Differentiation

Exercise A, Question 1

Question:

F is the point with co-ordinates (3, 9) on the curve with equation $y = x^2$.

(a) Find the gradients of the chords joining the point F to the points with coordinates:

- (i) (4,16)
- (ii) (3.5 , 12.25)
- (iii) (3.1,9.61)
- (iv) (3.01 , 9.0601)
- (v) $(3+h, (3+h)^2)$
- (b) What do you deduce about the gradient of the tangent at the point (3 , 9) $\ ?$

Solution:

a (i) Gradient = $\frac{16-9}{4-3} = \frac{7}{1} = 7$

(ii) Gradient =
$$\frac{12.25 - 9}{3.5 - 3} = \frac{3.25}{0.5} = 6.5$$

(iii) Gradient = $\frac{9.61 - 9}{3.1 - 3} = \frac{0.61}{0.1} = 6.1$

(iv) Gradient = $\frac{9.0601 - 9}{3.01 - 3} = \frac{0.0601}{0.01} = 6.01$

(v) Gradient =
$$\frac{(3+h)^2 - 9}{(3+h) - 3} = \frac{9+6h+h^2 - 9}{h} = \frac{6h+h^2}{h} = \frac{h(6+h)}{h} = 6+h$$

(b) The gradient at the point (3, 9) is the value of 6 + h as h becomes very small, i.e. the gradient is 6.

Differentiation

Exercise A, Question 2

Question:

G is the point with coordinates (4, 16) on the curve with equation $y = x^2$.

(a) Find the gradients of the chords joining the point G to the points with coordinates:

- (i) (5,25)
- (ii) (4.5 , 20.25)
- (iii) (4.1,16.81)
- (iv) (4.01, 16.0801)
- (v) $(4+h, (4+h)^2)$
- (b) What do you deduce about the gradient of the tangent at the point (4 , 16) $\ ?$

Solution:

(a) (i) Gradient = $\frac{25-16}{5-4} = \frac{9}{1} = 9$

(ii) Gradient =
$$\frac{20.25 - 16}{4.5 - 4} = \frac{4.25}{0.5} = 8.5$$

(iii) Gradient = $\frac{16.81 - 16}{4.1 - 4} = \frac{0.81}{0.1} = 8.1$

(iv) Gradient =
$$\frac{16.0801 - 16}{4.01 - 4} = \frac{0.0801}{0.01} = 8.01$$

(v) Gradient =
$$\frac{(4+h)^2 - 16}{4+h-4} = \frac{16+8h+h^2 - 16}{h} = \frac{8h+h^2}{h} = \frac{h(8+h)}{h} = 8+h$$

(b) When *h* is small the gradient of the chord is close to the gradient of the tangent, and 8 + h is close to the value 8. So the gradient of the tangent at (4, 16) is 8.

Differentiation Exercise B, Question 1

Question:

Find the derived function, given that f(x) equals:

 x^7

Solution:

 $f(x) = x^7$ f'(x) = 7x^6

Differentiation Exercise B, Question 2

Question:

Find the derived function, given that f(x) equals:

*x*⁸

Solution:

 $f(x) = x^8$ f'(x) = 8x⁷

Differentiation Exercise B, Question 3

Question:

Find the derived function, given that f(x) equals:

 x^4

Solution:

 $f(x) = x^4$ f'(x) = 4x^3

Differentiation Exercise B, Question 4

Question:

Find the derived function, given that f(x) equals:

 $x^{\frac{1}{3}}$

Solution:

 $f(x) = x^{\frac{1}{3}}$ f'(x) = $\frac{1}{3}x^{\frac{1}{3}} - 1 = \frac{1}{3}x^{-\frac{2}{3}}$

Differentiation Exercise B, Question 5

Question:

Find the derived function, given that f(x) equals:

 $x^{\frac{1}{4}}$

Solution:

 $f(x) = x^{\frac{1}{4}}$ $f'(x) = \frac{1}{4}x^{\frac{1}{4}} - 1 = \frac{1}{4}x^{-\frac{3}{4}}$

Differentiation Exercise B, Question 6

Question:

Find the derived function, given that f(x) equals:

 $^{3}\sqrt{x}$

Solution:

$$f(x) = \sqrt[3]{x} = x^{\frac{1}{3}}$$

$$f'(x) = \frac{1}{3}x^{\frac{1}{3}} - 1 = \frac{1}{3}x^{-\frac{2}{3}}$$

Differentiation Exercise B, Question 7

Question:

Find the derived function, given that f(x) equals:

x ^{- 3}

Solution:

 $f(x) = x^{-3}$ f'(x) = -3x^{-3-1} = -3x^{-4}

Differentiation Exercise B, Question 8

Question:

Find the derived function, given that f(x) equals:

 x^{-4}

Solution:

 $f(x) = x^{-4}$ f'(x) = -4x^{-4-1} = -4x^{-5}

Differentiation Exercise B, Question 9

Question:

Find the derived function, given that f(x) equals:

 $\frac{1}{x^2}$

Solution:

$$f(x) = \frac{1}{x^2} = x^{-2}$$

f'(x) = -2x^{-2-1} = -2x^{-3}

Differentiation Exercise B, Question 10

Question:

Find the derived function, given that f(x) equals:

 $\frac{1}{x^5}$

Solution:

$$f(x) = \frac{1}{x^5} = x^{-5}$$

f'(x) = -5x^{-5-1} = -5x^{-6}

Differentiation Exercise B, Question 11

Question:

Find the derived function, given that f(x) equals:

 $\frac{1}{3\sqrt{x}}$

Solution:

$$f(x) = \frac{1}{\sqrt[3]{x}} = x^{-\frac{1}{3}}$$

$$f'(x) = -\frac{1}{3}x^{-\frac{1}{3}-1} = -\frac{1}{3}x^{-\frac{4}{3}}$$

Differentiation Exercise B, Question 12

Question:

Find the derived function, given that f(x) equals:

 $\frac{1}{\sqrt{x}}$

Solution:

$$f(x) = \frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}$$
$$f'(x) = -\frac{1}{2}x^{-\frac{1}{2}-1} = -\frac{1}{2}x^{-\frac{3}{2}}$$

Differentiation Exercise B, Question 13

Question:

Find the derived function, given that f(x) equals:

 $\frac{x^2}{x^4}$

Solution:

$$f(x) = \frac{x^2}{x^4} = x^{2-4} = x^{-2}$$
$$f'(x) = -2x^{-2-1} = -2x^{-3}$$

Differentiation Exercise B, Question 14

Question:

Find the derived function, given that f(x) equals:

 $\frac{x^3}{x^2}$

Solution:

$$f(x) = \frac{x^3}{x^2} = x^{3-2} = x^1$$

f'(x) = 1x¹⁻¹ = 1x⁰ = 1

Differentiation Exercise B, Question 15

Question:

