (x - 1) = 0$
 $x = 1, 3$
So A is $(1, 3)$ and B is $(3, 3)$

(b) Area =
$$\int_{1}^{3} [(4x - x^{2}) - 3] dx$$

= $\int_{1}^{3} (4x - x^{2} - 3) dx$
= $\left[2x^{2} - \frac{x^{3}}{3} - 3x\right]_{1}^{3}$
= $\left(18 - 9 - 9\right) - \left(2 - \frac{1}{3} - 3\right)$
= $1\frac{1}{3}$

Integration Exercise D, Question 3

Question:

The diagram shows a sketch of part of the curve with equation $y = 9 - 3x - 5x^2 - x^3$ and the line with equation y = 4 - 4x. The line cuts the curve at the points A(-1, 8) and B(1, 0).

Find the area of the shaded region between AB and the curve.

Solution:

Area =
$$\int_{-1}^{1} (\text{curve} - \text{line}) dx$$

= $\int_{-1}^{1} [9 - 3x - 5x^2 - x^3 - (4 - 4x)] dx$
= $\int_{-1}^{1} (5 + x - 5x^2 - x^3) dx$
= $\left[5x + \frac{x^2}{2} - \frac{5}{3}x^3 - \frac{x^4}{4} \right]_{-1}^{1}$
= $\left(5 + \frac{1}{2} - \frac{5}{3} - \frac{1}{4} \right) - \left(-5 + \frac{1}{2} + \frac{5}{3} - \frac{1}{4} \right)$
= $10 - \frac{10}{3}$
= $\frac{20}{3}$ or $6\frac{2}{3}$

Integration Exercise D, Question 4

Question:

Find the area of the finite region bounded by the curve with equation y = (1 - x)(x + 3) and the line y = x + 3.

Solution:

y = (1 - x) (x + 3) is \cap shaped and crosses the x-axis at (1, 0) and (- 3, 0) y = x + 3 is a straight line passing through (- 3, 0) and (0, 3)

Intersections when

$$x + 3 = (1 - x) (x + 3)$$

$$0 = (x + 3) (1 - x - 1)$$

$$0 = -x (x + 3)$$

$$x = -3 \text{ or } 0$$

$$Area = \int_{-3}^{0} [(1 - x) (x + 3) - (x + 3)] dx$$

$$= \int_{-3}^{0} (-x^{2} - 3x) dx$$

$$= \left[-\frac{x^{3}}{3} - \frac{3}{2}x^{2} \right]_{-3}^{0}$$

$$= \left(0 \right) - \left(\frac{27}{3} - \frac{27}{2} \right)$$

$$= \frac{27}{6} \text{ or } \frac{9}{2} \text{ or } 4.5$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise D, Question 5

Question:

The diagram shows the finite region, R, bounded by the curve with equation y = x (4 + x), the line with equation y = 12 and the y-axis.

- (a) Find the coordinate of the point *A* where the line meets the curve.
- (b) Find the area of R.

Solution:

(a) A is given by

$$x (4 + x) = 12$$

 $x^2 + 4x - 12 = 0$
 $(x + 6) (x - 2) = 0$
 $x = 2 \text{ or } -6$
So A is (2, 12)

(b) R is given by taking $\int_0^2 x (4 + x) dx$ away from a rectangle of area $12 \times 2 = 24$.

So area of
$$R$$

= $24 - \int_0^2 (x^2 + 4x) dx$
= $24 - \left[\frac{x^3}{3} + 2x^2 \right]_0^2$
= $24 - \left\{ \left(\frac{8}{3} + 8 \right) - \left(0 \right) \right\}$
= $24 - \frac{32}{3}$
= $\frac{40}{3}$ or $13\frac{1}{3}$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise D, Question 6

Question:

The diagram shows a sketch of part of the curve with equation $y = x^2 + 1$ and the line with equation y = 7 - x. The finite region R_1 is bounded by the line and the curve. The finite region R_2 is below the curve and the line and is bounded by the positive x- and y-axes as shown in the diagram.

- (a) Find the area of R_1 .
- (b) Find the area of R_2 .

Solution:

(a) Intersections when

$$7 - x = x^2 + 1$$

$$0 = x^2 + x - 6$$

$$0 = (x+3)(x-2)$$

$$x = 2 \text{ or } -3$$

(a) Area of R_1 is given by $\int_{-3}^{2} [7 - x - (x^2 + 1)] dx$

$$= \int_{-3}^{2} (6 - x - x^2) dx$$

$$= \left[6x - \frac{x^2}{2} - \frac{x^3}{3} \right]_{-3}^{2}$$

$$= \left(12 - \frac{4}{2} - \frac{8}{3}\right) - \left(-18 - \frac{9}{2} + \frac{27}{3}\right)$$

$$=20\frac{5}{6}$$

(b) Area of R_2 is given by $\int_0^2 (x^2 + 1) dx + \text{ area of }$

$$= \left[\frac{x^3}{3} + x \right]_0^2 + \frac{1}{2} \times 5 \times 5$$

$$= \left(\frac{8}{3} + 2 \right)_0^2 - \left(0 \right)_0^2 + \frac{25}{2}$$

$$= 17 \frac{1}{6}$$

Integration Exercise D, Question 7

Question:

The curve C has equation
$$y = x^{\frac{2}{3}} - \frac{2}{x^{\frac{1}{3}}} + 1$$
.

