June 2009 6664 Core Mathematics C2 Mark Scheme

Question Number	Scheme		Marks
Q1	$\int \left(2x + 3x^{\frac{1}{2}}\right) dx = \frac{2x^2}{2} + \frac{3x^{\frac{3}{2}}}{\frac{3}{2}}$	M1 .	A1A1
	$\int_{1}^{4} \left(2x + 3x^{\frac{1}{2}}\right) dx = \left[x^{2} + 2x^{\frac{3}{2}}\right]_{1}^{4} = \left(16 + 2 \times 8\right) - \left(1 + 2\right)$	M1	
	= 29 (29 + <i>C</i> scores A0)	A1	(5) [5]
	1 st M1 for attempt to integrate $x \to kx^2$ or $x^{\frac{1}{2}} \to kx^{\frac{3}{2}}$.		
	1 st A1 for $\frac{2x^2}{2}$ or a simplified version.		
	$2^{nd} A1$ for $\frac{3x^{\frac{3}{2}}}{\binom{3}{2}}$ or $\frac{3x\sqrt{x}}{\binom{3}{2}}$ or a simplified version.		
	Ignore + C , if seen, but two correct terms and an <u>extra non-constant</u> term scores M1A1.	A0.	
	2 nd M1 for correct use of correct limits ('top' – 'bottom'). Must be used in a 'changed function', not just the original. (The changed function may have been found by differentiation).	у	
	Ignore 'poor notation' (e.g. missing integral signs) if the intention is clear.		
	No working: The answer 29 with no working scores M0A0A0M1A0 (1 mark).		

Ques Num		Scheme	Mark	S
Q2	(a)	$(7 \times \times x)$ or $(21 \times \times x^2)$ The 7 or 21 can be in 'unsimplified' form.	M1	
		$(7 \times \times x)$ or $(21 \times \times x^2)$ The 7 or 21 can be in 'unsimplified' form. $(2+kx)^7 = 2^7 + 2^6 \times 7 \times kx + 2^5 \times {7 \choose 2} k^2 x^2$		
		= 128; +448 kx , +672 k^2x^2 [or 672 $(kx)^2$] (If 672 kx^2 follows 672 $(kx)^2$, isw and allow A1)	B1; A1,	A1 (4)
	(b)	$6 \times 448k = 672k^2$	M1	
		k = 4 (Ignore $k = 0$, if seen)	A1	(2) [6]
	(a)	The terms can be 'listed' rather than added. Ignore any extra terms.		
		M1 for <u>either</u> the <i>x</i> term <u>or</u> the x^2 term. Requires <u>correct</u> binomial coefficient in any f with the correct power of <i>x</i> , but the other part of the coefficient (perhaps including powers of 2 and/or <i>k</i>) may be wrong or missing. <u>Allow</u> binomial coefficients such as $\binom{7}{1}, \binom{7}{1}, \binom{7}{2}, {}^7C_1, {}^7C_2$.		
		However, $448 + kx$ or similar is M0. B1, A1, A1 for the <u>simplified</u> versions seen above. Alternative:		
		Note that a factor 2^7 can be taken out first: $2^7 \left(1 + \frac{kx}{2}\right)^7$, but the mark scheme still apple	ies.	
		Ignoring subsequent working (isw): Isw if necessary after correct working: e.g. $128 + 448kx + 672k^2x^2$ M1 B1 A1 A1 $= 4 + 14kx + 21k^2x^2$ isw (Fight 1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
		(Full marks are still available in part (b)).		
	(b)	M1 for equating their coefficient of x^2 to 6 times that of x to get an equation in k, <u>or</u> equating their coefficient of x to 6 times that of x^2 , to get an equation in k. Allow this M mark even if the equation is trivial, providing their coefficients from pa have been used, e.g. $6 \times 448k = 672k$, but beware $k = 4$ following from this, which is <u>An equation in k alone</u> is required for this M mark, so e.g. $6 \times 448kx = 672k^2x^2 \implies k = 4$ or similar is M0 A0 (equation in coefficients only	s A0.	
