June 2006 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme	Marks
	$2x + \frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ (+c)	
	$= 2x^3 + 2x + 2x^{\frac{1}{2}}$	
	for some attempt to integrate $x^n \rightarrow x^{n+1}$	Total 4 marks
	1 st A1 for either $\frac{6}{3}x^3$ or $\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ or better	
	for all terms in x correct. Allow $2\sqrt{x}$ and $2x^1$. for + c, when first seen with a changed expression.	
	Critical Values	
	$(x \pm a)(x \pm b)$ with $ab=18$ or $x = \frac{7 \pm \sqrt{49 - 72}}{2}$ or	
	$(x - \frac{7}{2})^2 \pm (\frac{7}{2})^2 - 18$ (x - 9)(x + 2) or $x = \frac{7 \pm 11}{2}$ or $x = \frac{7}{2} \pm \frac{11}{2}$	
	<u>Solving Inequality</u> $x > 9$ or $x < -2$ Choosing "outside"	
		Total 4 marks

For attempting to find critical values. Factors alone are OK for M1, x = appearing somewhere for the formula and as written for completing the square Factors alone are OK . Formula or completing the $1^{st} A1$ square need x = as written. 2^{nd} M1 For choosing outside region. Can f.t. their critical values. They must have two different critical values. -2 > x > 9 is M1A0 but ignore if it follows a correct version -2 < x < 9 is M0A0 whatever the diagram looks like.

 $2^{nd} A1$ Use of \geq in final answer gets A0

estion number	Schen	ne	Marks	
	<i>y</i> †	U shape touching <i>x</i> -axis	B1	
		(-3,0)	B1	
	-3 y y x		B1	(3)
	y 9+k x	Translated parallel to <i>y</i> -axis up $(0, 9+k)$	(2)	
			Total 5	mark
	axis are given. 2 nd B1 & 3 rd B1 The -3 and 9 c M1 Follow their curve in (a)	an if other intersections with the <i>x</i> - can appear on the sketch as shown oup only. If it is not obvious do <i>y</i> -axis in (a) but doesn't in (b)		

estion number		Scheme	Marks	
(a)	-	= 4 = 3 × a ₂ - 5 = 7	B1f.t.	(2)
(b)	$a_4 = 3a_3 - 3$	$-5(=16)$ and $a_5 = 3a_4 - 5(=43)$		
	3 + 4 + 7	+ 16 + 43		
	= 73		Alc.a.o.	(3)
			Total 5	marks
	2 nd B1f.t.	Follow through their a_2 but it must be a value.		
		$3 \times 4 - 5$ is B0. Give wherever it is first seen.		
	1 st M1	For two further attempts to use of $a_{n+1} = 3a_n - 5$, wherever seen. Condone arithmetic slips		
	2 nd M1	For attempting to add 5 relevant terms (i.e. terms derived from an attempt to use the recurrence formula) or an expression. Follow through their values for		
		$a_2 - a_5$		

 $a_2 - a_5$ Use of formulae for arithmetic series is M0A0 but could get 1^{st} M1 if a_4 and a_5 are correctly attempted.

Quest numl		Scheme	Mar	ks
5.		$(y = x^4 + 6x^{\frac{1}{2}} \Rightarrow y' =) 4x^3 + 3x^{-\frac{1}{2}}$ or $4x^3 + \frac{3}{\sqrt{x}}$ $(x+4)^2 = x^2 + 8x + 16$.A1	(3)
	(0)	$\frac{(x+4)^2}{x} = x+8+16x^{-1}$ (allow 4+4 for 8)		
		$(y = \frac{(x+4)^2}{x} \Rightarrow y' =) 1 - 16x^{-2}$ o.e.	M1A1	(4)
			Total 7	marks
	(a)	1 st A1 For one correct term as printed. 2 nd A1 For both terms correct as printed.		
	(b)	$4x^3 + 3x^{-\frac{1}{2}} + c$ scores M1A1A0 1 st M1 For attempt to expand $(x+4)^2$, must have x^2, x, x^0 terms and at least 2 correct e.g. $x^2 + 8x + 8$ or $x^2 + 2x + 16$		
	ALT	1 st A1 Correct expression for $\frac{(x+4)^2}{x}$. As printed but allow $\frac{16}{x}$ and $8x^0$. 2^{nd} M1 For some correct differentiation, any term. Can follow through their simplification. N.B. $\frac{x^2 + 8x + 16}{x}$ giving rise to (2x+8)/1 is M0A0 <u>Product or Quotient rule</u> (If in doubt send to review) M2 For correct use of product or quotient rule. Apply usual rules on formulae. 1^{st} A1 For $\frac{2(x+4)}{x}$ or $\frac{2x(x+4)}{x^2}$ 2^{nd} A1 for $-\frac{(x+4)^2}{x^2}$		