- (a) Verify that C crosses the x-axis at the point (1, 0).
- (b) Show that the point A (8, 4) also lies on C.
- (c) The point B is (4, 0). Find the equation of the line through AB. The finite region R is bounded by C, AB and the positive x-axis.
- (d) Find the area of R.

Solution:

(a)
$$x = 1$$
, $y = 1 - \frac{2}{1} + 1 = 0$

So (1, 0) lies on C

(b)
$$x = 8$$
, $y = 8^{\frac{2}{3}} - \frac{2}{8^{\frac{1}{3}}} + 1 = 2^2 - \frac{2}{2} + 1 = 4$

So (8, 4) lies on *C*

(c)
$$A$$
 is $(8, 4)$ and B is $(4, 0)$

Gradient of line through AB is $\frac{4-0}{8-4} = 1$.

So equation is y - 0 = x - 4, i.e. y = x - 4

The area of *R* is given by $\int_{1}^{8} (\text{curve}) dx$ – area of

$$= \int_{1}^{8} \left(x^{\frac{2}{3}} - \frac{2}{x^{\frac{1}{3}}} + 1 \right) dx - \frac{1}{2} \times 4 \times 4$$

$$= \left[\frac{3}{5} x^{\frac{5}{3}} - \frac{2x^{\frac{2}{3}}}{\frac{2}{3}} + x \right]_{1}^{8} - 8$$

$$= \left(\frac{3}{5} \times 32 - 3 \times 4 + 8 \right) - \left(\frac{3}{5} - 3 + 1 \right) - 8$$

$$= \frac{93}{5} - 4 + 2 - 8$$

$$= 8 \frac{3}{5}$$

Integration Exercise D, Question 8

Question:

The diagram shows part of a sketch of the curve with equation $y = \frac{2}{x^2} + x$.

The points *A* and *B* have *x*-coordinates $\frac{1}{2}$ and 2 respectively.

Find the area of the finite region between AB and the curve.

Solution:

Area =
$$\int \frac{1}{2}^2 \left[\text{ line } AB - \left(\frac{2}{x^2} + x \right) \right] dx$$

A is $\left(\frac{1}{2}, 8\frac{1}{2} \right)$ and B is $\left(2, 2\frac{1}{2} \right)$

Gradient =
$$-\frac{6}{1\frac{1}{2}}$$
 = -4

So equation is
$$y - 2\frac{1}{2} = -4\left(x - 2\right)$$
, i.e. $y = 10\frac{1}{2} - 4x$

Area =
$$\int \frac{1}{2} \left(10 \frac{1}{2} - 5x - 2x^{-2} \right) dx$$

= $\left[\frac{21}{2}x - \frac{5}{2}x^2 - \frac{2x^{-1}}{-1} \right] \frac{1}{2}^2$

$$= \left[\frac{21}{2}x - \frac{5}{2}x^2 + \frac{2}{x} \right] \frac{1}{2}^2$$

$$= \left(21 - 10 + 1\right) - \left(\frac{21}{4} - \frac{5}{8} + 4\right)$$

=
$$12 - 8 \frac{5}{8}$$

= $3 \frac{3}{8}$ or 3.375 or 3.38 (3 s.f.)

Edexcel Modular Mathematics for AS and A-Level

Integration Exercise D, Question 9

Question:

The diagram shows part of the curve with equation $y = 3\sqrt{x} - \sqrt{x^3} + 4$ and the line with equation $y = 4 - \frac{1}{2}x$.

- (a) Verify that the line and the curve cross at the point A(4, 2).
- (b) Find the area of the finite region bounded by the curve and the line.

Solution:

(a)
$$x = 4$$
 in line gives $y = 4 - \frac{1}{2} \times 4 = 2$
 $x = 4$ in curve gives $y = 3 \times \sqrt{4 - \sqrt{64} + 4} = 6 - 8 + 4 = 2$
So $(4, 2)$ lies on line and curve.

(b) Area =
$$\int_0^4 \left[3x^{\frac{1}{2}} - x^{\frac{3}{2}} + 4 - \left(4 - \frac{1}{2}x \right) \right] dx$$

= $\int_0^4 \left(3x^{\frac{1}{2}} - x^{\frac{3}{2}} + \frac{1}{2}x \right) dx$
= $\left[\frac{3x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + \frac{x^2}{4} \right]_0^4$
= $\left[2x^{\frac{3}{2}} - \frac{2}{5}x^{\frac{5}{2}} + \frac{x^2}{4} \right]_0^4$
= $\left(2 \times 8 - \frac{2}{5} \times 32 + 4 \right) - \left(0 \right)$
= $20 - \frac{64}{5}$
= $\frac{36}{5}$ or 7.2

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise D, Question 10

Question:

The sketch shows part of the curve with equation $y = x^2$ (x + 4). The finite region R_1 is bounded by the curve and the negative x-axis. The finite region R_2 is bounded by the curve, the positive x-axis and AB, where A (2, 24) and B (b, 0).

The area of R_1 = the area of R_2 .

- (a) Find the area of R_1 .
- (b) Find the value of b.