		never seen), but e.g. $6 \times 448kx = 672k^2x^2 \implies 6 \times 448k = 672k^2 \implies k = 4$ will get M1 A1		
		(as coefficients rather than terms have now been considered)		
		The mistake $2\left(1+\frac{kx}{2}\right)^7$ would give a maximum of 3 marks: M1B0A0A0, M1A1		

Quest Numl		Scheme	Mar	ks
Q3	(a)	f(k) = -8	B1	(1)
	(b)	$f(2) = 4 \Longrightarrow 4 = (6-2)(2-k) - 8$	M1	
	<i>.</i> .	So $k = -1$	A1	(2)
	(c)	$f(x) = 3x^{2} - (2 + 3k)x + (2k - 8) = 3x^{2} + x - 10$	M1	
		=(3x - 5)(x + 2)	M1A1	(3) [6]
	(b) (c)	M1 for substituting $x = 2$ (not $x = -2$) and equating to 4 to form an equation in k. If the expression is expanded in this part, condone 'slips' for this M mark. Treat the omission of the -8 here as a 'slip' and allow the M mark. Beware: Substituting $x = -2$ and equating to 0 (M0 A0) also gives $k = -1$. Alternative; M1 for dividing by $(x - 2)$, to get $3x + ($ function of k), with remainder as a function o and equating the remainder to 4. [Should be $3x + (4 - 3k)$, remainder $-4k$]. No working: k = -1 with no working scores M0 A0. 1 st M1 for multiplying out and substituting their (constant) value of k (in either order). The multiplying-out may occur earlier. Condone, for example, sign slips, but if the 4 (from part (b)) is included in the f expression, this is M0. The 2^{nd} M1 is still available. 2^{nd} M1 for an attempt to factorise their three term quadratic (3TQ). A1 The correct answer, as a product of factors, is required. Allow $3\left(x - \frac{5}{3}\right)(x + 2)$ Ignore following work (such as a solution to a quadratic equation). If the 'equation' is solved but factors are never seen, the 2^{nd} M is not scored.		

Question Number		Scheme	М	arks
Q4	(a)	$x = 2$ gives 2.236 (allow AWRT) Accept $\sqrt{5}$	B1 B1	(2)
	(b)	$x = 2.5 \text{ gives } 2.580 \text{ (allow AWRT) Accept } 2.58$ $\left(\frac{1}{2} \times \frac{1}{2}\right), \left[(1.414 + 3) + 2(1.554 + 1.732 + 1.957 + 2.236 + 2.580)\right]$		(-) (1A1ft]
		= 6.133 (AWRT 6.13, even following minor slips)	A1	(4)
	(c)	Overestimate	B1	
		'Since the trapezia lie <u>above the curve</u> ', or an equivalent explanation, or sketch of (one or more) trapezia above the curve on a diagram (or on the given diagram, in which case there should be reference to this). (Note that there must be some reference to a trapezium or trapezia in the explanation or diagram).	dB1	(2) [8]
	(b)	B1 for $\frac{1}{2} \times \frac{1}{2}$ or equivalent.	<u> </u>	
		For the M mark, the first bracket must contain the 'first and last' values, and the second bracket (which must be multiplied by 2) must have no additional values. If the only mistake <u>omit</u> one of the values from the second bracket, this can be considered as a slip and the M r be allowed.		
		Bracketing mistake: i.e. $\left(\frac{1}{2} \times \frac{1}{2}\right)(1.414 + 3) + 2(1.554 + 1.732 + 1.957 + 2.236 + 2.580)$ scores B1 M1 A0 A0 <u>unless</u> the final answer implies that the calculation has been done correctly (then full marks can be given).		
		Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{4}(1.414+1.554) + \frac{1}{4}(1.554+1.732) + \dots + \frac{1}{4}(2.580+3)\right]$ 1 st A1ft for correct expression, ft their 2.236 and their 2.580		
	(c)	1 Titte for confect expression, it then 2.250 and then 2.500		
	$1^{st} B1$ for 'overestimate', ignoring earlier mistakes and ignoring any reasons given. $2^{nd} B1$ is dependent upon the $1^{st} B1$ (overestimate).			