Find the derived function, given that f(x) equals:

 $\frac{x^6}{x^3}$

Solution:

$$f(x) = \frac{x^6}{x^3} = x^{6-3} = x^3$$

f'(x) = 3x²

Differentiation Exercise B, Question 16

Question:

Find the derived function, given that f(x) equals:

 $x^3 \times x^6$

Solution:

 $f(x) = x^3 \times x^6 = x^{3+6} = x^9$ f'(x) = 9x⁸

Differentiation Exercise B, Question 17

Question:

Find the derived function, given that f(x) equals:

 $x^2 \times x^3$

Solution:

 $f(x) = x^2 \times x^3 = x^{2+3} = x^5$ f'(x) = 5x⁴

Differentiation Exercise B, Question 18

Question:

Find the derived function, given that f(x) equals:

 $x \times x^2$

Solution:

 $f(x) = x \times x^2 = x^{1+2} = x^3$ f'(x) = $3x^2$

Differentiation Exercise C, Question 1

Question:

Find $\frac{dy}{dx}$ when y equals:

(a) $2x^2 - 6x + 3$

(b) $\frac{1}{2}x^2 + 12x$

(c) $4x^2 - 6$

(d) $8x^2 + 7x + 12$

(e) $5 + 4x - 5x^2$

Solution:

(a) $y = 2x^2 - 6x + 3$ $\frac{dy}{dx} = 2(2x) - 6(1) + 0 = 4x - 6$

(b)
$$y = \frac{1}{2}x^2 + 12x$$

 $\frac{dy}{dx} = \frac{1}{2}(2x) + 12(1) = x + 12$

(c) $y = 4x^2 - 6$ $\frac{dy}{dx} = 4(2x) - 0 = 8x$

(d)
$$y = 8x^2 + 7x + 12$$

 $\frac{dy}{dx} = 8(2x) + 7 + 0 = 16x + 7$

(e)
$$y = 5 + 4x - 5x^2$$

 $\frac{dy}{dx} = 0 + 4(1) - 5(2x) = 4 - 10x$

Differentiation Exercise C, Question 2

Question:

Find the gradient of the curve whose equation is

(a)
$$y = 3x^2$$
 at the point (2, 12)

(b) $y = x^2 + 4x$ at the point (1, 5)

(c) $y = 2x^2 - x - 1$ at the point (2, 5)

(d)
$$y = \frac{1}{2}x^2 + \frac{3}{2}x$$
 at the point (1, 2)

(e) $y = 3 - x^2$ at the point (1, 2)

(f) $y = 4 - 2x^2$ at the point (-1, 2)

Solution:

(a) $y = 3x^2$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 6x$ At the point (2, 12), x = 2. Substitute x = 2 into the gradient expression $\frac{dy}{dx} = 6x$ to give gradient = $6 \times 2 = 12$. (b) $y = x^2 + 4x$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x + 4$ At the point (1, 5), x = 1. Substitute x = 1 into $\frac{dy}{dx} = 2x + 4$ to give gradient $= 2 \times 1 + 4 = 6$ (c) $y = 2x^2 - x - 1$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 1$ At the point (2, 5), x = 2. Substitute x = 2 into $\frac{dy}{dx} = 4x - 1$ to give gradient = $4 \times 2 - 1 = 7$ (d) $y = \frac{1}{2}x^2 + \frac{3}{2}x$ $\frac{\mathrm{d}y}{\mathrm{d}x} = x + \frac{3}{2}$

At the point (1, 2), x = 1.

Substitute x = 1 into $\frac{dy}{dx} = x + \frac{3}{2}$ to give gradient $= 1 + \frac{3}{2} = 2\frac{1}{2}$ (e) $y = 3 - x^2$ $\frac{dy}{dx} = -2x$ At (1, 2), x = 1. Substitute x = 1 into $\frac{dy}{dx} = -2x$ to give gradient $= -2 \times 1 = -2$ (f) $y = 4 - 2x^2$ $\frac{dy}{dx} = -4x$ At (-1, 2), x = -1. Substitute x = -1 into $\frac{dy}{dx} = -4x$ to give gradient $= -4 \times -1 = +4$

Differentiation

Exercise C, Question 3

Question:

Find the *y*-coordinate and the value of the gradient at the point P with *x*-coordinate 1 on the curve with equation $y = 3 + 2x - x^2$.

Solution:

 $y = 3 + 2x - x^{2}$ When x = 1, y = 3 + 2 - 1 $\Rightarrow y = 4$ when x = 1Differentiate to give $\frac{dy}{dx} = 0 + 2 - 2x$ When x = 1, $\frac{dy}{dx} = 2 - 2$ $\Rightarrow \frac{dy}{dx} = 0$ when x = 1

Therefore, the *y*-coordinate is 4 and the gradient is 0 when the *x*-coordinate is 1 on the given curve.

Differentiation Exercise C, Question 4

Question:

Find the coordinates of the point on the curve with equation $y = x^2 + 5x - 4$ where the gradient is 3.

Solution:

 $y = x^{2} + 5x - 4$ $\frac{dy}{dx} = 2x + 5$ Put $\frac{dy}{dx} = 3$ Then 2x + 5 = 3 $\Rightarrow 2x = -2$ $\Rightarrow x = -1$ Substitute x = -1 into $y = x^{2} + 5x - 4$: $y = (-1)^{2} + 5(-1) - 4 = 1 - 5 - 4 = -8$ Therefore, (-1, -8) is the point where the gradient is 3.

Differentiation

Exercise C, Question 5

Question:

Find the gradients of the curve $y = x^2 - 5x + 10$ at the points *A* and *B* where the curve meets the line y = 4.

Solution:

The curve $y = x^2 - 5x + 10$ meets the line y = 4 when $x^2 - 5x + 10 = 4$ $x^2 - 5x + 6 = 0$ (x - 3) (x - 2) = 0 x = 3 or x = 2The gradient function for the curve is given by $\frac{dy}{dx} = 2x - 5$ when x = 3, $\frac{dy}{dx} = 2 \times 3 - 5 = 1$

when x = 2, $\frac{dy}{dx} = 2 \times 2 - 5 = -1$

So the gradients are -1 and 1 at (2, 4) and (3, 4) respectively.

Differentiation

Exercise C, Question 6

Question:

Find the gradients of the curve $y = 2x^2$ at the points *C* and *D* where the curve meets the line y = x + 3.

Solution:

The curve $y = 2x^2$ meets the line y = x + 3 when $2x^2 = x + 3$ $2x^2 - x - 3 = 0$ (2x - 3) (x + 1) = 0x = 1.5 or -1

The gradient of the curve is given by the equation $\frac{dy}{dx} = 4x$.