Solution:

(a)
$$y = x^2 (x + 4)$$

 $y = 0 \implies x = 0$ (twice), -4
Area of R_1 is $\int_{-4}^{0} (x^3 + 4x^2) dx$

$$= \left[\frac{x^4}{4} + \frac{4}{3}x^3 \right]_{-4}^{0}$$

$$= \left(0 \right) - \left(\frac{4^4}{4} - \frac{4^4}{3} \right)$$

$$= \frac{4^4}{12} = \frac{4^3}{3} = \frac{64}{3} \text{ or } 21 \frac{1}{3}$$

(b) Area of R_2 is $\int_0^2 (x^3 + 4x^2) dx + \text{ area of }$

$$= \left[\frac{x^4}{4} + \frac{4}{3}x^3 \right]_0^2 + 12 \left(b - 2 \right)$$

$$= \left(\frac{16}{4} + \frac{32}{3} \right) - \left(0 \right) + 12 \left(b - 2 \right)$$

$$= 14 \frac{2}{3} + 12b - 24$$

$$= -9 \frac{1}{3} + 12b$$
Area of R_2 = area of $R_1 \implies -9 \frac{1}{3} + 12b = 21 \frac{1}{3}$
So $12b = 30 \frac{2}{3} \implies b = 2 \frac{5}{9}$ or 2.56 (3 s.f.)

[©] Pearson Education Ltd 2008

Integration

Exercise E, Question 1

Question:

Copy and complete the table below and use the trapezium rule to estimate $\int_{1}^{3} \frac{1}{x^2+1} dx$:

$$x 1 1.5 22.5 3$$
$$y = \frac{1}{x^2 + 1} 0.5 0.308 0.138$$

Solution:

$$x = 2, y = 0.2; x = 3, y = 0.1$$

$$h = 0.5$$
So $A \approx \frac{1}{2} \times 0.5$ $\left[0.5 + 2 \left(0.308 + 0.2 + 0.138 \right) + 0.1 \right]$

$$= \frac{1}{4} \left[1.892 \right]$$

$$= 0.473$$

Integration

Exercise E, Question 2

Question:

Use the table below to estimate $\int_{1}^{2.5} \sqrt{(2x-1)} dx$ with the trapezium rule:

$$x$$
 1 1.25 1.5 1.75 2 2.25 2.5 $y = \sqrt{(2x-1)}$ 1 1.225 1.414 1.581 1.732 1.871 2

Solution:

$$A \approx \frac{1}{2} \times 0.25 \left[1 + 2 \left(1.225 + 1.414 + 1.581 + 1.732 + 1.871 \right) + 2 \right]$$

$$= \frac{1}{8} \left[18.646 \right]$$

$$= 2.33075$$

$$= 2.33 (3 s.f.)$$

Integration

Exercise E, Question 3

Question:

Copy and complete the table below and use it, together with the trapezium rule, to estimate $\int_0^2 \sqrt{(x^3 + 1)} dx$:

$$x$$
 0 0.5 1 1.5 2
 $y = \sqrt{(x^3 + 1)}$ 1 1.061 1.414

Solution:

$$x = 1.5, y = \sqrt{(1.5^3 + 1)} = 2.09165 \dots \text{ or } 2.092 \text{ (4 s.f.)}$$

$$x = 2, y = \sqrt{(2^3 + 1)} = 3$$

$$\int_0^2 \sqrt{(x^3 + 1)} dx$$

$$\approx \frac{1}{2} \times 0.5 \left[1 + 2 \left(1.061 + 1.414 + 2.092 \right) + 3 \right]$$

$$= \frac{1}{4} \left[13.134 \right]$$

$$= 3.2835$$

$$= 3.28 \text{ (3 s.f.)}$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise E, Question 4

Question:

- (a) Use the trapezium rule with 8 strips to estimate $\int_{0}^{2} 2^{x} dx$.
- (b) With reference to a sketch of $y = 2^x$ explain whether your answer in part (a) is an underestimate or an overestimate of $\int_0^2 2^x dx$.

Solution:

$$h = 0.25$$

$$\int_{0}^{2} 2^{x} dx$$

$$\approx \frac{1}{2} \times 0.25 \left[1 + 2 \left(1.189 + 1.414 + 1.682 + 2 + 2.378 + 2.828 + 3.364 \right) + 4 \right]$$

$$= \frac{1}{8} \left[34.71 \right]$$

$$= 4.33875$$

$$= 4.34 (3 s.f.)$$

Curve bends beneath straight line of trapezium so trapezium rule will **overestimate**.

Solutionbank C2Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise E, Question 5

Question:

Use the trapezium rule with 6 strips to estimate $\int_0^3 \frac{1}{\sqrt{(x^2+1)}} dx$.

Solution:

$$h = 0.5$$

$$A \approx \frac{1}{2} \times 0.5 \left[1 + 2 \left(0.894 + 0.707 + 0.555 + 0.447 + 0.371 \right) + 0.316 \right]$$

$$= \frac{1}{4} \left[7.264 \right]$$

$$= 1.816 \text{ or } 1.82 (3 \text{ s.f.})$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise E, Question 6

Question:

The diagram shows a sketch of part of the curve with equation $y = \frac{1}{x+2}$, x > -2.

(a) Copy and complete the table below and use the trapezium rule to estimate the area bounded by the curve, the x-axis and the lines x = -1 and x = 1.

$$x$$
 -1 - 0.6 - 0.2 0.2 0.6 1
 $y = \frac{1}{x+2}$ 1 0.714 0.385 0.333

(b) State, with a reason, whether your answer in part (a) is an overestimate or an underestimate.

Solution:

(a)
$$h = 0.4$$

 $x = -0.2$, $y = \frac{1}{1.8} = 0.555$... $= 0.556$ (3 d.p.)
 $x = 0.2$, $y = \frac{1}{2.2} = 0.4545$... $= 0.455$ (3 d.p.)
area $\approx \frac{1}{2} \times 0.4$ $\left[1 + 2 \left(0.714 + 0.556 + 0.455 + 0.385 \right) + 0.333 \right]$
 $= 0.2$ [5.553]
 $= 1.1106$
 $= 1.11$ (3 s.f.)