Ques Num		Scheme	Marks
Q5		324 27	M1
	(b)	$r = \frac{2}{3}$ (*) $a\left(\frac{2}{3}\right)^2 = 324$ or $a\left(\frac{2}{3}\right)^5 = 96$ $a =,$ 729	A1cso (2)
			M1, A1 (2)
		$S_{15} = \frac{729 \left(1 - \left[\frac{2}{3}\right]^{15}\right)}{1 - \frac{2}{3}}, = 2182.00 $ (AWRT 2180)	M1A1ft, (3)
	(d)	$S_{\infty} = \frac{729}{1 - \frac{2}{3}}, = 2187$	M1, A1 (2) [9]
	M1 for forming an equation for r^3 based on 96 and 324 (e.g. $96r^3 = 324$ scores M1 The equation must involve multiplication/division rather than addition/subtraction A1 Do not penalise solutions with working in decimals, providing these are correctly rounded or truncated to at least 2dp and the final answer 2/3 is seen. Alternative: (verification)	on. Iy	
		M1 Using $r^3 = \frac{8}{27}$ and multiplying 324 by this (or multiplying by $r = \frac{2}{3}$ three time A1 Obtaining 96 (cso). (A conclusion is not required). $324 \times \left(\frac{2}{3}\right)^3 = 96$ (no real evidence of calculation) is not quite enough and scores M1.	
	(b)	M1 for the use of a correct formula or for 'working back' by dividing by $\frac{2}{3}$ (or by the from 324 (or 5 times from 96). Exceptionally, allow M1 also for using $ar^3 = 324$ or $ar^6 = 96$ instead of $ar^2 = 324$ or for dividing by <i>r</i> three times from 324 (or 6 times from 96) but no other exceptions a	$ar^{5} = 96$, or
	(c)	M1 for use of sum to 15 terms formula with values of a and r . If the wrong power is e.g. 14, the M mark is scored only if the correct sum formula is stated.	used,
		1 st A1ft for a correct expression or correct ft their <i>a</i> with $r = \frac{2}{3}$.	
		2^{nd} A1 for awrt 2180, even following 'minor inaccuracies'.	
		Condone missing brackets round the $\frac{2}{3}$ for the marks in part (c).	
		<u>Alternative</u> :	2
	<u> </u>	M1 for adding 15 terms and 1^{st} A1ft for adding the 15 terms that ft from their <i>a</i> and	$r=\frac{2}{3}$.
	(d)	M1 for use of correct sum to infinity formula with their <i>a</i> . For this mark, if a value of different from the given value is being used, M1 can still be allowed providing	

Questi Numb		Scheme		Mar	ks
Q6	(a)	$(x-3)^2 - 9 + (y+2)^2 - 4 = 12$ Centre is (3, -2)	M1	A1,	A1
		$(x-3)^{2} + (y+2)^{2} = 12 + "9" + "4"$ $r = \sqrt{12 + "9" + "4"} = 5 \text{ (or } \sqrt{25} \text{)}$	M1	A1	(5)
	(b)	$PQ = \sqrt{(7-1)^2 + (-5-1)^2}$ or $\sqrt{8^2 + 6^2}$	M1		
		$= 10 = 2 \times \text{radius}, \therefore \text{diam.}$ (N.B. For A1, need a comment or conclusion)	A1		(2)
		[ALT: midpt. of $PQ\left(\frac{7+(-1)}{2}, \frac{1+(-5)}{2}\right)$: M1, $= (3, -2) = \text{centre: A1}$]			
		[ALT: eqn. of PQ $3x + 4y - 1 = 0$: M1, verify (3, -2) lies on this: A1]			
		[ALT: find two grads, e.g. PQ and P to centre: M1, equal \therefore diameter: A1] [ALT: show that point $S(-1, -5)$ or $(7, 1)$ lies on circle: M1			
	(c)	because $\angle PSQ = 90^\circ$, semicircle : diameter: A1]			
	(0)	<i>R</i> must lie on the circle (angle in a semicircle theorem) often <u>implied</u> by <u>a diagram</u> with <i>R</i> on the circle or by subsequent working)	B1		
		$x = 0 \Rightarrow y^2 + 4y - 12 = 0$	M1		
		$(y - 2)(y + 6) = 0$ $y = \dots$ (M is dependent on previous M)	dM1	1	
		y = -6 or 2 (Ignore $y = -6$ if seen, and 'coordinates' are not required))	A1		(4) [11]
	(a)	1 st M1 for attempt to complete square. Allow $(x \pm 3)^2 \pm k$, or $(y \pm 2)^2 \pm k$, $k \neq 0$.			