The gradient at the point where x = -1 is $4 \times -1 = -4$. The gradient at the point where x = 1.5 is $4 \times 1.5 = 6$. So the gradient is -4 at (-1, 2) and is 6 at (1.5, 4.5).

Differentiation Exercise D, Question 1

Question:

Use standard results to differentiate:

(a) $x^4 + x^{-1}$ (b) $\frac{1}{2}x^{-2}$

(c) $2x^{-\frac{1}{2}}$

Solution:

(a) $f(x) = x^4 + x^{-1}$ f'(x) = $4x^3 + (-1)x^{-2}$

(b)
$$f(x) = \frac{1}{2}x^{-2}$$

 $f'(x) = \frac{1}{2}(-2)x^{-3} = -x^{-3}$

(c)
$$f(x) = 2x^{-\frac{1}{2}}$$

 $f'(x) = 2\left(\begin{array}{c} -\frac{1}{2} \end{array}\right)x^{-\frac{1}{2}} = -x^{-\frac{3}{2}}$

Differentiation Exercise D, Question 2

Question:

Find the gradient of the curve with equation y = f(x) at the point *A* where:

(a) $f(x) = x^3 - 3x + 2$ and A is at (-1, 4)

(b) $f(x) = 3x^2 + 2x^{-1}$ and *A* is at (2, 13)

Solution:

(a) $f(x) = x^3 - 3x + 2$ f'(x) = $3x^2 - 3$ At (-1, 4), x = -1. Substitute x = -1 to find f'(-1) = $3(-1)^2 - 3 = 0$ Therefore, gradient = 0.

(b)
$$f(x) = 3x^2 + 2x^{-1}$$

 $f'(x) = 6x + 2(-1)x^{-2} = 6x - 2x^{-2}$
At (2, 13), $x = 2$.
 $f'(2) = 6(2) - 2(2)^{-2} = 12 - \frac{2}{4} = 11\frac{1}{2}$

Therefore, gradient = $11\frac{1}{2}$.

Differentiation

Exercise D, Question 3

Question:

Find the point or points on the curve with equation y = f(x), where the gradient is zero:

(a) $f(x) = x^2 - 5x$

(b) $f(x) = x^3 - 9x^2 + 24x - 20$

(c) $f(x) = x^{\frac{3}{2}} - 6x + 1$

(d) $f(x) = x^{-1} + 4x$

Solution:

(a) $f(x) = x^2 - 5x$ f'(x) = 2x - 5When gradient is zero, f'(x) = 0. $\Rightarrow 2x - 5 = 0$ $\Rightarrow x = 2.5$ As y = f(x), y = f(2.5) when x = 2.5. \Rightarrow y = (2.5)² - 5(2.5) = -6.25 Therefore, (2.5, -6.25) is the point on the curve where the gradient is zero.

(b)
$$f(x) = x^3 - 9x^2 + 24x - 20$$

f' (x) = $3x^2 - 18x + 24$
When gradient is zero, f' (x) = 0.
 $\Rightarrow 3x^2 - 18x + 24 = 0$
 $\Rightarrow 3(x^2 - 6x + 8) = 0$
 $\Rightarrow 3(x - 4) (x - 2) = 0$
 $\Rightarrow x = 4 \text{ or } x = 2$
As $y = f(x), y = f(4)$ when $x = 4$.
 $\Rightarrow y = 4^3 - 9 \times 4^2 + 24 \times 4 - 20 = -4$
Also $y = f(2)$ when $x = 2$.
 $\Rightarrow y = 2^3 - 9 \times 2^2 + 24 \times 2 - 20 = 0$.
Therefore at $(4 - 4)$ and at $(2 - 0)$ the gradient is zero.

Therefore, at (4, -4) and at (2, 0) the gradient is zero.

(c)
$$f(x) = x^{\frac{3}{2}} - 6x + 1$$

f'(x) = $\frac{3}{2}x^{\frac{1}{2}} - 6$
When gradient is zero, f'(

When gradient is zero, f'(x) = 0.

$$\Rightarrow \quad \frac{3}{2}x^{\frac{1}{2}} - 6 = 0$$

$$\Rightarrow x^{\frac{1}{2}} = 4$$

$$\Rightarrow x = 16$$

As y = f(x), y = f(16) when x = 16.

 $\Rightarrow \quad y = 16^{\frac{3}{2}} - 6 \times 16 + 1 = -31$ Therefore, at (16, -31) the gradient is zero.

(d) $f(x) = x^{-1} + 4x$ $f'(x) = -1x^{-2} + 4$ For zero gradient, f'(x) = 0. $\Rightarrow -x^{-2} + 4 = 0$ $\Rightarrow \frac{1}{x^2} = 4$ $\Rightarrow x = \pm \frac{1}{2}$ When $x = \frac{1}{2}$, $y = f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^{-1} + 4\left(\frac{1}{2}\right) = 2 + 2 = 4$ When $x = -\frac{1}{2}$, $y = f\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^{-1} + 4\left(-\frac{1}{2}\right) = -2 - 2 = -4$ Therefore, $\left(\frac{1}{2}, 4\right)$ and $\left(-\frac{1}{2}, -4\right)$ are points on the curve where the gradient is zero.

Differentiation Exercise E, Question 1

Question:

Use standard results to differentiate:

(a) $2\sqrt{x}$ (b) $\frac{3}{x^2}$ (c) $\frac{1}{3x^3}$ (d) $\frac{1}{3}x^3(x-2)$ (e) $\frac{2}{x^3} + \sqrt{x}$ (f) $\sqrt[3]{x} + \frac{1}{2x}$ (g) $\frac{2x+3}{x}$ (h) $\frac{3x^2-6}{x}$ (i) $\frac{2x^3 + 3x}{\sqrt{x}}$ (j) x ($x^2 - x + 2$) (k) $3x^2(x^2+2x)$ (1) (3x-2) $\left(4x+\frac{1}{x}\right)$ Solution:

