edexcel

January 2005 6664 Core Mathematics C2 Mark Scheme

Question Number	Scheme	Marks
1.	$(3+2x)^5 = (3^5) + {\binom{5}{1}} 3^4 \cdot (2x) + {\binom{5}{2}} 3^3 (2x)^2 + \cdots$ $= 243 + 810x + 1080x^2$	M1 B1, A1, A1 (4)
	M1: Use of binomial leading to correct expression for $x \text{ or } x^2$ term. $\binom{n}{r}$ is ok can be implied.	

edexcel

Question Number	Scheme	Marks
2.	(a) $(\frac{5+13}{2}, \frac{-1+11}{2}), = \underline{(9,5)}$	M1, A1 (2)
	(b) $r^2 = (9-5)^2 + (51)^2 (= 52)$	M1 M1, A∜A1
	Equation of circle: $(x-9)^2 + (y-5)^2 = 52$	(4)
	(a) M1 for some use of correct formula	(6)
	(a) Without some use of contect formula: can be implied Use of $\begin{pmatrix} 1 \\ (x - x) \end{pmatrix}^{-1} (y - y)) \rightarrow (4.6)$ is M0A0	
	Use of $(\frac{1}{2}(x_A - x_B), \frac{1}{2}(y_A - y_B)) \rightarrow (4, 0)$ is MOAO	
	(b) M1 attempt to find r or r^2 . $$ their (9,5) $r = AB = \sqrt{208}$ is M0	
	2 nd M1 for $(x-9)^2 + (y-5)^2 = \text{constant.} (\sqrt[4]{their} (9,5))$ A1 $\sqrt[4]{for} (x-9)^2 + (y-5)^2 = \text{their } r^2 . (\sqrt[4]{their} (9,5) \text{ and } r^2)$ A1 for $(x-9)^2 + (y-5)^2 = 52$ only.	

Question Number	Scheme	Ma	rks
3.	$(a)\log 3^x = \log 5$	M1	
	$x = \frac{\log 5}{\log 3}$	A1	
	= 1.46	A1 ca	o (3)
	(b) $\log_2(\frac{2x+1}{x}) = 2$	M1	
	$\frac{2x+1}{x} = 2^2 \text{ or } 4$	M1	
	$2x + 1 = 4x$ $x = \frac{1}{2} \text{ or } 0.5$	M1	
	$x = \frac{1}{2}$ or 0.5	A1	(4)
			(7)
	(a) M1 a correct attempt to take logs A1 an exact expression for x that can be evaluated on a calculator		
	e.g. $x = \log_3 5$ scores M1 A0		
	(b) 1^{st} M1 for use of $\log a(\pm) \log b$ rule		
	2^{nd} M1 for getting out of logs		
	3^{14} M1 forming and solving a linear equation $\rightarrow x = \alpha$		
	A1 $\alpha = \frac{1}{2}$ or 0.5		

Question Number	Scheme	Mar	ks
4.	(a) $5(1-\sin^2 x) = 3(1+\sin x)$	M1	
	$5-5\sin^2 x = 3+3\sin x$		
	$\underline{0=5\sin^2 x+3\sin x-2}*$	A1 csc	(2)
	(b) $0 = (5\sin x - 2)(\sin x + 1)$	M1	(2)
	$\sin x = \frac{2}{5}, -1 $ (both)	A1	
	$\sin x = \frac{2}{5} \implies x = \underline{23.6}$ (\$\alpha\$ = 23.6 or 156.4)	B1	
	, $\underline{156.4}$ (180- α)	M1	
	$\sin x = -1 \implies x = \underline{270}$	B1	(5)
			(7)
	(a) M1 for use of $\cos^2 x = 1 - \sin^2 x$. Condone missing () (b) 1^{st} M1 for attempt to solve $\rightarrow \sin x =$ 1^{st} B1 for correct solution, α to $\sin x = \frac{2}{5}$. Must be 1 d.p. 2^{nd} M1 for 180- α , accept nearest degree or awrt. Answer only in (b) scores M0A0 but then could score B1M1B1 Incorrect factorisation probably only gets $\frac{2}{5}$.		