		1^{st}A1 x-coordinate 3, 2^{nd}A1 y-coordinate -2	_		
		2^{nd} M1 for a full method leading to $r =$, with their 9 and their 4, 3^{rd} A1 5 or $\sqrt{24}$	5		
		The 1 st M can be <u>implied</u> by $(\pm 3, \pm 2)$ but a full method must be seen for the 2 nd M.	`		
		Where the 'diameter' in part (b) has <u>clearly</u> been used to answer part (a), no marks in (a) but in this case the M1 (<u>not</u> the A1) for part (b) can be given for work seen in (a). Alternative),		
		$\overline{1^{\text{st}} \text{ M1 for comparing with } x^2 + y^2 + 2gx + 2fy + c} = 0$ to write down centre $(-g, -f)$			
		directly. Condone sign errors for this M mark.			
		2 nd M1 for using $r = \sqrt{g^2 + f^2 - c}$. Condone sign errors for this M mark.			
	(C)	C) $1^{\text{st}} \text{ M1 for setting } x = 0 \text{ and getting a 3TQ in } y \text{ by using eqn. of circle.}$ $2^{\text{nd}} \text{ M1 (dep.)}$ for attempt to solve a 3TQ leading to <u>at least one</u> solution for y . <u>Alternative 1</u> : (Requires the B mark as in the main scheme) 1^{st} M for using (3, 4, 5) triangle with vertices (3, -2), (0, -2), (0, y) to get a linear or			
		quadratic equation in y (e.g. $3^2 + (y+2)^2 = 25$).			
		2^{nd} M (dep.) as in main scheme, but may be scored by simply solving a linear equation Alternative 2: (Not requiring realisation that <i>R</i> is on the circle)			
		B1 for attempt at $m_{PR} \times m_{QR} = -1$, (<u>NOT</u> m_{PQ}) or for attempt at Pythag. in triangle h^{st} M1 for setting $x = 0$, i.e. (0, y), and proceeding to get a 3TQ in y. Then main scheme			
		Alternative 2 by 'verification':			
		B1 for attempt at $m_{PR} \times m_{QR} = -1$, (<u>NOT</u> m_{PQ}) or for attempt at Pythag. in triangle PQR.			
		1^{st} M1 for trying (0, 2).			
		 2nd M1 (dep.) for performing all required calculations. A1 for fully correct working and conclusion. 			
		······································			

Quest Num		Scheme	Marks
Q7	(i)	$\tan \theta = -1 \Rightarrow \qquad \theta = -45, 135$ $\sin \theta = \frac{2}{5} \Rightarrow \qquad \theta = 23.6, 156.4 \qquad (AWRT: 24, 156)$	B1, B1ft B1, B1ft (4)
	(ii)	$4\sin x = \frac{3\sin x}{\cos x}$	M1
		$4\sin x \cos x = 3\sin x \implies \sin x(4\cos x - 3) = 0$ Other possibilities (after squaring): $\sin^2 x(16\sin^2 x - 7) = 0,$ $(16\cos^2 x - 9)(\cos^2 x - 1) = 0$	M1
		$x = 0, 180 \underline{\text{seen}}$	B1, B1
		x = 41.4, 318.6 (AWRT: 41, 319)	B1, B1ft (6)
			[10]
	(i) (ii)	$1^{\text{st}} \text{ B1 for } -45 \text{ seen} \qquad (\alpha, \text{ where } \alpha < 90)$ $2^{\text{nd}} \text{ B1 for } 135 \text{ seen, } \underline{\text{or ft}} (180 + \alpha) \text{ if } \alpha \text{ is negative, or } (\alpha - 180) \text{ if } \alpha \text{ is positive.}$ If $\tan \theta = k$ is obtained from wrong working, $2^{\text{nd}} \text{ B1ft is still available.}$ $3^{\text{rd}} \text{ B1 for awrt } 24 \qquad (\beta, \text{ where } \beta < 90)$ $4^{\text{th}} \text{ B1 for awrt } 156, \underline{\text{or ft}} (180 - \beta) \text{ if } \beta \text{ is positive, or } -(180 + \beta) \text{ if } \beta \text{ is negative.}$ If $\sin \theta = k$ is obtained from wrong working, $4^{\text{th}} \text{ B1ft is still available.}$ $1^{\text{st}} \text{ M1 for use of } \tan x = \frac{\sin x}{\cos x}.$ Condone $\frac{3\sin x}{3\cos x}.$ $2^{\text{nd}} \text{ M1 for correct work leading to 2 factors (may be implied).}$	