(a)
$$y = 2 \sqrt{x} = 2x^{\frac{1}{2}}$$

 $\frac{dy}{dx} = 2 \left(\frac{1}{2}\right)x^{-\frac{1}{2}} = x^{-\frac{1}{2}}$

(b)
$$y = \frac{3}{x^2} = 3x^{-2}$$

 $\frac{dy}{dx} = 3(-2)x^{-3} = -6x^{-3}$
(c) $y = \frac{1}{3x^3} = \frac{1}{3}x^{-3}$
 $\frac{dy}{dx} = \frac{1}{3}(-3)x^{-4} = -x^{-4}$
(d) $y = \frac{1}{3}x^3(x-2) = \frac{1}{3}x^4 - \frac{2}{3}x^3$
 $\frac{dy}{dx} = \frac{4}{3}x^3 - \frac{2}{3} \times 3x^2 = \frac{4}{3}x^3 - 2x^2$
(e) $y = \frac{2}{x^3} + \sqrt{x} = 2x^{-3} + x^{\frac{1}{2}}$
(f) $y = \sqrt[3]{x} + \frac{1}{2x} = x^{\frac{1}{3}} + \frac{1}{2}x^{-1}$
 $\frac{dy}{dx} = -6x^{-4} + \frac{1}{2}x^{-\frac{1}{2}}$
(g) $y = \frac{2x+3}{x} = \frac{2x}{x} + \frac{3}{x} = 2 + 3x^{-1}$
 $\frac{dy}{dx} = 0 - 3x^{-2}$
(h) $y = \frac{3x^2 - 6}{x} = \frac{3x^2}{x} - \frac{6}{x} = 3x - 6x^{-1}$
 $\frac{dy}{dx} = 3 + 6x^{-2}$
(i) $y = \frac{2x^3 + 3x}{\sqrt{x}} = \frac{2x^3}{x^{\frac{1}{2}}} + \frac{3x}{x^{\frac{1}{2}}} = 2x^2^{\frac{1}{2}} + 3x^{\frac{1}{2}}$
 $\frac{dy}{dx} = 5x^{1-\frac{1}{2}} + 1.5x^{-\frac{1}{2}}$
(j) $y = x(x^2 - x + 2) = x^3 - x^2 + 2x$
 $\frac{dy}{dx} = 3x^2 - 2x + 2$
(k) $y = 3x^2(x^2 + 2x) = 3x^4 + 6x^3$
 $\frac{dy}{dx} = 12x^3 + 18x^2$

(1)
$$y = (3x - 2)(4x + \frac{1}{x}) = 12x^2 - 8x + 3 - \frac{2}{x} = 12x^2 - 8x + 3 - 2x^{-1}$$

$$\frac{dy}{dx} = 24x - 8 + 2x^{-2}$$

Differentiation

Exercise E, Question 2

Question:

Find the gradient of the curve with equation y = f(x) at the point *A* where:

(a) f(x) = x (x + 1) and A is at (0, 0)

(b)
$$f(x) = \frac{2x-6}{x^2}$$
 and A is at (3,0)

(c)
$$f(x) = \frac{1}{\sqrt{x}}$$
 and A is at $\begin{pmatrix} \frac{1}{4} \\ 2 \end{pmatrix}$

(d)
$$f(x) = 3x - \frac{4}{x^2}$$
 and A is at (2, 5)

Solution:

(a) $f(x) = x(x + 1) = x^2 + x$ f'(x) = 2x + 1 At (0, 0), x = 0. Therefore, gradient = f'(0) = 1

(b)
$$f(x) = \frac{2x-6}{x^2} = \frac{2x}{x^2} - \frac{6}{x^2} = \frac{2}{x} - 6x^{-2} = 2x^{-1} - 6x^{-2}$$

 $f'(x) = -2x^{-2} + 12x^{-3}$
At (3,0), $x = 3$.

Therefore, gradient = f'(3) = $-\frac{2}{3^2} + \frac{12}{3^3} = -\frac{2}{9} + \frac{12}{27} = \frac{2}{9}$

(c)
$$f(x) = \frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}$$

 $f'(x) = -\frac{1}{2}x^{-\frac{3}{2}}$
At $\left(\frac{1}{4}, 2\right), x = \frac{1}{4}$.

Therefore, gradient = f' $\begin{pmatrix} \frac{1}{4} \\ -\frac{1}{2} \end{pmatrix}$ = $-\frac{1}{2} \begin{pmatrix} \frac{1}{4} \\ -\frac{3}{2} \\ -\frac{1}{2} \\ -\frac$

(d) $f(x) = 3x - \frac{4}{x^2} = 3x - 4x^{-2}$ f'(x) = 3 + 8x⁻³ At (2, 5), x = 2. Therefore, gradient = f'(2) = 3 + 8(2) - 3 = 3 + \frac{8}{8} = 4.

Differentiation Exercise F, Question 1

Question:

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ when y equals:

 $12x^2 + 3x + 8$

Solution:

 $y = 12x^{2} + 3x + 8$ $\frac{dy}{dx} = 24x + 3$ $\frac{d^{2}y}{dx^{2}} = 24$

Differentiation Exercise F, Question 2

Question:

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ when y equals:

 $15x + 6 + \frac{3}{x}$

Solution:

$$y = 15x + 6 + \frac{3}{x} = 15x + 6 + 3x^{-1}$$
$$\frac{dy}{dx} = 15 - 3x^{-2}$$
$$\frac{d^2y}{dx^2} = 0 + 6x^{-3}$$

Differentiation Exercise F, Question 3

Question:

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ when y equals:

$$9\sqrt{x}-\frac{3}{x^2}$$

Solution:

$$y = 9 \sqrt{x} - \frac{3}{x^2} = 9x^{\frac{1}{2}} - 3x^{-2}$$
$$\frac{dy}{dx} = 4 \frac{1}{2}x^{-\frac{1}{2}} + 6x^{-3}$$
$$\frac{d^2y}{dx^2} = -2 \frac{1}{4}x^{-\frac{3}{2}} - 18x^{-4}$$

Differentiation Exercise F, Question 4

Question:

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ when y equals:

(5x+4)(3x-2)

Solution:

 $y = (5x + 4)(3x - 2) = 15x^{2} + 2x - 8$ $\frac{dy}{dx} = 30x + 2$ $\frac{d^{2}y}{dx^{2}} = 30$

Differentiation Exercise F, Question 5

Question:

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ when y equals:

 $\frac{3x+8}{x^2}$

Solution:

$$y = \frac{3x+8}{x^2} = \frac{3x}{x^2} + \frac{8}{x^2} = \frac{3}{x} + 8x^{-2} = 3x^{-1} + 8x^{-2}$$
$$\frac{dy}{dx} = -3x^{-2} - 16x^{-3}$$
$$\frac{d^2y}{dx^2} = 6x^{-3} + 48x^{-4}$$

Differentiation Exercise G, Question 1

Question:

Find $\frac{\mathrm{d}\theta}{\mathrm{d}t}$ where $\theta = t^2 - 3t$

Solution:

 $\frac{\theta = t^2 - 3t}{\frac{d\theta}{dt}} = 2t - 3$

Differentiation Exercise G, Question 2

Question:

Find $\frac{\mathrm{d}A}{\mathrm{d}r}$ where $A = 2 \pi r$

Solution:

 $A = 2 \pi r$ $\frac{\mathrm{d}A}{\mathrm{d}r} = 2 \pi$

Differentiation Exercise G, Question 3

Question:

Find $\frac{\mathrm{d}r}{\mathrm{d}t}$ where $r = \frac{12}{t}$

Solution:

$$r = \frac{12}{t} = 12t^{-1}$$
$$\frac{\mathrm{d}r}{\mathrm{d}t} = -12t^{-2}$$

Differentiation Exercise G, Question 4

Question:

