

Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6663/01)

January 2008 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme	Marks	
1.	$3x^2 \to kx^3$ or $4x^5 \to kx^6$ or $-7 \to kx$ (k a non-zero constant)	M1	
	$3x^2 \to kx^3$ or $4x^5 \to kx^6$ or $-7 \to kx$ (k a non-zero constant) $\frac{3x^3}{3}$ or $\frac{4x^6}{6}$ (Either of these, simplified or unsimplified)	A1	
	$x^3 + \frac{2x^6}{3} - 7x$ or equivalent unsimplified, such as $\frac{3x^3}{3} + \frac{4x^6}{6} - 7x^1$	A1	
	+ C (or any other constant, e.g. $+ K$)	B1 (4) 4	
	M: Given for increasing by one the power of x in one of the three terms.		
	A marks: 'Ignore subsequent working' after a correct unsimplified version of a term is seen.		
	B: Allow the mark (independently) for an integration constant appearing at any stage (even if it appears, then disappears from the final answer).		
	This B mark can be allowed even when no other marks are scored.		
1		1	

Scheme	Marks	
(a) 2	B1	(1)
(b) x^9 seen, or (answer to (a)) ³ seen, or $(2x^3)^3$ seen.	M1	
$8x^9$	A1	(2)
		3
(b) M: Look for x^9 first if seen, this is M1.		
If not seen, look for $(answer to (a))^3$, e.g. 2^3 this would score M1 even if it does not subsequently become 8. (Similarly for other answers to (a)).		
In $(2x^3)^3$, the 2^3 is implied, so this scores the M mark.		
Negative answers:		
(a) Allow -2 . Allow ± 2 . Allow '2 or -2 '.		
(b) Allow $\pm 8x^9$. Allow ' $8x^9$ or $-8x^9$ '.		
N.B. If part (a) is wrong, it is possible to 'restart' in part (b) and to score full marks in part (b).		
	 (a) 2 (b) x⁹ seen, or (answer to (a))³ seen, or (2x³)³ seen. 8x⁹ (b) M: Look for x⁹ first if seen, this is M1. If not seen, look for (answer to (a))³, e.g. 2³ this would score M1 even if it does not subsequently become 8. (Similarly for other answers to (a)). In (2x³)³, the 2³ is implied, so this scores the M mark. Negative answers: (a) Allow -2. Allow ±2. Allow '2 or -2'. (b) Allow ±8x⁹. Allow '8x⁹ or -8x⁹'. N.B. If part (a) is wrong, it is possible to 'restart' in part (b) and to score full 	(a) 2 (b) x^9 seen, or $(answer to (a))^3$ seen, or $(2x^3)^3$ seen. M1 $8x^9$ A1 (b) M: Look for x^9 first if seen, this is M1. If not seen, look for $(answer to (a))^3$, e.g. 2^3 this would score M1 even if it does not subsequently become 8. (Similarly for other answers to (a)). In $(2x^3)^3$, the 2^3 is implied, so this scores the M mark. Negative answers: (a) Allow -2 . Allow ± 2 . Allow '2 or -2 '. (b) Allow $\pm 8x^9$. Allow '8 x^9 or $-8x^9$ '. N.B. If part (a) is wrong, it is possible to 'restart' in part (b) and to score full

Question number	Scheme			Marks	
3.	$\frac{\left(5-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)} \times \frac{\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)}$			M1	
	$= \frac{10 - 2\sqrt{3} - 5\sqrt{3} + (\sqrt{3})^2}{\dots} \qquad \left(= \frac{10 - 7\sqrt{3}}{\dots} \right)$	+3		M1	
	$\left(=13-7\sqrt{3}\right) \qquad \left(\text{Allow } \frac{13-7\sqrt{3}}{1}\right)$		(a = 13)	A1	
		$-7\sqrt{3}$	(b = -7)	A1	(4) 4
	1^{st} M: Multiplying top and bottom by $(2 - \sqrt{2})$	$\sqrt{3}$). (As shown above is suf	fficient).		
	2 nd M: Attempt to multiply out numerator (5 3 terms correct.	$(5-\sqrt{3})(2-\sqrt{3})$. Must have	at least		
	Final answer: Although 'denominator = 1' r obviously be the final answer full marks. (Also M0 M1 A1	(not an intermediate step),			
	The A marks cannot be scored unless the 1 st but this 1 st M mark <u>could</u> be implied by corr denominator.		nerator <u>and</u>		
	It <u>is</u> possible to score M1 M0 A1 A0 or M1 the numerator).	M0 A0 A1 (after 2 correct	terms in		
	Special case: If numerator is multiplied by 2^{nd} M can still be scored for at $10 - 2\sqrt{3} + 5\sqrt{3} - (\sqrt{3})^2$.	least 3 of these terms corre	ect:		
	The maximum score in the speak. Answer only: Scores no marks.	eciai case is i mark. Mo M	1 AU AU.		
	Alternative method: $5 - \sqrt{3} = (a + b\sqrt{3})(2 + \sqrt{3})$				
	$(a+b\sqrt{3})(2+\sqrt{3}) = 2a + a\sqrt{3} + 2b\sqrt{3} + 3$ 5 = 2a + 3b	M1: At least 3 terms corre	ect.		
	$-1 = a + 2b$ $a = \dots$ or $b = \dots$	M1: Form and attempt to simultaneous equation			
	a = 13, b = -7	A1, A1			