		1 st B1 for 0, 2 nd B1 for 180. 3 rd B1 for awrt 41 (γ , where $ \gamma < 180$) 4 th B1 for awrt 319, <u>or ft</u> (360 – γ). If $\cos \theta = k$ is obtained from <u>wrong working</u> , 4 th B1ft is still available. N.B. Losing sin $x = 0$ usually gives a maximum of 3 marks M1M0B0B0B1B1 <u>Alternative:</u> (squaring both sides) 1 st M1 for squaring both sides and using a 'quadratic' identity. e.g. $16\sin^2 \theta = 9(\sec^2 \theta - 1)$ 2 nd M1 for reaching a factorised form. e.g. $(16\cos^2 \theta - 9)(\cos^2 \theta - 1) = 0$ Then marks are equivalent to the main scheme. Extra solutions, if not rejected, are penather main scheme.	llised as in
		For both parts of the question:	
		Extra solutions outside required range: Ignore	
		Extra solutions inside required range: For each <u>pair</u> of B marks, the 2 nd B mark is lost if there are two correct values and one of more extra solution(s), e.g. $\tan \theta = -1 \implies \theta = 45, -45, 135$ is B1 B0 <u>Answers in radians</u> : Loses a maximum of 2 B marks in the whole question (to be deducted at the first and	Dr
		second occurrence).	

Question Number	Scheme	Mar	ks
Q8 (a)	$\log_2 y = -3 \implies y = 2^{-3}$	M1	
	$y = \frac{1}{8}$ or 0.125	A1	(2)
(b)	$32 = 2^5$ or $16 = 2^4$ or $512 = 2^9$	M1	
	[or $\log_2 32 = 5\log_2 2$ or $\log_2 16 = 4\log_2 2$ or $\log_2 512 = 9\log_2 2$]		
	$[\text{or } \log_2 32 = \frac{\log_{10} 32}{\log_{10} 2} \text{ or } \log_2 16 = \frac{\log_{10} 16}{\log_{10} 2} \text{ or } \log_2 512 = \frac{\log_{10} 512}{\log_{10} 2}]$		
	$\log_2 32 + \log_2 16 = 9$	A1	
	$(\log x)^2 = \dots$ or $(\log x)(\log x) = \dots$ (May not be seen explicitly, so M1 may be implied by later work, and the base may be 10 rather than 2)	M1	
	$\log_2 x = 3 \implies x = 2^3 = 8$	A1	
	$\log_2 x = -3 \Rightarrow x = 2^{-3} = \frac{1}{8}$	A1ft	(5) [7]
(a) (b)	M1 for <u>getting out of logs</u> correctly. If done by change of base, $\log_{10} y = -0.903$ is insufficient for the M1, but $y = 10$ scores M1. A1 for the <u>exact</u> answer, e.g. $\log_{10} y = -0.903 \Rightarrow y = 0.12502$ scores M1 (implied) <u>Correct answer</u> with no working scores both marks. <u>Allow</u> both marks for implicit statements such as $\log_2 0.125 = -3$. 1 st M1 for expressing 32 or 16 or 512 as a power of 2, or for a change of base enabling evaluation of $\log_2 32$, $\log_2 16$ or $\log_2 512$ by calculator. (Can be implied by 5, 4 or 9 respectively). 1 st A1 for 9 (exact). 2 nd M1 for getting $(\log_2 x)^2$ = constant. The constant can be a log or a sum of logs. If written as $\log_2 x^2$ instead of $(\log_2 x)^2$, allow the M mark <u>only</u> if subsequent work implies correct interpretation. 2 nd A1 for 8 (exact). Change of base methods leading to a non-exact answer score A0. 3 rd A1ft for an answer of $\frac{1}{\text{their 8}}$. An ft answer may be non-exact. <u>Possible mistakes:</u> $\log_2(2^\circ) = \log_2(x^2) \Rightarrow x^2 = 2^\circ \Rightarrow x =$ scores M1A1(implied by 9)M0A0A0 $\log_2 512 = \log_2 x \times \log_2 x \Rightarrow x^2 = 512 \Rightarrow x =$ scores M0A0(9 never seen)M1A0A0 $\log_2 48 = (\log_2 x)^2 \Rightarrow (\log_2 x)^2 = 5.585 \Rightarrow x = 5.145$, $x = 0.194$ scores M0A0M1A0 <u>No working</u> (or 'trial and improvement'): x = 8 scores M0 A0 M1 A1 A0	A0. g	