(b) Curve bends down below the straight lines of the trapezia so trapezium rule will give an **overestimate**.

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise E, Question 7

Question:

- (a) Sketch the curve with equation $y = x^3 + 1$, for -2 < x < 2.
- (b) Use the trapezium rule with 4 strips to estimate the value of $\int_{-1}^{1} (x^3 + 1) dx$.
- (c) Use integration to find the exact value of $\int_{-1}^{1} (x^3 + 1) dx$.
- (d) Comment on your answers to parts (b) and (c).

Solution:

(a) $y = x^3 + 1$ is a vertical translation (+1) of $y = x^3$

(b)
$$h = 0.5$$

$$x - 1 - 0.500.5$$

$$\int_{-1}^{1} \left(x^3 + 1 \right) dx \approx \frac{1}{2} \times 0.5 \left[0 + 2 \left(0.875 + 1 + 1.125 \right) + 2 \right] = \frac{1}{4} \left[8 \right] = 2$$

(c)
$$\int_{-1}^{1} \left(x^3 + 1 \right) dx = \left[\frac{x^4}{4} + x \right]_{-1}^{1} = \left(\frac{1}{4} + 1 \right) - \left(\frac{1}{4} - 1 \right) = 2$$

- (d) Same. Curve has rotational symmetry of order 2 about (0, 1) and trapezia cut curve above and below symmetrically.
- © Pearson Education Ltd 2008

Solutionbank C2Edexcel Modular Mathematics for AS and A-Level

Integration Exercise E, Question 8

Question:

Use the trapezium rule with 4 strips to estimate $\int_0^2 \sqrt{(3^x - 1)} dx$.

Solution:

$$h = 0.5$$

$$x \ 0 \ 0.5 \quad 1 \quad 1.5 \quad 2$$

$$y \ 0 \ 0.856 \ 1.414 \ 2.048 \ 2.828$$

$$\int_{0}^{2} \sqrt{\left(3^{x} - 1\right) dx} \approx \frac{1}{2} \times 0.5 \left[0 + 2\left(0.856 + 1.414 + 2.048\right) + 2.828\right]$$

$$= \frac{1}{4} \left[11.464\right]$$

$$= 2.866$$

$$= 2.87 \ (3 \ s.f.)$$

Solutionbank C2Edexcel Modular Mathematics for AS and A-Level

Integration Exercise E, Question 9

Question:

The sketch shows part of the curve with equation $y = \frac{x}{x+1}$, $x \ge 0$.

(a) Use the trapezium rule with 6 strips to estimate $\int_0^3 \frac{x}{x+1} dx$.

(b) With reference to the sketch state, with a reason, whether the answer in part (a) is an overestimate or an underestimate.

Solution:

(a)
$$h = 0.5$$

 $x = 0.5$
 $y = 0.333 = 0.5 = 0.6 = 0.667 = 0.714 = 0.75$

$$\int_{0}^{3} \frac{x}{x+1} dx \approx \frac{1}{2} \times 0.5 \left[0 + 2 \left(0.333 + 0.5 + 0.6 + 0.667 + 0.714 \right) + 0.75 \right]$$

$$= \frac{1}{4} \left[6.378 \right]$$

$$= 1.5945$$

$$= 1.59 (3 s.f.)$$

(b) Curve bends outwards above straight lines of trapezia so trapezium rule is an underestimate.

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise E, Question 10

Question:

- (a) Use the trapezium rule with *n* strips to estimate $\int_0^2 \sqrt{x} \, dx$ in the cases (i) n = 4 (ii) n = 6.
- (b) Compare your answers from part (a) with the exact value of the integral and calculate the percentage error in each case.

Solution:

(a) (i)
$$h = 0.5$$

$$\int_0^2 \sqrt{x} \, dx \approx \frac{1}{2} \times 0.5 \left[0 + 2 \left(0.707 + 1 + 1.225 \right) + 1.414 \right] = \frac{1}{4} \left[7.278 \right] = 1.8195$$

(ii)
$$h = \frac{1}{3}$$

$$x \ 0 \ \frac{1}{3} \qquad \frac{2}{3} \qquad 1 \ \frac{4}{3} \qquad \frac{5}{3} \qquad 2$$

y 0 0.577 0.816 1 1.155 1.291 1.414

$$\int_{0}^{2} \sqrt{x} \, dx \approx \frac{1}{2} \times \frac{1}{3} \left[0 + 2 \left(0.577 + 0.816 + 1 + 1.155 + 1.291 \right) + 1.414 \right] = \frac{1}{6} \left[11.092 \right]$$

$$= 1.8486$$

(b)
$$\int_0^2 \sqrt{x} \, dx = \left[\frac{2}{3} x^{\frac{3}{2}} \right]_0^2 = \left(\frac{2}{3} \times 2 \sqrt{2} \right) - \left(0 \right) = \frac{4}{3} \sqrt{2} = 1.8856 \dots$$

(i) % error =
$$\frac{100 \left(\frac{4}{3} \sqrt{2 - 1.8195}\right)}{\frac{4}{3} \sqrt{2}} = 3.51 \%$$

(ii) % error =
$$\frac{100 \left(\frac{4}{3} \sqrt{2 - 1.8486}\right)}{\frac{4}{3} \sqrt{2}} = 1.96 \%$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 1

Question:

The diagram shows the curve with equation $y = 5 + 2x - x^2$ and the line with equation y = 2. The curve and the line intersect at the points A and B.