Question Number	Scheme	Marks
5.	(a) $\begin{aligned} f(2) &= 1 \Longrightarrow 8 - 2 \times 4 + 2a + b = 1\\ f(-1) &= 28 \Longrightarrow -1 - 2 - a + b = 28\\ \text{solving} \begin{cases} 2a + b = 1\\ -a + b = 31 \end{cases} \Longrightarrow \underline{a = -10, b = 21} \end{aligned}$	M1 A1 M1 A1 M1 A1 (6)
	(b) $f(3) = 27 - 18 + 3a + b$ = 27 - 18 - 30 + 21 = 0 $\therefore (x - 3)$ is a factor	M1 A1 c.s.o (2) (8)
	 (a) 1st two M marks attempting f(±2) and f(±1) A1 A1 for each correct, unsimplified equation 3rd M1 for solving two linear equations → a = or b= A1 both values (b) M1 Attempting f(3) A1 = 0 with comment 	

Question Number	Scheme	Marks
6.	(a) $ar = 7.2, ar^3 = 5.832 \implies r^2 = \frac{5.832}{7.2} (= 0.81)$ r = 0.9	M1 A1 (2)
	(b) $a = \frac{7.2}{(a)}, = \frac{8}{2}$	M1, A1 (2)
	(c) $s_{50} = \frac{8(1 - (0.9)^{50})}{1 - 0.9}$	M1
	= <u>79.588</u> (3 <i>dp</i>)	A1 c.a.o (2)
	(d) $s_{\infty} = \frac{8}{1 - 0.9} (= 80)$ $s_{\infty} - s_{50} = 80 - (c) = 0.412$ (Awrt 3 dp)	M1 A1 √ (2) (8)
	(a) M1 for full method $\rightarrow r^2$ or r N.B. $ar^2 = 7.2, ar^4 = 5.832 \rightarrow r = 0.9$ scores M1A1 in part (a) but probably M0A0 in (b).	
	(c) M1 $$ their "a", "r" in s_{50} formula	
	(d) M1 ^{$$} their "a", "r" in s_{∞} A1 ^{$$} for 80 – their (c) i.e. $$ their (c) only	

Question Number	Scheme	Marks
7.	(a) $r\theta = 8 \times 0.7, = 5.6(cm)$	M1, A1
	(b) $BC^2 = 8^2 + 11^2 - 2 \times 8 \times 11 \times \cos 0.7$ $\Rightarrow BC = 7.098 \text{ or } 7.10 \text{ (Awrt) or } \sqrt{(50.4)} \text{ or better}$ Perimeter = $(a) + (11 - 8) + BC$, = 15.7(<i>cm</i>)	(2) M1 A1 M1, A1cao (4)
	(c) $\Delta = \frac{1}{2}ab\sin c =, \frac{1}{2} \times 11 \times 8 \times \sin 0.7$	M1, A1
	Sector = $\frac{1}{2}r^2\theta$ =, $\frac{1}{2} \times 8^2 \times 0.7$	M1, A1
	Area of $R = 28.345 22.4 = 5.9455 = 5.95(cm^2)$	A1 (5)
		(11)
	 (c) Final A1 accept 3sf or better (a) and (c) M1 for quoting and attempting to use correct formula (b) 1st M1 for attempting to use cosine rule (formula given) 	