Find $\frac{dv}{dt}$ where v = 9.8t + 6

Solution:

v = 9.8t + 6 $\frac{\mathrm{d}v}{\mathrm{d}t} = 9.8$

Differentiation Exercise G, Question 5

Question:

Find $\frac{\mathrm{d}R}{\mathrm{d}r}$ where $R = r + \frac{5}{r}$

Solution:

$$R = r + \frac{5}{r} = r + 5r^{-1}$$
$$\frac{dR}{dr} = 1 - 5r^{-2}$$

Differentiation Exercise G, Question 6

Question:

Find $\frac{dx}{dt}$ where $x = 3 - 12t + 4t^2$

Solution:

 $x = 3 - 12t + 4t^2$ $\frac{\mathrm{d}x}{\mathrm{d}t} = 0 - 12 + 8t$

Differentiation Exercise G, Question 7

Question:

Find $\frac{dA}{dx}$ where A = x (10 - x)

Solution:

 $A = x(10 - x) = 10x - x^2$ $\frac{dA}{dx} = 10 - 2x$

Differentiation Exercise H, Question 1

Question:

Find the equation of the tangent to the curve:

(a)
$$y = x^2 - 7x + 10$$
 at the point (2,0)
(b) $y = x + \frac{1}{x}$ at the point $\begin{pmatrix} 2, 2\frac{1}{2} \end{pmatrix}$

(c) $y = 4 \sqrt{x}$ at the point (9, 12)

(d)
$$y = \frac{2x-1}{x}$$
 at the point (1, 1)

(e)
$$y = 2x^3 + 6x + 10$$
 at the point $(-1, 2)$

(f)
$$y = x^2 + \frac{-7}{x^2}$$
 at the point (1, -6)

Solution:

(a)
$$y = x^2 - 7x + 10$$

 $\frac{dy}{dx} = 2x - 7$
At (2,0), $x = 2$, gradient $= 2 \times 2 - 7 = -3$.
Therefore, equation of tangent is
 $y - 0 = -3 (x - 2)$
 $y = -3x + 6$
 $y + 3x - 6 = 0$
(b) $y = x + \frac{1}{x} = x + x^{-1}$
 $\frac{dy}{dx} = 1 - x^{-2}$
At $\left(2, 2\frac{1}{2}\right), x = 2$, gradient $= 1 - 2^{-2} = \frac{3}{4}$.

Therefore, equation of tangent is

$$y - 2\frac{1}{2} = \frac{3}{4}(x - 2)$$

$$y = \frac{3}{4}x - 1\frac{1}{2} + 2\frac{1}{2}$$

$$y = \frac{3}{4}x + 1$$

$$4y - 3x - 4 = 0$$

(c) $y = 4\sqrt{x} = 4x^{\frac{1}{2}}$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^{-\frac{1}{2}}$ At (9, 12), x = 9, gradient $= 2 \times 9^{-\frac{1}{2}} = \frac{2}{3}$. Therefore, equation of tangent is $y - 12 = \frac{2}{3}(x - 9)$ $y = \frac{2}{3}x - 6 + 12$ $y = \frac{2}{3}x + 6$ 3y - 2x - 18 = 0(d) $y = \frac{2x-1}{x} = \frac{2x}{x} - \frac{1}{x} = 2 - x^{-1}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 0 + x^{-2}$ At (1, 1), x = 1, gradient $= 1^{-2} = 1$. Therefore, equation of tangent is $y - 1 = 1 \times (x - 1)$ y = x(e) $y = 2x^3 + 6x + 10$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 + 6$ At (-1, 2), x = -1, gradient $= 6(-1)^2 + 6 = 12$. Therefore, equation of tangent is y - 2 = 12 [x - (-1)]y - 2 = 12x + 12y = 12x + 14(f) $y = x^2 - \frac{7}{x^2} = x^2 - 7x^{-2}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x + 14x^{-3}$ At (1, -6), x = 1, gradient = 2 + 14 = 16. Therefore, equation of tangent is y - (-6) = 16(x - 1)y + 6 = 16x - 16y = 16x - 22

Differentiation Exercise H, Question 2

Question:

Find the equation of the normal to the curves:

(a)
$$y = x^2 - 5x$$
 at the point (6, 6)
(b) $y = x^2 - \frac{8}{\sqrt{x}}$ at the point (4, 12)

Solution:

(a) $y = x^2 - 5x$ $\frac{dy}{dx} = 2x - 5$ At (6, 6), x = 6, gradient of curve is $2 \times 6 - 5 = 7$. Therefore, gradient of normal is $-\frac{1}{7}$. The equation of the normal is

 $y - 6 = -\frac{1}{7}(x - 6)$ 7y - 42 = -x + 6 7y + x - 48 = 0

(b)
$$y = x^2 - \frac{8}{\sqrt{x}} = x^2 - 8x - \frac{1}{2}$$

 $\frac{dy}{dx} = 2x + 4x - \frac{3}{2}$

At (4, 12), x = 4, gradient of curve is $2 \times 4 + 4$ (4) $-\frac{3}{2} = 8 + \frac{4}{8} = \frac{17}{2}$

Therefore, gradient of normal is $-\frac{2}{17}$.

The equation of the normal is

 $y - 12 = -\frac{2}{17}(x - 4)$ 17y - 204 = -2x + 817y + 2x - 212 = 0

Differentiation

Exercise H, Question 3

Question:

Find the coordinates of the point where the tangent to the curve $y = x^2 + 1$ at the point (2, 5) meets the normal to the same curve at the point (1, 2).

Solution:

 $y = x^2 + 1$ $\frac{dy}{dx} = 2x$

At (2,5), x = 2, $\frac{dy}{dx} = 4$.

The tangent at (2, 5) has gradient 4. Its equation is y - 5 = 4(x - 2)y = 4x - 3. The curve has gradient 2 at the point (1, 2).

The normal is perpendicular to the curve. Its gradient is $-\frac{1}{2}$.

The equation of the normal is

 $y - 2 = -\frac{1}{2}(x - 1)$ $y = -\frac{1}{2}x + 2\frac{1}{2}$

Solve Equations ① and ② to find where the tangent and the normal meet. Equation ① – Equation ③:

$$0 = 4 \frac{1}{2}x - 5 \frac{1}{2}$$
$$x = \frac{11}{9}$$

Substitute into Equation ① to give $y = \frac{44}{9} - 3 = \frac{17}{9}$.

Therefore, the tangent at (2, 5) meets the normal at (1, 2) at $\begin{pmatrix} \frac{11}{9}, \frac{17}{9} \end{pmatrix}$.