- (a) Find the *x*-coordinates of *A* and *B*.
- (b) The shaded region R is bounded by the curve and the line. Find the area of R.

[E]

Solution:

(a)
$$2 = 5 + 2x - x^2$$

 $\Rightarrow x^2 - 2x - 3 = 0$
 $\Rightarrow (x - 3)(x + 1) = 0$
 $\Rightarrow x = -1(A), 3(B)$

(b) Area of
$$R = \int_{-1}^{3} (5 + 2x - x^2 - 2) dx$$

$$= \int_{-1}^{3} (3 + 2x - x^2) dx$$

$$= \left[3x + x^2 - \frac{1}{3}x^3 \right]_{-1}^{3}$$

$$= \left(9 + 9 - \frac{27}{3} \right) - \left(-3 + 1 + \frac{1}{3} \right)$$

$$= 9 + 2 - \frac{1}{3}$$

$$= 10 \frac{2}{3}$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 2

Question:

The diagram shows part of the curve C with equation $y = x^3 - 9x^2 + px$, where p is a constant. The line l has equation y + 2x = q, where q is a constant. The point A is the intersection of C and l, and C has a minimum at the point B. The x-coordinates of A and B are 1 and 4 respectively.

- (a) Show that p = 24 and calculate the value of q.
- (b) The shaded region R is bounded by C, l and the x-axis. Using calculus, showing all the steps in your working and using the values of p and q found in part (a), find the area of R.

[E]

Solution:

(a) When
$$x = 1$$
: $q - 2x = x^3 - 9x^2 + px$

$$\Rightarrow$$
 $q-2=1-9+p$

$$\Rightarrow$$
 $q + 6 = p \bigcirc$

When
$$x = 4$$
: $\frac{dy}{dx} = 3x^2 - 18x + p = 0$

$$\Rightarrow 48 - 72 + p = 0$$

$$\Rightarrow p = 24$$

Substitute into ①: q = p - 6 = 18

(b) Line is
$$y = 18 - 2x$$

So A is (1, 16) and the line cuts the x-axis at (9, 0)

Area of R is given by

$$\int_{0}^{1} (x^3 - 9x^2 + 24x) dx + \text{ area of }$$

$$= \left[\frac{x^4}{4} - \frac{9}{3}x^3 + \frac{24}{2}x^2 \right]_0^1 + \frac{1}{2} \times 8 \times 16$$

$$= \left[\frac{x^4}{4} - 3x^3 + 12x^2 \right]_0^1 + 64$$

$$= \left(\frac{1}{4} - 3 + 12 \right) - \left(0 \right) + 64$$

$$= 73 \frac{1}{4}$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 3

Question:

The diagram shows part of the curve C with equation y = f(x), where $f(x) = 16x^{-\frac{1}{2}} + x^{\frac{3}{2}}, x > 0$.

(a) Use calculus to find the *x*-coordinate of the minimum point of *C*, giving your answer in the form $k \sqrt{3}$, where *k* is an exact fraction.

The shaded region shown in the diagram is bounded by C, the x-axis and the lines with equations x = 1 and x = 2.

(b) Using integration and showing all your working, find the area of the shaded region, giving your answer in the form $a + b \sqrt{2}$, where a and b are exact fractions.

[E]

Solution:

(a) f'
$$\left(x\right) = -8x^{-\frac{3}{2}} + \frac{3}{2}x^{\frac{1}{2}}$$

f'
$$\begin{pmatrix} x \\ x \end{pmatrix} = 0 \Rightarrow \frac{8}{x^{\frac{3}{2}}} = \frac{3}{2}x^{\frac{1}{2}} \text{ or } x^{2} = \frac{16}{3}$$

(x must be positive) So $x = \frac{4}{\sqrt{3}}$ or $\frac{4}{3}$ $\sqrt{3}$

(b) Area =
$$\int_{1}^{2} \left(16x^{-\frac{1}{2}} + x^{\frac{3}{2}} \right) dx$$

$$= \begin{bmatrix} \frac{1}{16x^{\frac{1}{2}}} + \frac{x^{\frac{5}{2}}}{x^{\frac{5}{2}}} \end{bmatrix}_{1}^{2}$$

$$= \left[32x^{\frac{1}{2}} + \frac{2}{5}x^{\frac{5}{2}} \right]_{1}^{2}$$

$$= \left(32\sqrt{2} + \frac{2}{5} \times 2^2 \sqrt{2}\right) - \left(32 + \frac{2}{5}\right)$$

$$= \frac{168}{5}\sqrt{2} - \frac{162}{5}$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 4

Question:

(a) Find
$$\int \left(x^{\frac{1}{2}} - 4\right) \left(x^{-\frac{1}{2}} - 1\right) dx$$
.

(b) Use your answer to part (a) to evaluate

$$\int_{1}^{4} \left(x^{\frac{1}{2}} - 4 \right) \left(x^{-\frac{1}{2}} - 1 \right) dx.$$

giving your answer as an exact fraction.