Scheme	Marks
(a) $x^2 + 6x + 10 = 3x + 20$	M1
$\Rightarrow x^{2} + 3x - 10 = 0$ (x+5)(x-2) = 0 so x =,-5 or 2 sub for y in y = 3x + 20, y = 5 or 26	M1, A1 M1, A1 (5)
(b) line – curve =, $10 - 3x - x^2$	M1, A1
$\int (10 - 3x - x^2) dx = 10x - \frac{3}{2}x^2 - \frac{x^2}{3}$	M1 A2/1/0
$\left[10x - \frac{3}{2}x^2 - \frac{x^3}{3}\right]_{-5}^2 = \left(20 - \frac{3}{2} \times 4 - \frac{8}{3}\right) - \left(-50 - \frac{3}{2} \times 25 + \frac{125}{3}\right)$	M1
$=11\frac{1}{3}45\frac{5}{6} = \frac{57\frac{1}{6}}{\underline{6}}$	A1 (7)
	(12)
$\int (x^2 + 6x + 10)dx = \frac{x^3}{3} + 3x^2 + 10x$	M1 A2
use of limits = $(\frac{8}{3} + 12 + 20) - (-\frac{125}{3} + 75 - 50) = (108\frac{1}{2})$	M1
Area of Trapezium = $\frac{1}{2}(5+26)(2-5) = (51\frac{1}{3})$	B1
Shaded area = Trapezium - $\int = 108 \frac{1}{2} - 51 \frac{1}{3} = 57 \frac{1}{6}$	M1 A1
	(7)
(a) 1^{st} M1 for putting curve = line 3^{rd} M1 for obtaining at least one <i>y</i> value. Don't need A and B identified.	
(b) $1^{\text{st}} \text{ M1 for } \pm (10 - 3x - x^2)$ $3^{\text{rd}} \text{ M1 } (2^{\text{nd}} \text{ on ALT})$ for using their limits, $$ their <i>x</i> values from (a)	
	Scheme (a) $x^{2} + 6x + 10 = 3x + 20$ $\Rightarrow x^{2} + 3x - 10 = 0$ (x + 5)(x - 2) = 0 so $x = -5$ or 2 sub for y in $y = 3x + 20$, $y = 5$ or 26 (b) line - curve =, $10 - 3x - x^{2}$ $\int (10 - 3x - x^{2}) dx = 10x - \frac{3}{2}x^{2} - \frac{x^{3}}{3}$ $\left[10x - \frac{3}{2}x^{2} - \frac{x^{3}}{3} \right]_{-5}^{2} = (20 - \frac{3}{2} \times 4 - \frac{8}{3}) - (-50 - \frac{3}{2} \times 25 + \frac{125}{3}) - (-51 - \frac{3}{2} \times 25 + \frac{125}{3}) - $

Question Number	Scheme	Marks
9.	(a) Perimeter $\Rightarrow 2x + 2y + \pi x = 80$	B1
	Area $\rightarrow A = 2xy + \frac{1}{2}\pi x^2$	B1
	$y = \frac{80 - 2x - \pi x}{2}$ and sub in to A	M1
	$\Rightarrow A = 80x - 2x^2 - \pi x^2 + \frac{1}{2}\pi x^2$	
	i.e. $A = 80x - (2 + \frac{\pi}{2})x^2 *$	A1 c.s.o (4)
	(b) $\frac{dA}{dx} = 80 - 2(2 + \frac{\pi}{2})x$	M1, A1
	$\frac{dA}{dx} = 0 \Longrightarrow 40 = (2 + \frac{\pi}{2})x \qquad \text{so } x = , \frac{40}{2 + \frac{\pi}{2}} \text{ or } \frac{80}{4 + \pi} \text{ or Awrt } 11.2$	M1, A1 (4)
	(c) $\frac{d^2A}{dx^2} = -4 - \pi$	M1
	$< 0 \therefore A$ is Max	AI (2)
	(d) Max Area = $80(b) - (2 + \frac{\pi}{2})(b)^2$	M1
	$= \underline{448(m^2)}$	A1 cao (2)
		(12)
	(b)2 nd M1 for putting $\frac{dA}{dx} = 0$ and attempting $x = \cdots$	
	(c) M1 for attempting $\frac{d^2 A}{dx^2}$ (or equivalent method)	
	A1 for a correct second derivative, < 0 and comment	