

GCE

Edexcel GCE

Core Mathematics C2 (6664)

January 2006

advancing learning, changing lives

Mark Scheme (Results)

January 2006 6664 Core Mathematics C2 Mark Scheme

Question number				Scheme			Marks	
1.	(a) 2+1-3	5 + c = 0	or	-2 + c = 0			M1	
		c = 2					A1	(2)
	(b) f(x)	= (x-1)(2x	$^{2}+3x-2$)		(x	-1)	B1	
					di	vision	M1	
		$= \dots \underbrace{(2x-1)}$	$\frac{(x+2)}{}$				M1 A1	(4)
	(c) $f\left(\frac{3}{2}\right)$	$\left(\frac{3}{2}\right) = 2 \times \frac{27}{8} + \frac{9}{4}$	$-\frac{15}{2}+c$				M1	
	Remaind	der = c + 1.5	= <u>3.5</u>		ft th	neir c	A1ft	(2) 8
	(a) N	M1 for evid	dence of subst	tituting $x = 1$ leadi	ng to linear equation i	n c		
	(b) E	31 for idea	ntifying $(x - 1)$) as a factor				
	1 st N	M1 for atte	empting to div	ide.				
		Other f	actor must be	at least $(2x^2 + \text{ or }$	ne other term)			
	2 nd N	M1 for atte	mpting to fact	torise a quadratic	resulting from attempt	ted div	ision	
	A	A1 for just	(2x-1)(x+2)	2).				
	(c) N	M1 for atte	empting $f(\pm \frac{3}{2})$). If not implied b	y $1.5 + c$, we must se	e some	e	
		substitu	ution of $\pm \frac{3}{2}$.					
	A	A1 follow	through their	c only, but it must	be a number.			

Question number	Scheme	Marks	
2.	(a) $(1+px)^9 = 1+9px$; $+\binom{9}{2}(px)^2$	B1 B1	(2)
	(b) $9p = 36$, so $p = 4$	M1 A1	
	$q = \frac{9 \times 8}{2} p^2$ or $36p^2$ or $36p$ if that follows from their (a)	M1	
	So $q = 576$	A1cao	(4) 6
	(a) 2^{nd} B1 for $\binom{9}{2}(px)^2$ or better. Condone "," not "+".		
	(b) 1^{st} M1 for a linear equation for p .		
ND	2^{nd} M1 for either printed expression, follow through their p .		
N.B.	$1+9px+36px^2$ leading to $p = 4$, $q = 144$ scores B1B0 M1A1M1A0 i.e 4/6		
3.	(a) $(AB)^2 = (4-3)^2 + (5)^2$ [= 26]	M1	
	$AB = \sqrt{26}$	A1	(2)
	(b) $p = \left(\frac{4+3}{2}, \frac{5}{2}\right)$	M1	
	$= \frac{\left(\frac{7}{2}, \frac{5}{2}\right)}{}$	A1	(2)
	(c) $(x-x_p)^2 + (y-y_p)^2 = (\frac{AB}{2})^2$ LHS	M1	
	RHS	M1	
	$(x-3.5)^2 + (y-2.5)^2 = 6.5$ oe	A1 c.a.o	(3)
	(a) M1 for an expression for AB or AB^2 N.B. $(x_1 + x_2)^2 +$ is M0		7
	(b) M1 for a full method for x_p		
	(c) $1^{\text{st}} M1$ for using their x_p and y_p in LHS		
	2^{nd} M1 for using their AB in RHS		
	N.B. $x^2 + y^2 - 7x - 5y + 12 = 0$ scores, of course, 3/3 for part (c).		
	Condone use of calculator approximations that lead to correct answer given.		