[E]

Solution:

(a)
$$\left(x^{\frac{1}{2}} - 4\right) \left(x^{-\frac{1}{2}} - 1\right) = 1 - 4x^{-\frac{1}{2}} - x^{\frac{1}{2}} + 4 = 5 - 4x^{-\frac{1}{2}} - x^{\frac{1}{2}}$$

$$\int \left(x^{\frac{1}{2}} - 4\right) \left(x^{-\frac{1}{2}} - 1\right) dx = 5x - \frac{4x^{\frac{1}{2}}}{\frac{1}{2}} - \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c = 5x - 8x^{\frac{1}{2}} - \frac{2}{3}x^{\frac{3}{2}} + c$$

(b)
$$\int_{1}^{4} \left(x^{\frac{1}{2}} - 4 \right) \left(x^{\frac{-1}{2}} - 1 \right) dx$$

$$= \left[5x - 8x^{\frac{1}{2}} - \frac{2}{3}x^{\frac{3}{2}} \right]_{1}^{4}$$

$$= \left(20 - 8 \times 2 - \frac{2}{3} \times 2^{3} \right) - \left(5 - 8 - \frac{2}{3} \right)$$

$$= 4 - \frac{16}{3} + 3 + \frac{2}{3}$$

$$= 7 - \frac{14}{3}$$

$$= \frac{7}{3} \text{ or } 2^{\frac{1}{3}}$$

Edexcel Modular Mathematics for AS and A-Level

Integration Exercise F, Question 5

Ouestion:

The diagram shows part of the curve with equation $y = x^3 - 6x^2 + 9x$. The curve touches the x-axis at A and has a maximum turning point at B.

- (a) Show that the equation of the curve may be written as $y = x (x 3)^2$, and hence write down the coordinates of A.
- (b) Find the coordinates of B.
- (c) The shaded region R is bounded by the curve and the x-axis. Find the area of R.

[E]

Solution:

(a)
$$(x-3)^2 = x^2 - 6x + 9$$

So $x(x-3)^2 = x^3 - 6x^2 + 9x$
 $y=0 \Rightarrow x=0$ [i.e. (0, 0)] or 3 (twice)
So A is (3, 0)

(b)
$$\frac{dy}{dx} = 0 \implies 0 = 3x^2 - 12x + 9$$

 $\Rightarrow 0 = 3(x^2 - 4x + 3)$
 $\Rightarrow 0 = 3(x - 3)(x - 1)$
 $\Rightarrow x = 1 \text{ or } 3$

x = 3 at A, the minimum, so B is (1, 4)

(c) Area of
$$R = \int_0^3 (x^3 - 6x^2 + 9x) dx$$

$$= \left[\frac{1}{4}x^4 - 2x^3 + \frac{9}{2}x^2 \right]_0^3$$

$$= \left(\frac{81}{4} - 2 \times 27 + \frac{9}{2} \times 9 \right) - \left(0 \right)$$

$$= 6 \frac{3}{4}$$

Solutionbank C2 Edexcel Modular Mathematics for AS and A-Level

Integration Exercise F, Question 6

Question:

Given that $y^{\frac{1}{2}} = x^{\frac{1}{3}} + 3$:

- (a) Show that $y = x^{\frac{2}{3}} + Ax^{\frac{1}{3}} + B$, where A and B are constants to be found.
- (b) Hence find $\int y \, dx$.
- (c)Using your answer from part (b) determine the exact value of $\int_{1}^{8} y dx$.

[E]

Solution:

(a)
$$y = \left(x^{\frac{1}{3}} + 3\right)^2 = x^{\frac{2}{3}} + 6x^{\frac{1}{3}} + 9 \quad (A = 6, B = 9)$$

(b)
$$\int y \, dx = \begin{bmatrix} \frac{5}{x} & \frac{5}{3} & \frac{4}{3} & \frac{6x}{3} & \frac{4}{3} & \frac{6x}{3} & \frac{5}{3} & \frac{9}{2}x & \frac{4}{3} & \frac{9}{3}x & \frac{4}{3} & \frac{9}{3}x & \frac{4}{3} & \frac{9}{3}x & \frac{4}{3} & \frac{9}{3}x & \frac{4}{3}x & \frac{9}{3}x & \frac{1}{3}x & \frac{9}{3}x & \frac{1}{3}x & \frac{9}{3}x & \frac{1}{3}x & \frac$$

(c)
$$\int_{1}^{8} y \, dx = \left[\frac{3}{5} x^{\frac{5}{3}} + \frac{9}{2} x^{\frac{4}{3}} + 9x \right]_{1}^{8}$$

$$= \left(\frac{3}{5} \times 32 + \frac{9}{2} \times 16 + 72 \right) - \left(\frac{3}{5} + \frac{9}{2} + 9 \right)$$

$$= \frac{93}{5} + 135 - \frac{9}{2}$$

$$= 149 \frac{1}{10} \text{ or } 149.1$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 7

Question:

Considering the function $y = 3x^{\frac{1}{2}} - 4x^{-\frac{1}{2}}$, x > 0:

- (a) Find $\frac{dy}{dx}$.
- (b) Find $\int y \, dx$.
- (c) Hence show that $\int_{1}^{3} y \, dx = A + B \sqrt{3}$, where A and B are integers to be found.