Question number	Scheme	Mark	.s
6. (a)	$16 + 4\sqrt{3} - 4\sqrt{3} - (\sqrt{3})^2$ or $16 - 3$	M1	
	= 13	Alc.a.o	(2)
(b)	$\frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}}$	M1	
	$= \frac{26(4-\sqrt{3})}{13} = \frac{8-2\sqrt{3}}{13} \text{or} 8+(-2)\sqrt{3} \text{or} a=8$	A1	(2)
	and $b = -2$	Total 4	marks
(a) (b)	M1 For 4 terms, at least 3 correct e.g. $8 + 4\sqrt{3} - 4\sqrt{3} - (\sqrt{3})^2$ or $16 \pm 8\sqrt{3} - (\sqrt{3})^2$ or $16 + 3$ 4^2 instead of 16 is OK $(4 + \sqrt{3})(4 + \sqrt{3})$ scores M0A0 M1 For a correct attempt to rationalise the denominator can be implied NB $\frac{-4 + \sqrt{3}}{-4 + \sqrt{3}}$ is OK		

Question number	Scheme	Marks
7.	a + (n-1)d = k $(u_{11} =) a + 10d = 9$ k = 9 or 11	M1 A1c.a.o.
	$\frac{n}{2}[2a + (n-1)d] = 77$ or $\frac{(a+l)}{2} \times n = 77$ $l = 9$ or 11	M1
	$(S_{11} =) \frac{11}{2}(2a+10d) = 77$ or $\frac{(a+9)}{2} \times 11 = 77$	A1
	e.g. $a + 10d = 9$	
	a + 5d = 7 or $a + 9 = 14$	M1
	a = 5 and $d = 0.4$ or exact equivalent	A1 A1 Total 7 marks
	1 st M1 Use of u_n to form a linear equation in a and d . a + nd = 9 is M0A0 1 st A1 For $a + 10d = 9$.	
	2 nd M1 Use of S_n to form an equation for a and d (LHS) or in a (RHS) 2 nd A1 A correct equation based on S_n .	
	For 1^{st} 2 Ms they must write <i>n</i> or use $n = 11$. 3^{rd} M1 Solving (LHS simultaneously) or (RHS a linear equation	
	in a)	
	Must lead to $a = \dots$ or $d = \dots$ and depends on one previous M $3^{rd} A1$ for $a = 5$ $4^{th} A1$ for $d = 0.4$ (o.e.)	
	<u>ALT</u> Uses $\frac{(a+l)}{2} \times n = 77$ to get $a = 5$, gets second and third	
	M1A1 i.e. 4/7	
	Then uses $\frac{n}{2}[2a+(n-1)d] = 77$ to get d, gets 1 st M1A1 and 4 th A1	
	$\frac{MR}{MR}$ Consistent MR of 11 for 9 leading to $a = 3, d = 0.8$ scores M1A0M1A0M1A1ftA1ft	