Differentiation Exercise H, Question 4

Question:

Find the equations of the normals to the curve $y = x + x^3$ at the points (0,0) and (1,2), and find the coordinates of the point where these normals meet.

Solution:

 $y = x + x^3$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + 3x^2$ At (0,0) the curve has gradient $1 + 3 \times 0^2 = 1$. The gradient of the normal at (0, 0) is $-\frac{1}{1} = -1$. The equation of the normal at (0, 0) is y - 0 = -1(x - 0)y = -xAt (1,2) the curve has gradient $1 + 3 \times 1^2 = 4$. The gradient of the normal at (1, 2) is $-\frac{1}{4}$. The equation of the normal at (1, 2) is $y - 2 = -\frac{1}{4}(x - 1)$ 4y - 8 = -x + 14y + x - 9 = 0Solve Equations O and O to find where the normals meet. Substitute y = -x into Equation @: $-4x + x = 9 \implies x = -3 \text{ and } y = +3.$ Therefore, the normals meet at (-3, 3).

Differentiation

Exercise H, Question 5

Question:

For $f(x) = 12 - 4x + 2x^2$, find an equation of the tangent and normal at the point where x = -1 on the curve with equation y = f(x). **[E]**

Solution:

 $y = 12 - 4x + 2x^{2}$ $\frac{dy}{dx} = 0 - 4 + 4x$ dy

when x = -1, $\frac{dy}{dx} = -4 - 4 = -8$.

The gradient of the curve is -8 when x = -1. As y = f(x), when x = -1y = f(-1) = 12 + 4 + 2 = 18The tangent at (-1, 18) has gradient -8. So its equation is y - 18 = -8(x + 1)y - 18 = -8x - 8y = 10 - 8x

The normal at (-1, 18) has gradient $\frac{-1}{-8} = \frac{1}{8}$. So its equation is

$$y - 18 = \frac{1}{8} \left(x + 1 \right)$$

$$8y - 144 = x + 1$$

$$8y - x - 145 = 0$$

Differentiation Exercise I, Question 1

Question:

A curve is given by the equation $y = 3x^2 + 3 + \frac{1}{x^2}$, where x > 0.

At the points *A*, *B* and *C* on the curve, x = 1, 2 and 3 respectively. Find the gradients at *A*, *B* and *C*. **[E]**

Solution:

 $y = 3x^{2} + 3 + \frac{1}{x^{2}} = 3x^{2} + 3 + x^{-2}$ $\frac{dy}{dx} = 6x - 2x^{-3} = 6x - \frac{2}{x^{3}}$ When x = 1, $\frac{dy}{dx} = 6 \times 1 - \frac{2}{1^{3}} = 4$ When x = 2, $\frac{dy}{dx} = 6 \times 2 - \frac{2}{2^{3}} = 12 - \frac{2}{8} = 11\frac{3}{4}$ When x = 3, $\frac{dy}{dx} = 6 \times 3 - \frac{2}{3^{3}} = 18 - \frac{2}{27} = 17\frac{25}{27}$

The gradients at points A, B and C are 4, 11 $\frac{3}{4}$ and 17 $\frac{25}{27}$, respectively.

Differentiation Exercise I, Question 2

Question:

Taking $f(x) = \frac{1}{4}x^4 - 4x^2 + 25$, find the values of x for which f'(x) = 0. **[E]**

Solution:

 $f(x) = \frac{1}{4}x^4 - 4x^2 + 25$ f'(x) = x³ - 8x When f'(x) = 0, x³ - 8x = 0 x (x² - 8) = 0 x = 0 or x² = 8 x = 0 or ± $\sqrt{8}$ x = 0 or ± 2 $\sqrt{2}$

Differentiation

Exercise I, Question 3

Question:

A curve is drawn with equation $y = 3 + 5x + x^2 - x^3$. Find the coordinates of the two points on the curve where the gradient of the curve is zero. **[E]**

Solution:

 $y = 3 + 5x + x^{2} - x^{3}$ $\frac{dy}{dx} = 5 + 2x - 3x^{2}$ Put $\frac{dy}{dx} = 0$. Then $5 + 2x - 3x^{2} = 0$ (5 - 3x) (1 + x) = 0 x = -1 or $x = \frac{5}{3}$ Substitute to obtain $y = 3 - 5 + 1 - (-1)^{3}$ when x = -1, i.e. y = 0 when x = -1and $y = 3 + 5\left(\frac{5}{3}\right) + \left(\frac{5}{3}\right)^{2} - \left(\frac{5}{3}\right)^{3}$ when $x = \frac{5}{3}$, i.e. $y = 3 + \frac{25}{3} + \frac{25}{9} - \frac{125}{27} = 9\frac{13}{27}$ when $x = \frac{5}{3}$ So the points have coordinates (-1, 0) and $\left(1\frac{2}{3}, 9\frac{13}{27}\right)$.

Differentiation Exercise I, Question 4

Question:

Calculate the *x*-coordinates of the points on the curve with equation $y = 7x^2 - x^3$ at which the gradient is equal to 16. **[E]**

Solution:

$$y = 7x^{2} - x^{3}$$

$$\frac{dy}{dx} = 14x - 3x^{2}$$

Put $\frac{dy}{dx} = 16$, i.e.

$$14x - 3x^{2} = 16$$

$$3x^{2} - 14x + 16 = 0$$

$$(3x - 8) (x - 2) = 0$$

$$x = \frac{8}{3} \text{ or } x = 2$$

Differentiation

Exercise I, Question 5

Question:

Find the *x*-coordinates of the two points on the curve with equation $y = x^3 - 11x + 1$ where the gradient is 1. Find the corresponding *y*-coordinates. **[E]**

Solution:

 $y = x^3 - 11x + 1$ $\frac{dy}{dx} = 3x^2 - 11$

As gradient is 1, put $\frac{dy}{dx} = 1$, then

 $\begin{array}{l} 3x^2 - 11 = 1\\ 3x^2 = 12\\ x^2 = 4\\ x = \pm 2\\ \\ \text{Substitute these values into } y = x^3 - 11x + 1:\\ y = 2^3 - 11 \times 2 + 1 = -13 \text{ when } x = 2 \text{ and}\\ y = (-2)^3 - 11(-2) + 1 = 15 \text{ when } x = -2\\ \\ \text{The gradient is } 1 \text{ at the points } (2, -13) \text{ and } (-2, 15) \end{array}$

Differentiation Exercise I, Question 6

Question:

The function f is defined by $f(x) = x + \frac{9}{x}$, $x \in \mathbb{R}$, $x \neq 0$.

(a) Find f ' (*x*).