[E]

Solution:

(a)
$$y = 3x^{\frac{1}{2}} - 4x^{-\frac{1}{2}}$$

 $\frac{dy}{dx} = \frac{3}{2}x^{-\frac{1}{2}} + \frac{1}{2} \times 4x^{-\frac{3}{2}}$
 $\frac{dy}{dx} = \frac{3}{2}x^{-\frac{1}{2}} + 2x^{-\frac{3}{2}}$

(b)
$$\int y dx = \int \left(3x^{\frac{1}{2}} - 4x^{-\frac{1}{2}} \right) dx$$

$$= \frac{3x\frac{3}{2}}{\frac{3}{2}} - \frac{4x\frac{1}{2}}{\frac{1}{2}} + c$$
$$= 2x\frac{\frac{3}{2}}{\frac{1}{2}} - 8x\frac{\frac{1}{2}}{\frac{1}{2}} + c$$

(c)
$$\int_{1}^{3} y dx = \left[2x^{\frac{3}{2}} - 8x^{\frac{1}{2}} \right]_{1}^{3}$$

= $(2 \times 3 \sqrt{3} - 8 \sqrt{3}) - (2 - 8)$
= $-2\sqrt{3} + 6$
= $6 - 2\sqrt{3}$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 8

Question:

The diagram shows a sketch of the curve with equation $y = 2x - x^2$ and the line ON which is the normal to the curve at the origin O.

- (a) Find an equation of ON.
- (b) Show that the x-coordinate of the point N is $2\frac{1}{2}$ and determine its y-coordinate.
- (c) The shaded region shown is bounded by the curve and the line ON. Without using a calculator, determine the area of the shaded region.

Solution:

(a)
$$y = 2x - x^2$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 - 2x$$

Gradient of tangent at (0, 0) is 2.

Gradient of
$$ON = -\frac{1}{2}$$

So equation of *ON* is
$$y = -\frac{1}{2}x$$
 or $2y + x = 0$

(b) N is point of intersection of ON and the curve, so

$$-\frac{1}{2}x = 2x - x^2$$

$$2x^2 - 5x = 0$$

x (2x - 5) = 0

$$x(2x-5) = 0$$

$$x=0,\ \frac{5}{2}$$

So N is
$$\left(2\frac{1}{2}, -1\frac{1}{4}\right)$$

(c) Area =
$$\int_0^2 \frac{1}{2} (\text{curve} - \text{line}) dx$$

= $\int_0^2 \frac{1}{2} \left[2x - x^2 - \left(-\frac{1}{2}x \right) \right] dx$
= $\int_0^2 \frac{1}{2} \left(\frac{5}{2}x - x^2 \right) dx$
= $\left[\frac{5}{4}x^2 - \frac{x^3}{3} \right]_0^2 \frac{1}{2}$
= $\left(\frac{31.25}{4} - \frac{15.625}{3} \right) - \left(0 \right)$
= $\frac{125}{48}$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 9

Question:

The diagram shows a sketch of the curve with equation

$$y = 12x^{\frac{1}{2}} - x^{\frac{3}{2}}$$
 for $0 \le x \le 12$.

(a) Show that
$$\frac{dy}{dx} = \frac{3}{2}x^{-\frac{1}{2}} \left(4 - x \right)$$
.

- (b) At the point B on the curve the tangent to the curve is parallel to the x-axis. Find the coordinates of the point B.
- (c) Find, to 3 significant figures, the area of the finite region bounded by the curve and the x-axis.

[E]

Solution:

(a)
$$y = 12x^{\frac{1}{2}} - x^{\frac{3}{2}}$$

$$\frac{dy}{dx} = 6x^{-\frac{1}{2}} - \frac{3}{2}x^{\frac{1}{2}} = \frac{3}{2}x^{-\frac{1}{2}} \left(4 - x\right)$$

(b)
$$\frac{dy}{dx} = 0 \implies x = 4, y = 12 \times 2 - 2^3 = 16$$

So *B* is (4, 16)

(c) Area =
$$\int_0^{12} \left(12x^{\frac{1}{2}} - x^{\frac{3}{2}} \right) dx$$

$$= \begin{bmatrix} \frac{12x^{\frac{3}{2}}}{2} - \frac{x^{\frac{5}{2}}}{2} \end{bmatrix}_{0}^{12}$$

$$= \left[8x^{\frac{3}{2}} - \frac{2}{5}x^{\frac{5}{2}} \right]_0^{12}$$

$$= \left(8 \times \sqrt{12^3} - \frac{2}{5}\sqrt{12^5} \right) - \left(0 \right)$$

$$= 133.0215 \dots$$

$$= 133 (3 s.f.)$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 10

Question:

The diagram shows the curve C with equation y = x (8 - x) and the line with equation y = 12 which meet at the points L and M

- (a) Determine the coordinates of the point M.
- (b) Given that N is the foot of the perpendicular from M on to the x-axis, calculate the area of the shaded region which is bounded by NM, the curve C and the x-axis.

[E]

Solution:

(a)
$$x (8-x) = 12$$

$$\Rightarrow 8x - x^2 = 12$$

$$\Rightarrow 0 = x^2 - 8x + 12$$

$$\Rightarrow 0 = (x-6)(x-2)$$

$$\Rightarrow x = 2 \text{ or } 6$$

M is on the right of L, so M is (6, 12)

(b) Area =
$$\int_{6}^{8} (8x - x^{2}) dx$$

= $\left[4x^{2} - \frac{x^{3}}{3} \right]_{6}^{8}$
= $\left(4 \times 64 - \frac{512}{3} \right) - \left(4 \times 36 - \frac{216}{3} \right)$
= $256 - 170 \frac{2}{3} - 144 + 72$
= $13 \frac{1}{3}$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 11

Question:

The diagram shows the line y = x - 1 meeting the curve with equation y = (x - 1) (x - 5) at A and C. The curve meets the x-axis at A and B.

- (a) Write down the coordinates of A and B and find the coordinates of C.
- (b) Find the area of the shaded region bounded by the line, the curve and the *x*-axis.