Question number	Marks	Scheme	
8. (a)	$b^2 - 4ac = 4p$	$p^2 - 4(3p+4) = 4p^2 - 12p - 16 (=0)$	
	M1, A1		
	or $(x+p)^2$ –	$p^{2} + (3p+4) = 0 \implies p^{2} - 3p - 4(=0)$ 1) =0	
	(p-4)(p+	1) = 0	
	M1		
		p = (-1 or) 4	
	A1c.s.o. (4)		
(b)	$r = \frac{-b}{-b}$ or	$(x+p)(x+p) = 0 \implies x = \dots$	
	$x = \frac{1}{2a}$ of	$(x+p)(x+p)=0 \implies x=$	
	M1		
		x (= -p) = -4	
	Alf.t. (2)		
		6	
(a)	1 st M1	For use of $b^2 - 4ac$ or a full attempt to complete the square	
leadin	g to a 3TQ in <i>p</i>		
		May use $b^2 = 4ac$. One of b or c must be correct.	
	1 st A1	For a correct 3TQ in <i>p</i> . Condone missing "=0" but all 3 terms	
must t	e on one side		
	2 nd M1	For attempt to solve their 3TQ leading to $p = \dots$	
	2 nd A1	For $p = 4$ (ignore $p = -1$).	
		$b^2 = 4ac$ leading to $p^2 = 4(3p+4)$ and then "spotting" $p = 4$	
scores	4/4.		
(b)	M1	For a full method leading to a repeated root $x = \dots$	

A1f.t. For x = -4 (- their p)

Trial and Improvement

M2 factorize.	For substituting values of p into the equation and attempting to
	(Really need to get to $p = 4$ or -1)
A2c.s.o.	Achieve $p = 4$. Don't give without valid method being seen.

Question number	Sch Marks	neme	
9. (a)	f(x) = x[(x-6)(x-2)+3] or	$x^3 - 6x^2 - 2x^2 + 12x + 3x = x($	
	M1		
	$f(x) = x(x^2 - 8x + 15)$	b = -8 or $c = 15$	
	A1		
		both and <i>a</i>	
= 1	A1 (3)		
	$(x^2 - 9x + 15) = (x - 5)(x - 2)$		
(0)	$(x^2 - 8x + 15) = (x - 5)(x - 3)$ M1		
	f(x) = x(x-5)(x-3)		
	A1 (2) $A(x - 5)(x - 5)$		
(c)			
		Shape	
	B1 ▲		
	y 0 3	their 3 <u>or</u> their 5 B1f.t.	

		<u>both</u> the	ir 3 and their 5 B1f.t.	(3)
				and (0,0) by
implication				
	0	3	5 x	

8

(a) M1 for a correct method to get the factor of x. x(as printed is the minimum.

 $1^{\text{st}} A1 \text{ for } b = -8 \text{ or } c = 15.$

-8 comes from -6-2 and must be coefficient of x, and 15 from $6x^2+3$ and must have no xs.

 2^{nd} A1 for a = 1, b = -8 and c = 15. Must have $x(x^2 - 8x + 15)$.

(b) M1 for attempt to factorise their 3TQ from part (a).

A1 for all 3 terms correct. They must include the *x*.

For part (c) they must have <u>at most</u> 2 non-zero roots of their f(x) = 0 to

- ft their 3 and their 5.

(c) $1^{\text{st}} B1$ for correct shape (i.e. from bottom left to top right and two turning points.) $2^{\text{nd}} B1 \text{f.t.}$ for crossing at their 3 or their 5 indicated on graph or in text.

 3^{rd} B1f.t. if graph passes through (0, 0) [needn't be marked] and both

their 3 and their 5.