Question number	Scheme	Marks	
4.	(a) $m = \frac{4 - (-3)}{-6 - 8}$ or $\frac{-3 - 4}{8 - (-6)}$, $= \frac{7}{-14}$ or $\frac{-7}{14}$ $= -\frac{1}{2}$	M1, A1	
	Equation: $y-4 = -\frac{1}{2}(x-(-6))$ or $y-(-3) = -\frac{1}{2}(x-8)$	M1	
	x + 2y - 2 = 0 (or equiv. with <u>integer</u> coefficients must have '= 0') (e.g. $14y + 7x - 14 = 0$ and $14 - 7x - 14y = 0$ are acceptable)	A 1	(4)
	(e.g. $14y + 7x - 14 = 0$ and $14 - 7x - 14y = 0$ are acceptable) (b) $(-6 - 8)^2 + (4 - (-3))^2$	M1	
	$14^2 + 7^2$ or $(-14)^2 + 7^2$ or $14^2 + (-7)^2$ (M1 A1 may be implied by 245)	A1	
	$AB = \sqrt{14^2 + 7^2}$ or $\sqrt{7^2(2^2 + 1^2)}$ or $\sqrt{245}$		
	$7\sqrt{5}$	A1cso	(3) 7
	(a) 1 st M: Attempt to use $m = \frac{y_2 - y_1}{x_2 - x_1}$ (may be implicit in an equation of L).		
	2^{nd} M: Attempting straight line equation in any form, e.g. $y - y_1 = m(x - x_1)$,		
	$\frac{y-y_1}{x-x_1} = m$, with any value of m (except 0 or ∞) and either (-6, 4) or (8, -3).		
	N.B. It is also possible to use a different point which lies on the line, such as the midpoint of AB (1, 0.5).		
	Alternatively, the 2^{nd} M may be scored by using $y = mx + c$ with a numerical gradient and substituting $(-6, 4)$ or $(8, -3)$ to find the value of c .		
	Having coords the <u>wrong way round</u> , e.g. $y - (-6) = -\frac{1}{2}(x - 4)$, loses the		
	2^{nd} M mark <u>unless</u> a correct general formula is seen, e.g. $y - y_1 = m(x - x_1)$.		
	(b) M: Attempting to use $(x_2 - x_1)^2 + (y_2 - y_1)^2$.		
	Missing bracket, e.g. $-14^2 + 7^2$ implies M1 if no earlier version is seen. $-14^2 + 7^2$ with no further work would be M1 A0.		
	$-14^2 + 7^2$ followed by 'recovery' can score full marks.		

Question number	Scheme	Marks	
5.	(a) $\left(2x^{-\frac{1}{2}} + 3x^{-1}\right)$ $p = -\frac{1}{2}$, $q = -1$	B1, B1	(2)
	(b) $\left(y = 5x - 7 + 2x^{-\frac{1}{2}} + 3x^{-1} \right)$		
	$\left(\frac{dy}{dx}\right)$ 5 (or $5x^0$) (5x-7 correctly differentiated)	B1	
	Attempt to differentiate either $2x^p$ with a fractional p , giving kx^{p-1} ($k \neq 0$), (the fraction p could be in decimal form)		
	or $3x^q$ with a negative q, giving kx^{q-1} $(k \neq 0)$.	M1	
	$\left(-\frac{1}{2} \times 2x^{-\frac{3}{2}} - 1 \times 3x^{-2} = \right) \qquad -x^{-\frac{3}{2}}, \ -3x^{-2}$	A1ft, A1ft	(4)
			6
	(b):		
	N.B. It is possible to 'start again' in (b), so the p and q may be different from those seen in (a), but note that the M mark is for the attempt to differentiate $2x^p$ or $3x^q$.		
	However, marks for part (a) <u>cannot</u> be earned in part (b).		
	1^{st} A1ft: ft their $2x^p$, but p must be a fraction and coefficient must be simplified (the fraction p could be in decimal form).		
	2^{nd} A1ft: ft their $3x^q$, but q must be negative and coefficient must be simplified.		
	'Simplified' coefficient means $\frac{a}{b}$ where a and b are integers with no common		
	factors. Only a single + or – sign is allowed (e.g. – – must be replaced by +).		
	Having $+C$ loses the B mark.		