Solution:

(a) A is
$$(1,0)$$
, B is $(5,0)$
 $x-1 = (x-1)(x-5)$
 $\Rightarrow 0 = (x-1)(x-5-1)$
 $\Rightarrow 0 = (x-1)(x-6)$
 $\Rightarrow x = 1,6$
So C is $(6,5)$

Shaded region is
$$\int_{5}^{6} (x-1) (x-5) dx = \int_{5}^{6} (x^2-6x+5) dx$$

Required area = area of
$$\begin{bmatrix} \frac{x^3}{3} - 3x^2 + 5x \end{bmatrix} = 12 \frac{1}{2} + 6 - 50 + 41 \frac{2}{3}$$
Required area = area of $\begin{bmatrix} \frac{x^3}{3} - 3x^2 + 5x \end{bmatrix} = 6$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{x^3}{3} - 3x^2 + 5x \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{x^3}{3} - 3x^2 + 5x \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{x^3}{3} - 3x^2 + 5x \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{x^3}{3} - 3x^2 + 5x \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{x^3}{3} - 3x^2 + 5x \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{x^3}{3} - 3x^2 + 5x \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{216}{3} - 3 \times 36 + 30 \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{216}{3} - 3 \times 36 + 30 \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{216}{3} - 3 \times 36 + 30 \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{216}{3} - 3 \times 36 + 30 \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{216}{3} - 3 \times 36 + 30 \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{216}{3} - 3 \times 36 + 30 \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{216}{3} - 3 \times 36 + 30 \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{216}{3} - 3 \times 36 + 30 \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{216}{3} - 3 \times 36 + 30 \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{216}{3} - 3 \times 36 + 30 \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{216}{3} - 3 \times 36 + 30 \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{216}{3} - 3 \times 36 + 30 \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{216}{3} - 3 \times 36 + 30 \end{bmatrix} = 6$$

$$= \frac{1}{2} \times 5 \times 5 - \begin{bmatrix} \frac{216}{3} - 3 \times 36 + 30 \end{bmatrix} = 6$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 12

Question:

A and B are two points which lie on the curve C, with equation $y = -x^2 + 5x + 6$. The diagram shows C and the line l passing through A and B.

(a) Calculate the gradient of C at the point where x = 2.

The line l passes through the point with coordinates (2, 3) and is parallel to the tangent to C at the point where x = 2.

- (b) Find an equation of l.
- (c) Find the coordinates of A and B.

The point D is the foot of the perpendicular from B on to the x-axis.

- (d) Find the area of the region bounded by C, the x-axis, the y-axis and BD.
- (e) Hence find the area of the shaded region.

[E]

Solution:

(a)
$$\frac{dy}{dx} = -2x + 5$$

When x = 2 gradient of C is -4 + 5 = 1

- (b) Equation of l is y 3 = 1 (x 2) i.e. y = x + 1
- (c) A is (-1, 0)

B is given by

$$x + 1 = -x^2 + 5x + 6$$

$$x^2 - 4x - 5 = 0$$

$$x^2 - 4x - 5 = 0$$

$$(x-5)(x+1) = 0$$

 $x = -1 \text{ or } 5$

$$x = -1 \text{ or } 5$$

So *B* is (5, 6)

(d) Area =
$$\int_0^5 (-x^2 + 5x + 6) dx$$

$$= \left[-\frac{x^3}{3} + \frac{5x^2}{2} + 6x \right]_0^5$$

$$= \left(-\frac{125}{3} + \frac{125}{2} + 30 \right) - \left(0 \right)$$

$$= \frac{125}{6} + 30$$

$$= 50 \frac{5}{6}$$

Required area is (d) - trapezium OEBD

Area of trapezium =
$$\frac{1}{2} \times 5 \times \left(1+6\right) = \frac{35}{2} = 17\frac{1}{2}$$

Shaded region =
$$50 \frac{5}{6} - 17 \frac{1}{2} = 33 \frac{1}{3}$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 13

Question:

The diagram shows part of the curve with equation $y = p + 10x - x^2$, where p is a constant, and part of the line l with equation y = qx + 25, where q is a constant. The line l cuts the curve at the points A and B. The x-coordinates of A and B are 4 and 8 respectively. The line through A parallel to the x-axis intersects the curve again at the point C.

- (a) Show that p = -7 and calculate the value of q.
- (b) Calculate the coordinates of *C*.
- (c) The shaded region in the diagram is bounded by the curve and the line AC. Using algebraic integration and showing all your working, calculate the area of the shaded region.

[E]

Solution:

(a) Using A which lies on line and curve: 4q + 25 = p + 40 - 16

i.e.
$$4a = p - 1$$

Using B which lies on line and curve: 8q + 25 = p + 80 - 64

i.e.
$$8q = p - 92$$

Solving
$$\bigcirc -\bigcirc \longrightarrow 4q = -8 \Rightarrow q = -2$$

Substitute into \bigcirc \Rightarrow p = 1 + 4q = -7

(b) At
$$A$$
, $y = 4q + 25 = 17$

$$17 = -7 + 10x - x^2$$

$$x^2 - 10x + 24 = 0$$

$$(x-6)(x-4)=0$$

$$x = 4, 6$$

So C is (6, 17)

(c) Area =
$$\int_{4}^{6} (-7 + 10x - x^2) dx$$
 - area of

$$= \left[-7x + 5x^2 - \frac{1}{3}x^3 \right]_4^6 - 34$$

$$= \left(-42 + 180 - 72 \right) - \left(-28 + 80 - \frac{64}{3} \right) - 34$$

$$= \frac{4}{3} \text{ or } 1 \frac{1}{3}$$