Question number			Scheme	Marks	
4.	(a) $\frac{a}{1-r}$	· = 480		M1	
	$\frac{120}{1-r}$	$= 480 \Rightarrow 120 = 480(1-r)$		M1	
	1- <i>r</i>	$=\frac{1}{4} \Longrightarrow \qquad \underline{r = \frac{3}{4}} \qquad *$		A1cso	(3)
	(b)	$120 \times \left(\frac{3}{4}\right)^4 [= 37.96875]$ $120 \times \left(\frac{3}{4}\right)^5 [= 28.4765625]$	either	M1	
	Diffe	erence = 9.49	(allow \pm)	A1	(2)
	(c) $S_7 =$	$\frac{120(1-(0.75)^7)}{1-0.75}$		M1	
	=	415.9277	(AWRT) <u>416</u>	A1	(2)
	(d) $\frac{1200}{1200}$	$\frac{(1 - (0.75)^n)}{1 - 0.75} > 300$		M1	
		$1 - (0.75)^n > \frac{300}{480}$	(or better)	A1	
		$n > \frac{\log(0.375)}{\log(0.75)}$	(=3.409)	M1	
		$\underline{n=4}$		A1cso	(4)
					11
	(a) 1 st M1	for use of S_{∞}		For Informa	ation
	$2^{nd} M1$	substituting for a and m	oving $(1-r)$ to form linear equation in r .	$u_1 = 120$	
	(1)		n=1 5400 (2)5	$u_2 = 90$	
	(b) M1	for some correct use of	ar^{n-1} .[120($\frac{3}{4}$) ⁵ -120($\frac{3}{4}$) ⁶ is M0]	$u_3 = 67.5$	
	(c) M1	for a correct expression	(need use of a and r)	$u_4 = 50.625$	
	(C) WII	Tot a correct expression	(field use of a and r)	$S_2 = 210$	
	(d) 1 st M1	for attempting $S_n > 300$	[or = 300] (need use of a and some use of r)	-	
	$2^{nd} M1$	for valid attempt to solve	$e^{r^n} = p(r, p < 1)$, must give linear eqn in n .	$S_4 = 328.12$	5
		Any correct log form wi	ll do.	$S_5 = 366.09$	
Trial	1 st M1	for attempting at least 2	values of S_n , one $n < 4$ and one $n \ge 4$.		
&	2 nd M1	for attempting S_3 and S_4			
Imp.	1 st A1 2 nd A1	for both values correct t for $n = 4$.	o 2 s.f. or better.		

Question number		Scheme		Marks	S
5.	(a)	$\cos A\hat{O}B = \frac{5^2 + 5^2 - 6^2}{2 \times 5 \times 5}$ or		M1	
		$\sin \theta = \frac{3}{5}$ with use of $\cos 2\theta = 1 - 2\sin^2 \theta$ attempted	d		
		$=\frac{7}{25}$ *		A1cso	(2)
	(b)	$A\hat{O}B = 1.2870022$ radians	1.287 or better	B1	(1)
	(c)	Sector $= \frac{1}{2} \times 5^2 \times (b)$, $= 16.087$	(AWRT) <u>16.1</u>	M1 A1	(2)
	(d)	Triangle = $\frac{1}{2} \times 5^2 \times \sin(b)$ or $\frac{1}{2} \times 6 \times \sqrt{5^2 - 3^2}$		M1	
		Segment = (their sector) – their triangle		dM1	
		= (sector from c) $-12 = (AWRT)\underline{4.1}$	(ft their part(c))	A1ft	(3) 8
	(a)	M1 for a full method leading to $\cos A\hat{O}B$ [N.B.	Use of calculator is M0]	
	(b)	(usual rules about quoting formulae) Use of (b) in degrees is M0			
	(0)	Osc of (b) in degrees is wio			
	(d)	1 st M1 for full method for the area of triangle AOB	}		
		2 nd M1 for their sector – their triangle. Dependent	on 1 st M1 in part (d).		
		A1ft for their sector from part (c) – 12 [or 4.1 follo	owing a correct restart].		

Question number	Scheme	Marks	
6.	(a) $t = 15$ 25 30 v = 3.80 9.72 15.37 (b) $S \approx \frac{1}{2} \times 5; [0+15.37+2(1.22+2.28+3.80+6.11+9.72)]$	B1 B1 B1 B1 [M1]	(3)
	$= \frac{5}{2}[61.63] = 154.075 = AWRT 154$	A1	(3) 6
	(a) S.C. Penalise AWRT these values once at first offence, thus the following marks could be AWRT 2 dp (Max 2/3)		

Question number	Scheme	Marks	
7.	$(a) \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 10x - 4$	M1 A1 (2)	
	(b) $6x^2 - 10x - 4 = 0$	M1	
	2(3x+1)(x-2) [=0]	M1	
	$x = 2$ or $-\frac{1}{3}$ (both x values)	A1	
	Points are $(2, \frac{-10}{2})$ and $(-\frac{1}{3}, 2\frac{19}{27})$ or $(\frac{73}{27})$	A1 (4)	,
	$(c) \qquad \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 12x - 10$	M1 A1 (2)	
	(d) $x = 2 \Rightarrow \frac{d^2 y}{dx^2} (= 14) \ge 0$: $[(2, -10)]$ is a Min	M1	
	$x = -\frac{1}{3} \Longrightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} (= -14) \le 0 \therefore \left[\left(-\frac{1}{3}, \frac{73}{27} \right) \right] \text{ is a } \underline{\mathrm{Max}}$	A1 (2)	
	(a) M1 for some correct attempt to differentiate $x^n \to x^{n-1}$		
	(b) 1^{st} M1 for setting their $\frac{dy}{dx} = 0$		
	2^{nd} M1 for attempting to solve 3TQ but it must be based on their $\frac{dy}{dx}$.		
	NO marks for answers only in part (b)		
	(c) M1 for attempting to differentiate their $\frac{dy}{dx}$		
	(d) M1 for one correct use of their second derivative or a full method to		
	determine the nature of one of their stationary points		
	A1 both correct (=14 and = - 14) are not required		\perp