Question number	Scheme		Marks	
6.	(a) (2,10)	Shape: Max in 1 st quadrant and 2 intersections on positive <i>x</i> -axis	B1	
		1 and 4 labelled (in correct place) or clearly stated as coordinates	B1	
		(2, 10) labelled or clearly stated	B1	(3)
	(b) (-2, 5)	Shape: Max in 2nd quadrant and 2 intersections on negative <i>x</i> -axis	B1	
		-1 and -4 labelled (in correct place) or clearly stated as coordinates	B1	
	-4 -1	(-2, 5) labelled or clearly stated	B1	(3)
	(c) $(a =) 2$	May be implicit, i.e. $f(x+2)$	B1	(1)
	Beware: The answer to part (c) may be	e seen on the first page.		_
	(a) and (b):			7
	1 st B: 'Shape' is generous, providing the c	onditions are satisfied.		
	2^{nd} and 3^{rd} B marks are dependent upon a	sketch having been drawn.		
	2 nd B marks: Allow (0, 1), etc. (coordinate correct.	s the wrong way round) <u>if</u> the sketch is		
	Points must be labelled correctly and be in first quadrant is B0).	appropriate place (e.g. (-2, 5) in the		
	(b) <u>Special case</u> : If the graph is reflected in the <i>x</i> -axis (in scored. This requires shape and coording Shape: Minimum in 4 th quadrant	•		
	1 and 4 labelled (in correct place) or clearly stated.	early stated as coordinates,		

Question number	Scheme	Marks	
7.	(a) $1(p+1)$ or $p+1$	B1	(1)
	(b) $((a))(p+(a))$ [(a) must be a function of p]. $[(p+1)(p+p+1)]$ = $1+3p+2p^2$ (*)	M1	
		Alcso	(2)
	(c) $1+3p+2p^2=1$	M1	
	$p(2p+3)=0 p=\dots$	M1	
	$p = -\frac{3}{2}$ (ignore $p = 0$, if seen, even if 'chosen' as the answer)	A1	(3)
	(d) Noting that even terms are the same.	M1	
	This M mark can be implied by listing at least 4 terms, e.g. 1, $-\frac{1}{2}$, 1, $-\frac{1}{2}$,		
	$x_{2008} = -\frac{1}{2}$	A1	(2)
			8
	(b) M: Valid attempt to use the given recurrence relation to find x_3 . Missing brackets, e.g. $p+1(p+p+1)$ Condone for the M1, then if all terms in the expansion are correct, with working fully shown, M1 A1 is still allowed.		
	Beware 'working back from the answer', e.g. $1+3p+2p^2=(1+p)(1+2p)$ scores no marks unless the recurrence relation is justified.		
	(c) 2^{nd} M: Attempt to solve a quadratic equation in p (e.g. quadratic formula or completing the square). The equation must be based on $x_3 = 1$.		
	The attempt must lead to a non-zero solution, so just stating the zero solution <i>p</i> = 0 is M0. A: The A mark is dependent on both M marks.		
	(d) M: Can be implied by a correct answer for their p (answer is $p+1$), and can also be implied if the working is 'obscure').		
	Trivialising, e.g. $p = 0$, so every term = 1, is M0.		
	If the <u>additional</u> answer $x_{2008} = 1$ (from $p = 0$) is seen, ignore this (isw).		