(b) Solve f ' (x) = 0. **[E]**

Solution:

(a) $f(x) = x + \frac{9}{x} = x + 9x^{-1}$ $f'(x) = 1 - 9x^{-2} = 1 - \frac{9}{2}$

f'(x) =
$$1 - 9x^{-2} = 1 - \frac{x}{x^2}$$

(b) When f ' (x) = 0,

$$1 - \frac{9}{x^2} = 0$$
$$\frac{9}{x^2} = 1$$
$$x^2 = 9$$
$$x = \pm 3$$

Differentiation Exercise I, Question 7

Question:

Given that

 $y = x^{\frac{3}{2}} + \frac{48}{x}, x > 0,$

find the value of x and the value of y when $\frac{dy}{dx} = 0$. **[E]**

Solution:

$$y = x^{\frac{3}{2}} + \frac{48}{x} = x^{\frac{3}{2}} + 48x^{-1}$$

$$\frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}} - 48x^{-2}$$

Put $\frac{dy}{dx} = 0$, then

$$\frac{3}{2}x^{\frac{1}{2}} - \frac{48}{x^2} = 0$$

$$\frac{3}{2}x^{\frac{1}{2}} = \frac{48}{x^2}$$

Multiply both sides by x^2 :

$$\frac{3}{2}x^{2\frac{1}{2}} = 48$$

$$x^{2\frac{1}{2}} = 32$$

 $x = (32)^{-\frac{2}{5}}$
 $x = 4$
Substitute to give $y = 4^{\frac{3}{2}} + \frac{48}{4} = 8 + 12 = 20$

Differentiation Exercise I, Question 8

Question:

Given that

$$y = 3x^{\frac{1}{2}} - 4x^{-\frac{1}{2}}, x > 0,$$

find $\frac{dy}{dx}$. **[E]**

Solution:

$$y = 3x^{\frac{1}{2}} - 4x^{-\frac{1}{2}}$$

$$\frac{dy}{dx} = \frac{3}{2}x^{-\frac{1}{2}} + \frac{4}{2}x^{-\frac{3}{2}} = \frac{3}{2}x^{-\frac{1}{2}} + 2x^{-\frac{3}{2}}$$

Differentiation Exercise I, Question 9

Question:

A curve has equation $y = 12x^{\frac{1}{2}} - x^{\frac{3}{2}}$.

(a) Show that $\frac{dy}{dx} = \frac{3}{2}x^{-\frac{1}{2}}(4-x)$

(b) Find the coordinates of the point on the curve where the gradient is zero. **[E]**

Solution:

(a)
$$y = 12x^{\frac{1}{2}} - x^{\frac{3}{2}}$$

 $\frac{dy}{dx} = 12 \left(\frac{1}{2}\right)x^{-\frac{1}{2}} - \frac{3}{2}x^{\frac{1}{2}} = 6x^{-\frac{1}{2}} - \frac{3}{2}x^{\frac{1}{2}} = \frac{3}{2}x^{-\frac{1}{2}}(4-x)$

(b) The gradient is zero when $\frac{dy}{dx} = 0$:

$$\frac{3}{2}x^{-\frac{1}{2}}(4-x) = 0$$

x = 4

Substitute into $y = 12x^{\frac{1}{2}} - x^{\frac{3}{2}}$ to obtain $y = 12 \times 2 - 2^3 = 16$ The gradient is zero at the point with coordinates (4, 16).

Differentiation Exercise I, Question 10

Question:

(a) Expand
$$\left(x^{\frac{3}{2}}-1\right)\left(x^{-\frac{1}{2}}+1\right)$$
.

(b) A curve has equation $y = \left(x^{\frac{3}{2}} - 1\right) \left(x^{-\frac{1}{2}} + 1\right)$, x > 0. Find $\frac{dy}{dx}$.

(c) Use your answer to **b** to calculate the gradient of the curve at the point where x = 4. **[E]**

Solution:

(a)
$$\left(x^{\frac{3}{2}}-1\right)$$
 $\left(x^{-\frac{1}{2}}+1\right)$ = $x + x^{\frac{3}{2}} - x^{-\frac{1}{2}} - 1$

(b) $y = x + x \frac{3}{2} - x^{-1} \frac{1}{2} - 1$ $\frac{dy}{dx} = 1 + \frac{3}{2}x^{\frac{1}{2}} + \frac{1}{2}x^{-\frac{3}{2}}$

(c) When
$$x = 4$$
, $\frac{dy}{dx} = 1 + \frac{3}{2} \times 2 + \frac{1}{2} \times \frac{1}{4\frac{3}{2}} = 1 + 3 + \frac{1}{16} = 4\frac{1}{16}$

Differentiation Exercise I, Question 11

Question:

Differentiate with respect to *x*:

$$2x^3 + \sqrt{x} + \frac{x^2 + 2x}{x^2}$$
 [E]

Solution:

Let $y = 2x^3 + \sqrt{x} + \frac{x^2 + 2x}{x^2}$ $\Rightarrow \quad y = 2x^3 + x^{\frac{1}{2}} + \frac{x^2}{x^2} + \frac{2x}{x^2}$ $\Rightarrow \quad y = 2x^3 + x^{\frac{1}{2}} + 1 + 2x^{-1}$ $\frac{dy}{dx} = 6x^2 + \frac{1}{2}x^{-\frac{1}{2}} - 2x^{-2} = 6x^2 + \frac{1}{2\sqrt{x}} - \frac{2}{x^2}$

Differentiation Exercise I, Question 12

Question:

The volume, $V \text{ cm}^3$, of a tin of radius r cm is given by the formula $V = \pi (40r - r^2 - r^3)$. Find the positive value of r for which $\frac{dV}{dr} = 0$, and find the value of V which corresponds to this value of r. **[E]**

Solution:

 $V = \pi (40r - r^{2} - r^{3})$ $\frac{dV}{dr} = 40 \pi - 2 \pi r - 3 \pi r^{2}$ Put $\frac{dV}{dr} = 0$, then $\pi (40 - 2r - 3r^{2}) = 0$ (4 + r) (10 - 3r) = 0 $r = \frac{10}{3} \text{ or } -4$ As r is positive, $r = \frac{10}{3}$.

