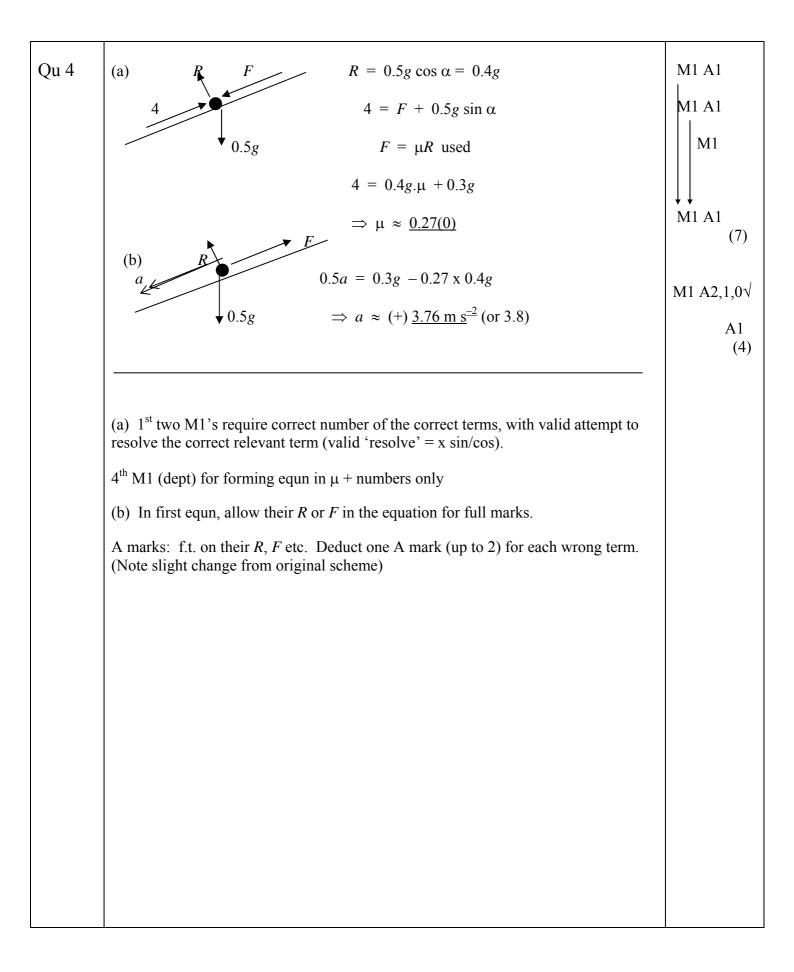


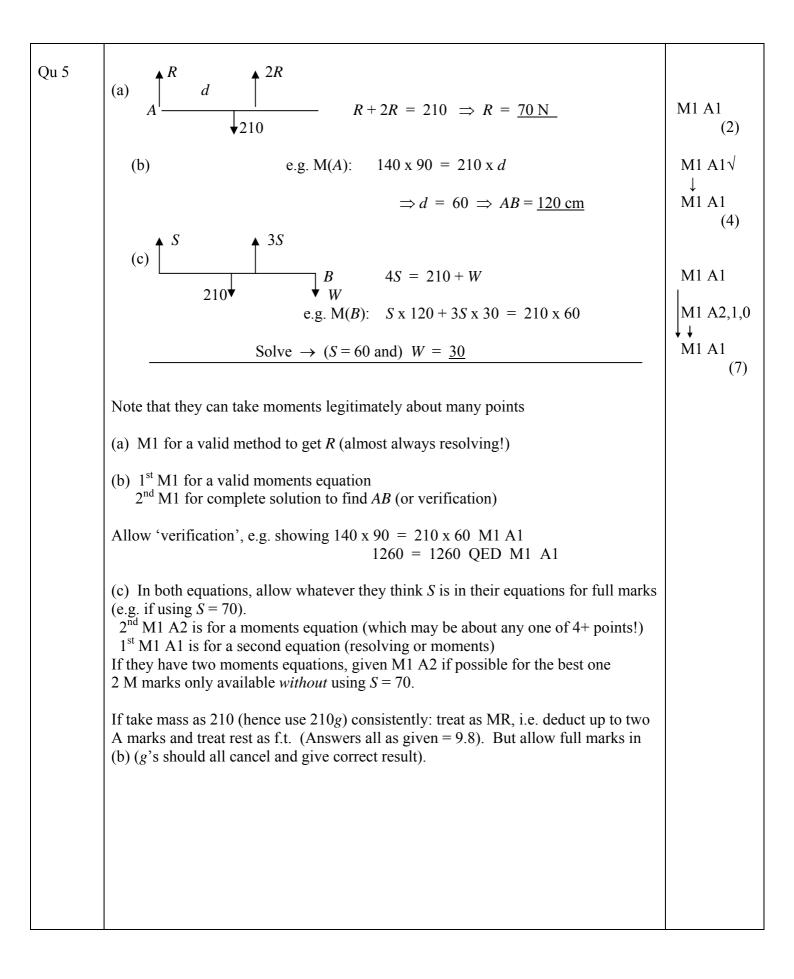
GCE Edexcel GCE Mechanics M1 (6677)