Question Number	Scheme	Marks		
Q9 (a	(Arc length =) $r\theta = r \times 1 = r$. Can be awarded by implication from later work, e.g. $3rh$ or $(2rh + rh)$ in the <i>S</i> formula. (Requires use of $\theta = 1$).	B1		
	(Sector area =) $\frac{1}{2}r^2\theta = \frac{1}{2}r^2 \times 1 = \frac{r^2}{2}$. Can be awarded by implication from later	B1		
	work, e.g. the correct volume formula. (Requires use of $\theta = 1$). Surface area = 2 sectors + 2 rectangles + curved face			
	$(= r^2 + 3rh)$ (See notes below for what is allowed here)	M1		
	Volume = $300 = \frac{1}{2}r^2h$	B1 A1cso (5)		
(b	Sub for h: $S = r^2 + 3 \times \frac{600}{r} = r^2 + \frac{1800}{r}$ (*) dS 1800			
	$\frac{dS}{dr} = 2r - \frac{1800}{r^2} \text{or} 2r - 1800r^{-2} \text{or} 2r + -1800r^{-2}$	M1A1		
	$\frac{dS}{dr} = 0 \implies r^3 =, r = \sqrt[3]{900}, \text{ or AWRT 9.7} $ (NOT -9.7 or ±9.7)	M1, A1 (4)		
(c	$\frac{d^2S}{dr^2} = \dots$ and consider sign, $\frac{d^2S}{dr^2} = 2 + \frac{3600}{r^3} > 0$ so point is a minimum	M1, A1ft (2)		
(d	$S_{\min} = (9.65)^2 + \frac{1800}{9.65}$			
	(Using their value of r, however found, in the given S formula) = 279.65 (AWRT: 280) (Dependent on full marks in part (b))	M1 A1 (2) [13]		
(a	M1 for attempting a formula (with terms added) for surface area. May be incomplete may have extra term(s), but must have an r^2 (or $r^2\theta$) term and an rh (or $rh\theta$) term.	or wrong and		
(b	In parts (b), (c) and (d), ignore labelling of parts 1^{st} M1 for attempt at differentiation (one term is sufficient) $r^n \rightarrow kr^{n-1}$ 2^{nd} M1 for setting their derivative (a 'changed function') = 0 and solving as far as r^3 = (depending upon their 'changed function', this could be $r =$ or $r^2 =$, etc., the algebra <u>must deal with a negative power</u> of r and should be sound apart from possible <u>sign</u> errors, so that $r^n =$ is consistent with their derivative).	but		
(c	 M1 for attempting second derivative (one term is sufficient) rⁿ → krⁿ⁻¹, and considering its sign. Substitution of a value of r is not required. (Equating it to zero is M0). A1ft for a correct second derivative (or correct ft from their first derivative) and a value (e.g. > 0), and conclusion. The actual value of the second derivative, if found, can be ig score this mark as ft, their second derivative must indicate a minimum. <u>Alternative</u>: M1: Find value of dS/dr on each side of their value of r and consider sign. 	<u>10</u>). <u>d</u> a valid reason		
	A1ft: Indicate sign change of negative to positive for $\frac{dS}{dr}$, and conclude minimum.			
	Alternative:M1: Find value of S on each side of their value of r and compare with their 279.65.A1ft: Indicate that both values are more than 279.65, and conclude minimum.			