Substitute into the given expression for *V*:

$$V = \pi \left(40 \times \frac{10}{3} - \frac{100}{9} - \frac{1000}{27} \right) = \frac{2300}{27} \pi$$

Differentiation Exercise I, Question 13

Question:

The total surface area of a cylinder $A \text{cm}^2$ with a fixed volume of 1000 cubic cm is given by the formula $A = 2 \pi x^2 + \frac{2000}{x}$, where *x* cm is the radius. Show that when the rate of change of the area with respect to the radius is zero, $x^3 = \frac{500}{\pi}$. **[E]**

Solution:

 $A = 2 \pi x^{2} + \frac{2000}{x} = 2 \pi x^{2} + 2000x^{-1}$ $\frac{dA}{dx} = 4 \pi x - 2000x^{-2} = 4 \pi x - \frac{2000}{x^{2}}$ $When \frac{dA}{dx} = 0,$ $4 \pi x = \frac{2000}{x^{2}}$ $x^{3} = \frac{2000}{4 \pi} = \frac{500}{\pi}$

Differentiation Exercise I, Question 14

Question:

The curve with equation $y = ax^2 + bx + c$ passes through the point (1, 2). The gradient of the curve is zero at the point (2, 1). Find the values of *a*, *b* and *c*. **[E]**

Solution:

The point (1, 2) lies on the curve with equation $y = ax^2 + bx + c$. Therefore, substitute x = 1, y = 2 into the equation to give

2 = a + b + c 1

The point (2, 1) also lies on the curve. Therefore, substitute x = 2, y = 1 to give

 $1 = 4a + 2b + c^{2}$

Eliminate *c* by subtracting Equation \bigcirc – Equation \bigcirc :

-1 = 3a + b

The gradient of the curve is zero at (2, 1) so substitute x = 2 into the expression for $\frac{dy}{dx} = 0$.

As $y = ax^2 + bx + c$ $\frac{dy}{dx} = 2ax + b$ At (2,1) 0 = 4a + b

Solve Equations ③ and ④ by subtracting ④ - ③: 1 = a

Substitute a = 1 into Equation ③ to give b = -4. Then substitute a and b into Equation ① to give c = 5. Therefore, a = 1, b = -4, c = 5.

Differentiation Exercise I, Question 15

Question:

A curve *C* has equation $y = x^3 - 5x^2 + 5x + 2$.

(a) Find $\frac{dy}{dx}$ in terms of *x*.

(b) The points *P* and *Q* lie on *C*. The gradient of *C* at both *P* and *Q* is 2. The *x*-coordinate of *P* is 3.

(i) Find the *x*-coordinate of *Q*.

(ii) Find an equation for the tangent to C at P, giving your answer in the form y = mx + c, where m and c are constants.

(iii) If this tangent intersects the coordinate axes at the points R and S, find the length of RS, giving your answer as a surd. **[E]**

Solution:

 $y = x^3 - 5x^2 + 5x + 2$

(a) $\frac{dy}{dx} = 3x^2 - 10x + 5$

(b) Given that the gradient is 2, $\frac{dy}{dx} = 2$

 $3x^{2} - 10x + 5 = 2$ $3x^{2} - 10x + 3 = 0$ (3x - 1) (x - 3) = 0 $x = \frac{1}{3} \text{ or } 3$

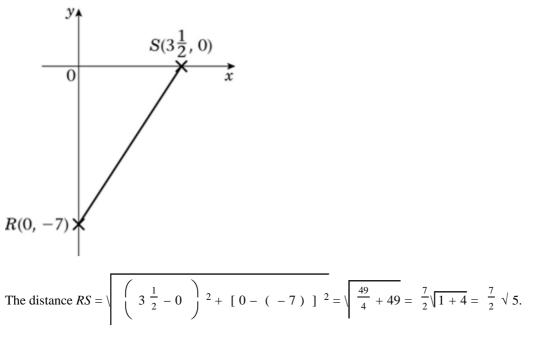
(i) At P, x = 3. Therefore, at $Q, x = \frac{1}{3}$.

(ii) At the point *P*, x = 3, $y = 3^3 - 5 \times 3^2 + 5 \times 3 + 2 = 27 - 45 + 15 + 2 = -1$ The gradient of the curve is 2. The equation of the tangent at *P* is y - (-1) = 2(x - 3)y + 1 = 2x - 6y = 2x - 7

(iii) This tangent meets the axes when x = 0 and when y = 0.

When x = 0, y = -7. When y = 0, $x = 3\frac{1}{2}$.

The tangent meets the axes at (0, -7) and $\left(3\frac{1}{2}, 0\right)$.



Differentiation Exercise I, Question 16

Question:

Find an equation of the tangent and the normal at the point where x = 2 on the curve with equation $y = \frac{8}{x} - x + 3x^2$,

x > 0. **[E]**

Solution:

 $y = \frac{8}{x} - x + 3x^2 = 8x^{-1} - x + 3x^2$ $\frac{dy}{dx} = -8x^{-2} - 1 + 6x = -\frac{8}{x^2} - 1 + 6x$ when x = 2, $\frac{dy}{dx} = -\frac{8}{4} - 1 + 12 = 9$ At x = 2, $y = \frac{8}{2} - 2 + 3 \times 2^2 = 14$

So the equation of the tangent through the point (2, 14) with gradient 9 is y - 14 = 9(x - 2)y = 9x - 18 + 14y = 9x - 4

The gradient of the normal is $-\frac{1}{9}$, as the normal is at right angles to the tangent.

So the equation of the normal is

$$y - 14 = -\frac{1}{9}(x - 2)$$

9y + x = 128

Differentiation Exercise I, Question 17

Question:

The normals to the curve $2y = 3x^3 - 7x^2 + 4x$, at the points O(0, 0) and A(1, 0), meet at the point N.

(a) Find the coordinates of *N*.

(b) Calculate the area of triangle OAN. [E]

Solution:

(a) $2y = 3x^3 - 7x^2 + 4x$ $y = \frac{3}{2}x^3 - \frac{7}{2}x^2 + 2x$ $\frac{dy}{dx} = \frac{9}{2}x^2 - 7x + 2$ At (0,0), x = 0, gradient of curve is 0 - 0 + 2 = 2. The gradient of the normal at (0,0) is $-\frac{1}{2}$.

The equation of the normal at (0,0) is $y = -\frac{1}{2}x$.

At (1,0), x = 1, gradient of curve is $\frac{9}{2} - 7 + 2 = -\frac{1}{2}$. The gradient of the normal at (1,0) is 2. The equation of the normal at (1,0) is y = 2(x - 1). The normals meet when y = 2x - 2 and $y = -\frac{1}{2}x$:

```
2x - 2 = -\frac{1}{2}x

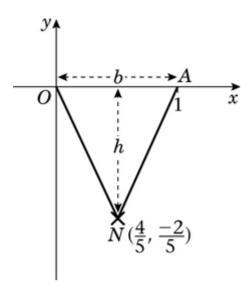
2\frac{1}{2}x = 2

x = 2 \div 2\frac{1}{2} = \frac{4}{5}

Substitute into y = 2x - 2 to obtain y = -\frac{2}{5} and check in y = -\frac{1}{2}x.
```

N has coordinates $\left(\begin{array}{c} \frac{4}{5} \\ \frac{4}{5} \end{array}, -\frac{2}{5} \right)$.

(b)



The area of $\triangle OAN = \frac{1}{2}$ base \times height base (b) = 1 height(h) = $\frac{2}{5}$ Area = $\frac{1}{2} \times 1 \times \frac{2}{5} = \frac{1}{5}$