June 2006

Mark Scheme (Results) advancing learning, changing lives

edexcel


June 2006 6677 Mechanics M1 Mark Scheme


Question Number	Scheme	Marks
Qu 1	 (a) Constant acceleration (b) Constant speed/velocity (c) Distance = 1/2 (2 + 5) x 3, + (4 x 5) = <u>30.5 m</u> 	B1 (1) B1 (1) M1 A1, B1 A1 (4)
	 (a) and (b) Accept 'steady' instead of 'constant. Allow 'o.e.' (= 'or equivalent') within reason! But must have idea of constant. 'constant speed and constant acceleration' for (a) or (b) is B0 (c) M1 for valid attempt at area of <i>this</i> trap. as area of a trap. Or this trap. as = triangle + rectangle, i.e. correct formula used with at most a slip in numbers. B1 for area of rectangle as 5 x 4 Treating whole as a single const acceln situation, or whole as a single trapezium, is M0. If assume that top speed is 5.1 or 5.2, allow full marks on f.t. basis (but must be consistent) 	

edex	cel	

	000/	
Qu 2	$\begin{array}{c} (a) \qquad 6 \xrightarrow{0.4} \\ v \xrightarrow{0.4} \\ \end{array} \qquad \begin{array}{c} 0.4 \\ \end{array} \qquad \begin{array}{c} 0 \\ 0.3 \\ \end{array} \qquad \begin{array}{c} 0 \\ 3 \end{array} \qquad \begin{array}{c} 3 \end{array}$	
	CLM: $0.4 \ge 6 - 0.3 \ge 2 = 0.4 \ge v + 0.3 \ge 3$	M1 A1
	$\Rightarrow v = (+) \underline{2.25 \text{ m s}^{-1}}$	A1
	$(+, \Rightarrow)$ direction unchanged	$\begin{array}{c} A1 \\ (4) \end{array}$
	(b) $I = 0.3 \text{ x} (2+3) = 1.5, \text{ Ns (o.e.)}$	M1 A1, B1 (3)
	 (a) M1 for 4 term equation dimensionally correct (± g). A1 correct A1 answer must be positive A1 f.t. – accept correct answer from correct working without justification; if working is incorrect allow f.t. from a clear diagram with answer consistent with their statement; also allow A1 if their ans is +ve and they say direction unchanged. (b) M1 – need (<i>one</i> mass) x (sum <i>or</i> difference of the two speeds associated with the mass chosen) A1 – answer must be positive B1 allow o.e. e.g. kg m s⁻¹ 	

Question Number	Scheme	Marks
Qu 3	(a) $AB: 50 = 2 \times 22.5 + \frac{1}{2} a.4$	M1 A1
	$\Rightarrow a = \underline{2.5 \text{ m s}}^{=2}$	A1 (3)
	(b) $v^2 = 22.5^2 + 2 \ge 2.5 \ge 100$	M1 A1 $$
	$\Rightarrow v \approx \underline{31.7(2) \text{ m s}}^{-1}$	A1 (3)
	(c) $v_B = 22.5 + 2 \times 2.5 = 27.5$ (must be used)	(3) M1 ↓
	$31.72 = 27.5 + 2.5t OR \ 50 = 27.5t + \frac{1}{2} \times 2.5t^{2}$ OR \ 50 = $\frac{1}{2} (27.5 + 31.72)t$	M1 A1√
	$\Rightarrow t \approx 1.69 \text{ s}$	A1 (4)
	OR $31.72 = 22.5 + 2.5T$ OR $100 = 22.5t + \frac{1}{2} \times 2.5T^2$	M1 A1√
	$\Rightarrow T \approx 3.69$	\downarrow
	$\Rightarrow t \approx 3.69 - 2 = \underline{1.69 \text{ s}}$	M1 A1 (4)
	OR $50 = 31.7t - \frac{1}{2} \times 2.5t^2$	M2 A1 $$
	Solve quadratic to get $t = 1.69$ s	A1 (4)
	NB note slight changes to scheme: dependency now in (c) and new rule on accuracy of answers. (b) M1 for valid use of data (e.g. finding speed at <i>B</i> by spurious means and using this to get <i>v</i> at <i>C</i> is M0. Accept answer as AWRT 31.7 In (b) and (c), f.t. A marks are for f.t. on wrong <i>a</i> and/or answer from (b). (c) M1 + M1 to get to an equation in the required <i>t</i> (normally two stages, but they can do it in one via 3^{rd} alternative above) Ans is cao. Hence premature approx (-> e.g. 1.68) is A0. But if they use a 3 sf answer from (b) and then give answer to (c) as 1.7, allow full marks. And accept 2 or 3 s.f. answer or better to (c).	