Question number	Scheme			Marks		
8.	(a) $\sin(\theta - \theta)$	$+30) = \frac{3}{5}$		$(\frac{3}{5} \text{ on RHS})$	B1	
	θ	+30 = 36.9		$(\alpha = AWRT 37)$	B1	
	or	=	143.1	$(180-\alpha)$	M1	
		$\theta = 6.9, 11$	3.1		A1cao	(4)
	(b)	$\tan \theta = \pm 2$	or $\sin \theta = \pm \frac{2}{\sqrt{5}}$ or $\cos \theta =$	$\pm \frac{1}{\sqrt{5}}$	B1	
	$(\tan\theta = 2 \Longrightarrow)$	$\theta = \underline{63.4}$		$(\beta = AWRT 63.4)$	B1	
		or	<u>243.4</u>	$(180 + \beta)$	M1	
	$(\tan \theta = -2 \Rightarrow$	$\theta = 116.$	<u>6</u>	$(180 - \beta)$	M1	
		or	<u>296.6</u>	(180 + their 116.6)	M1	(5)
	Not 1 d.p.: los	ALL M marks for 180 + their for 180 - their for 180+ their can score full	116.6 or 360 – their first solut marks in both parts (a). In (b) all answers are AWF	ion	+30	9
	Radians		ks for consistent work with rad e in degrees. Mixing degrees a	<u> </u>	l B marks for	

Question number	Scheme	Marks
9.	(a) $\frac{3}{2} = -2x^2 + 4x$	M1
	$4x^2 - 8x + 3 (=0)$	A1
	(2x-1)(2x-3)=0	M1
	$x = \frac{1}{2}, \frac{3}{2}$	A1 (4)
	(b) Area of $R = \int_{\frac{1}{2}}^{\frac{3}{2}} \left(-2x^2 + 4x\right) dx - \frac{3}{2}$ (for $-\frac{3}{2}$)	B1
	$\int (-2x^2 + 4x) dx = \left[-\frac{2}{3}x^3 + 2x^2 \right]$ (Allow $\pm [$], accept $\frac{4}{2}x^2$)	M1 [A1]
	$\int_{\frac{1}{2}}^{\frac{3}{2}} \left(-2x^2 + 4x \right) dx = \left(-\frac{2}{3} \times \frac{3^3}{2^3} + 2 \times \frac{3^2}{2^2} \right) - , \left(-\frac{2}{3} \times \frac{1}{2^3} + 2 \times \frac{1}{2^2} \right)$	M1 M1
	$\left(=\frac{11}{6}\right)$	
	Area of $R = \frac{11}{6} - \frac{3}{2} = \frac{1}{\underline{3}}$ (Accept exact equivalent but not 0.33)	A1cao (6)
		10
	(a) 1 st M1 for forming a correct equation 1 st A1 for a correct 3TQ (condone missing =0 but must have all terms on a 2 nd M1 for attempting to solve appropriate 3TQ	one side)
	(b) B1 for subtraction of $\frac{3}{2}$. Either "curve – line" or "integral – rectangle"	
	1 st M1 for some correct attempt at integration $(x^n \to x^{n+1})$	
	1 st A1 for $-\frac{2}{3}x^3 + 2x^2$ only i.e. can ignore $-\frac{3}{2}x$	
	2^{nd} M1 for some correct use of their $\frac{3}{2}$ as a limit in integral 3^{rd} M1 for some correct use of their $\frac{1}{2}$ as a limit in integral and subtraction	aithar way gaved
	3^{rd} M1 for some correct use of their $\frac{1}{2}$ as a limit in integral and subtraction	either way round
Special Case	<u>Line – curve</u> gets B0 but can have the other A marks provided final answer is +	$\frac{1}{3}$.

GENERAL PRINCIPLES FOR C1 & C2 MARKING

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q), \text{ where } |pq| = |c|, \text{ leading to } x = \dots$$

$$(ax^2 + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a|, \text{ leading to } x = \dots$$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $(x \pm p)^2 \pm q \pm c$, $p \ne 0$, $q \ne 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \to x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but will be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Misreads

A misread must be consistent for the whole question to be interpreted as such.

These are not common. In clear cases, please deduct the <u>first</u> 2 A (or B) marks which <u>would have been lost</u> <u>by following the scheme</u>. (Note that 2 marks is the <u>maximum</u> misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).

Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.

If in doubt please send to review or refer to Team Leader.