Question number	Scheme	Marks	
8.	(a) $x^2 + kx + (8 - k)$ (= 0) $8 - k$ need not be bracketed $b^2 - 4ac = k^2 - 4(8 - k)$	- M1 - M1	
	$b^{2} - 4ac < 0 \implies k^{2} + 4k - 32 < 0$ (b) $(k+8)(k-4) = 0$ $k =$ $k = -8$ $k = 4$ Choosing 'inside' region (between the two k values)	M1 A1 M1	(3)
	-8 < k < 4 or $4 > k > -8$	A1 (7
	(a) 1^{st} M: Using the k from the right hand side to form 3-term quadratic in x ('= 0' can be implied), or attempting to complete the square $\left(x+\frac{k}{2}\right)^2-\frac{k^2}{4}+8-k$ (= 0) or equiv., using the k from the right hand side. For either approach, condone sign errors. 1^{st} M may be implied when candidate moves straight to the discriminant 2^{nd} M: Dependent on the 1^{st} M. Forming expressions in k (with no x 's) by using b^2 and $4ac$. (Usually seen as the discriminant b^2-4ac , but separate expressions are fine, and also allow the use of b^2+4ac . (For 'completing the square' approach, the expression must be clearly separated from the equation in x). If b^2 and $4ac$ are used in the quadratic formula, they must be clearly separated from the formula to score this mark. For any approach, condone sign errors.		
	If the wrong statement $\sqrt{b^2 - 4ac} < 0$ is seen, maximum score is M1 M1 A0. (b) Condone the use of x (instead of k) in part (b). 1st M: Attempt to solve a 3-term quadratic equation in k . It might be different from the given quadratic in part (a). Ignore the use of $<$ in solving the equation. The 1 st M1 A1 can be scored if -8 and 4 are achieved, even if stated as $k < -8$, $k < 4$. Allow the first M1 A1 to be scored in part (a). N.B. ' $k > -8$, $k < 4$ ' scores 2^{nd} M1 A0 ' $k > -8$ or $k < 4$ ' scores 2^{nd} M1 A0 ' $k > -8$ and $k < 4$ ' scores 2^{nd} M1 A1 ' $k = -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3$ ' scores 2^{nd} M0 A0 Use of \le (in the answer) loses the final mark.		

Question number	Scheme	Marks
9.	(a) $4x \to kx^2$ or $6\sqrt{x} \to kx^{\frac{3}{2}}$ or $\frac{8}{x^2} \to kx^{-1}$ (k a non-zero constant)	M1
	$f(x) = 2x^2, -4x^{\frac{3}{2}}, -8x^{-1}$ (+ C) (+ C not required)	A1, A1, A1
	At $x = 4$, $y = 1$: $1 = (2 \times 16) - \left(4 \times 4^{\frac{3}{2}}\right) - \left(8 \times 4^{-1}\right) + C$ Must be in part (a)	M1
	C = 3	A1 (6)
	(b) $f'(4) = 16 - (6 \times 2) + \frac{8}{16} = \frac{9}{2} (= m)$	M1
	Gradient of normal is $-\frac{2}{9}\left(=-\frac{1}{m}\right)$ M: Attempt perp. grad. rule.	M1
	Gradient of normal is $-\frac{2}{9} \left(= -\frac{1}{m} \right)$ (M: Attempt perp. grad. rule. Dependent on the use of their f'(x)	
	Eqn. of normal: $y-1 = -\frac{2}{9}(x-4)$ (or any equiv. form, e.g. $\frac{y-1}{x-4} = -\frac{2}{9}$)	M1 A1 (4)
	Typical answers for A1: $\left(y = -\frac{2}{9}x + \frac{17}{9}\right) \left(2x + 9y - 17 = 0\right) \left(y = -0.2x + 1.8\right)$	
	Final answer: gradient $-\frac{1}{9/2}$ or $-\frac{1}{4.5}$ is A0 (but all M marks are available).	
		10
	(a) The first 3 A marks are awarded in the order shown, and the terms must be simplified.	
	'Simplified' coefficient means $\frac{a}{b}$ where a and b are integers with no common	
	factors. Only a single $+$ or $-$ sign is allowed (e.g. $+$ $-$ must be replaced by $-$).	
	2^{nd} M: Using $x = 4$ and $y = 1$ (not $y = 0$) to form an eqn in C. (No C is M0)	
	(b) 2^{nd} M: Dependent upon use of their $f'(x)$.	
	3^{rd} M: eqn. of a straight line through (4, 1) with any gradient except 0 or ∞ .	
	Alternative for 3^{rd} M: Using $(4, 1)$ in $y = mx + c$ to find a value of c, but an equation (general or specific) must be seen.	
	Having coords the <u>wrong way round</u> , e.g. $y-4=-\frac{2}{9}(x-1)$, loses the 3 rd M	
	mark <u>unless</u> a correct general formula is seen, e.g. $y - y_1 = m(x - x_1)$.	
	N.B. The A mark is scored for <u>any</u> form of the correct equation be prepared to apply isw if necessary.	