	1		1		
Qu 6	(a) Car + trailer:	2100a = 2380 - 280 - 630	M1 A1		
		$= 1470 \implies a = \underline{0.7 \text{ m s}}^{-2}$	A1 (3)		
	(b) e.g. trailer:	$700 \ge 0.7 = T - 280$	M1 A1√		
		$\Rightarrow T = \frac{770 \text{ N}}{100000000000000000000000000000000000$	A1 (3)		
	(c) Car:	1400a' = 2380 - 630	M1 A1		
		$\Rightarrow a' = 1.25 \text{ m s}^{-2}$	A1		
		distance = $12 \times 4 + \frac{1}{2} \times 1.25 \times 4^2$	M1 A1√		
		= <u>58 m</u>	Al		
	(d) Same accele	ration for car and trailer	(6) B1 (1)		
	(a) M1 for a complete (potential) valid method to get <i>a</i>				
	(b) If consider car: then get $1400a = 2380 - 630 - T$. Allow M1 A1 for equn of motion for car or trailer wherever seen (e.g. in (a)). So if consider two separately in (a), can get M1 A1 from (b) for one equation; then M1 A1 from (a) for second equation, and then A1 [(a)] for <i>a</i> and A1 [(b)] for <i>T</i> .				
	(c) Must be finding a <i>new</i> acceleration here. (If they get 1.25 erroneously in (a), and then simply assume it is the same acceln here, it is M0).				
		acceleration	ut you must be convinced they are saying that it is same for both bodies. E.g. 'acceleration constant' on its own is B0 s, but 'acceleration and tension same at A and B ' is B0		

Qu 7	(a) Speed = $\sqrt{(2.5^2 + 6^2)} = 6.5 \text{ km h}^{-1}$	M1 A1 (2)
	(b) Bearing = $360 - \arctan(2.5/6) \approx 337$	M1 A1 (2)
	(c) $\mathbf{R} = (16 - 3 \times 2.5)\mathbf{i} + (5 + 3 \times 6)\mathbf{j}$	M1
	$= \underline{8.5\mathbf{i} + 23\mathbf{j}}$	A1 (2)
	(d) At 1400 $s = 11i + 17j$	M1 A1
	At time t, $s = 11i + (17 + 5t)j$	↓ M1 A1 (4)
	(e) East of $R \Rightarrow 17 + 5t = 23$	M1
	$\Rightarrow t = 6/5 \Rightarrow 1512 \text{ hours}$	A1 (2)
	(f) At 1600 $s = 11i + 27j$	
	$\mathbf{s} - \mathbf{r} = 2.5\mathbf{i} + 4\mathbf{j}$	M1
	Distance = $\sqrt{(2.5^2 + 4^2)} \approx \frac{4.72 \text{ km}}{4.72 \text{ km}}$	▼ M1 A1 (3)
	(a) M1 needs square, add and $\sqrt{1}$ correct components	
	(b) M1 for finding acute angle = $\arctan (2.5/6)$ or $\arctan (6/2.5)$ (i.e. $67^{\circ}/23^{\circ}$). Accept answer as AWRT 337.	
	(c) M1 needs non-zero initial p.v. used + 'their 3' x velocity vector	
	(d) Allow 1 st M1 even if non-zero initial p.v. not used here	
	(e) A1 is for answer as a time of the day	
	(f) 1^{st} M1 for using $t = 2$ or 4 (but <i>not</i> 200, 400, 6, 16 etc) and forming $s - r \text{ or } r - s$	