Question	Marks	Scheme	
number	Iviai KS		
10.(a)	$f(x) = \frac{2x^2}{2} + \frac{3}{2}$	$\frac{3x^{-1}}{-1}(+c) \qquad \qquad -\frac{3}{x} \text{ is OK}$	
	M1A1	15 3	
1	$(3, 7\frac{1}{2})$ gives	$\frac{15}{2} = 9 - \frac{5}{3} + c$ 3 ² or 3 ⁻¹ are OK instead of 9 or	
$\frac{1}{3}$	M1A1f.t.	1	
	A1	$c = -\frac{1}{2}$	
(b)	$f(-2) = 4 + \frac{3}{2}$		
	B1c.s.o.	(1)	
(c)	$m = -4 + \frac{3}{4}$,	= -3.25	
	M1,A1	langent is: $y - 5 = -3.25(x + 2)$	
	$\frac{4y+13x+6=0}{A1}$ (4)	<u>)</u> o.e.	
		10	
(a)	1^{st}M1	for some attempt to integrate $x^n \rightarrow x^{n+1}$	
	1 st A1 2 nd M1	for both <i>x</i> terms as printed or better. Ignore $(+c)$ here. for use of $(3, 7\frac{1}{2})$ or $(-2, 5)$ to form an equation for <i>c</i> . There	
	be some correct	•	
terms	of function nee 2 nd A1f.t.	for a correct equation for c . Follow through their integration. They must tidy up fraction/fraction and signs (e.g to +).	
(b) f(3)=7	B1cso .5.	If (-2, 5) is used to find c in (a) B0 here unless they verify	
(c)	1 st M1	for attempting $m = f'(\pm 2)$	
	1 st A1	for $-\frac{13}{4}$ or -3.25	

 2^{nd} M1 for attempting equation of tangent at (-2, 5), f.t. their *m*, based on $\frac{dy}{dx}$.

 $2^{nd} A1$ o.e. must have *a*, *b* and *c* integers and = 0.

Treat (a) and (b) together as a batch of 6 marks.

Question	N Scheme Marks	
number		
11.(a)	$m = \frac{8-2}{11+1} (=\frac{1}{2})$ M1 A1	
	$m = \frac{11+1}{11+1} (-2)$ M1 A1 $y-2 = \frac{1}{2}(x1) \text{or} y-8 = \frac{1}{2}(x-11) \text{o.e.}$ M1	
	M1 $y = \frac{1}{2}x + \frac{5}{2}$ accept exact equivalents A1c.a.o. (4)	
e.g. $\frac{6}{12}$	$\frac{1}{2}$ A1c.a.o. (4)	
(b)	Gradient of $l_2 = -2$	
	M1	
	Equation of $l_2: y - 0 = -2(x - 10)$ [$y = -2x + 20$]	
	M1 $\frac{1}{2}x + \frac{5}{2} = -2x + 20$	
	M1	
	x = 7 and $y = 6$ depend on all 3	
Ms	A1, A1 (5)	
(c)	$RS^{2} = (10-7)^{2} + (0-6)^{2} (= 3^{2} + 6^{2})$	
	M1	
	$RS = \sqrt{45} = 3\sqrt{5} (*)$	
	A1c.s.o. (2)	
(d)	$PQ = \sqrt{12^2 + 6^2}$, = $6\sqrt{5}$ or $\sqrt{180}$ or $PS = 4\sqrt{5}$ and $SQ = 2\sqrt{5}$	
	M1,A1	
	Area = $\frac{1}{2}PQ \times RS = \frac{1}{2}6\sqrt{5} \times 3\sqrt{5}$	
	dM1	

= 45A1 c.a.o. (4)

15

(a)	1 st M1	for attempting $\frac{y_1 - y_2}{x_1 - x_2}$, must be y over x. No formula condone
one si	gn slip, but if	formula is quoted then there must be some
correct substitution.		formula is quoted then there must be some
conce	1^{st}A1	for a fully correct supression needs't be simplified
		for a fully correct expression, needn't be simplified.
	2 nd M1	for attempting to find equation of l_1 .
(b)	1 st M1	for using the perpendicular gradient rule
	2^{nd} M1	for attempting to find equation of l_2 . Follow their gradient
	2 1011	for all input is to find equation of v_2 . For own then Station
provid	ded different. 3 rd M1	
	3 ^{°°} M1	for forming a suitable equation to find <i>S</i> .
(c)	M1	for expression for RS or RS^2 . Ft their S coordinates
(d)	1 st M1	for expression for PQ or PQ^2 .
· /		
$PQ^2 =$	$=12^2 + 6^2$ is M ²	1 but $PQ = 12^2 + 6^2$ is M0
		Allow one numerical slip.
	$2^{nd} dM1$	for a full, correct attempt at area of triangle. Dependent on
previous M1.		
PICVIC	Jub 1111.	