Question number	Scheme	Marks
10.	Shape \nearrow (drawn anywhere) Minimum at (1, 0) (perhaps labelled 1 on x-axis) (-3,0) (or -3 shown on -ve x-axis) (0, 3) (or 3 shown on +ve y-axis) N.B. The max. can be anywhere. (b) $y = (x+3)(x^2-2x+1)$ $= x^3+x^2-5x+3$ ($k=3$) (c) $\frac{dy}{dx} = 3x^2+2x-5$ $3x^2+2x-5=3$ or $3x^2+2x-8=0$ $(3x-4)(x+2)=0$ $x=$ $x=\frac{4}{3}$ (or exact equiv.) , $x=-2$	
	 (a) The individual marks are independent, but the 2nd, 3rd and 4th B's are dependent upon a sketch having been attempted. B marks for coordinates: Allow (0, 1), etc. (coordinates the wrong way round) if marked in the correct place on the sketch. (b) M: Attempt to multiply out (x-1)² and write as a product with (x+3), or attempt to multiply out (x+3)(x-1) and write as a product with (x-1), or attempt to expand (x+3)(x-1)(x-1) directly (at least 7 terms). The (x-1)² or (x+3)(x-1) expansion must have 3 (or 4) terms, so should not, for example, be just x²+1. A: It is not necessary to state explicitly 'k = 3'. Condone missing brackets if the intention seems clear and a fully correct expansion is seen. (c) 1st M: Attempt to differentiate (correct power of x in at least one term). 2nd M: Setting their derivative equal to 3. 3rd M: Attempt to solve a 3-term quadratic based on their derivative. The equation could come from dy/dx = 0. N.B. After an incorrect k value in (b), full marks are still possible in (c). 	

Question number	Scheme	Marks	
11.	(a) $u_{25} = a + 24d = 30 + 24 \times (-1.5)$	M1	
	= -6	A1	(2)
	(b) $a + (n-1)d = 30 - 1.5(r-1) = 0$	M1	
	r = 21	A1	(2)
	(c) $S_{20} = \frac{20}{2} \{60 + 19(-1.5)\}\ \text{or}\ S_{21} = \frac{21}{2} \{60 + 20(-1.5)\}\ \text{or}\ S_{21} = \frac{21}{2} \{30 + 0\}$	M1 A1ft	
	= 315	A1	(3) 7
	(a) M: Substitution of $a = 30$ and $d = \pm 1.5$ into $(a + 24d)$. Use of $a + 25d$ (or any other variations on 24) scores M0.		
	(b) M: Attempting to use the term formula, equated to 0, to form an equation in r (with no other unknowns). Allow this to be called n instead of r . Here, being 'one off' (e.g. equivalent to $a + nd$), scores M1.		
	(c) M: Attempting to use the correct sum formula to obtain S_{20} , S_{21} , or, with their r from part (b), S_{r-1} or S_r . 1st A(ft): A correct numerical expression for S_{20} , S_{21} , or, with their r from part (b), S_{r-1} or S_r but the ft is dependent on an integer value of r .		
	Methods such as calculus to find a maximum only begin to score marks <u>after</u> establishing a value of r at which the maximum sum occurs. This value of r can be used for the M1 A1ft, but must be a positive integer to score A marks, so evaluation with, say, $n = 20.5$ would score M1 A0 A0.		
	<u>'Listing' and other methods</u> (a) M: Listing terms (found by a correct method), and picking the <u>25th</u> term. (There may be numerical slips).		
	(b) M: Listing terms (found by a correct method), until the zero term is seen. (There may be numerical slips).'Trial and error' approaches (or where working is unclear or non-existent) score M1 A1 for 21, M1 A0 for 20 or 22, and M0 A0 otherwise.		
	 (c) M: Listing sums, or listing and adding terms (found by a correct method), at least as far as the 20th term. (There may be numerical slips). A2 (scored as A1 A1) for 315 (clearly selected as the answer). 'Trial and error' approaches essentially follow the main scheme, beginning to score marks when trying S₂₀, S₂₁, or, with their <i>r</i> from part (b), S_{r-1} or S_r. If no working (or no legitimate working) is seen, but the answer 315 is given, allow one mark (scored as M1 A0 A0). 		
	For reference: Sums: 30, 58.5, 85.5, 111, 135, 157.5, 178.5, 198, 216, 232.5, 247.5, 261, 273, 283.5, 292.5, 300, 306, 310.5, 313.5, 315,		