

Mark Scheme (Results)

Summer 2013

GCE Core Mathematics 2 (6664/01)

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <a href="https://www.edexcel.com">www.edexcel.com</a>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA035664
All the material in this publication is copyright
© Pearson Education Ltd 2013

# **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### **EDEXCEL GCE MATHEMATICS**

## **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{\phantom{a}}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

# **General Principles for Core Mathematics Marking**

(But note that specific mark schemes may sometimes override these general principles).

# Method mark for solving 3 term quadratic:

## 1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where  $|pq| = |c|$ , leading to  $x = (ax^2 + bx + c) = (mx + p)(nx + q)$ , where  $|pq| = |c|$  and  $|mn| = |a|$ , leading to  $x = (ax^2 + bx + c) = (mx + p)(nx + q)$ ,

### 2. Formula

Attempt to use  $\underline{\text{correct}}$  formula (with values for a, b and c).

## 3. Completing the square

Solving 
$$x^2 + bx + c = 0$$
:  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$ ,  $q \neq 0$ , leading to  $x = ...$ 

# Method marks for differentiation and integration:

#### 1. <u>Differentiation</u>

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

### 2. Integration

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

### Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

### **Exact answers**

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

## **Answers without working**

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

| Question<br>Number               | Scheme                                                                                                                                         | Marks      |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1. (a)                           | $\left\{r=\right\}\frac{2}{3}$                                                                                                                 | B1 (1)     |
| (b)                              | $\{p=\}$ 8                                                                                                                                     | B1 cao     |
| (c)                              | $\{r = \} \frac{2}{3}$ $\{p = \} 8$ $\{S_{15} = \} \frac{18(1 - (\frac{2}{3})^{15})}{1 - \frac{2}{3}}$                                         | (1)<br>M1  |
|                                  | ${S_{15} = 53.87668} \Rightarrow S_{15} = awrt 53.877$                                                                                         | A1 (2) [4] |
|                                  | Notes for Question 1                                                                                                                           |            |
| (a)                              | B1: Accept $\frac{12}{18}$ , 0.6 or 0.6 recurring, or even 0.667 (3sf) but not 0.6 or 0.67                                                     |            |
| <b>(b)</b>                       | B1: accept 8 only                                                                                                                              |            |
| (c)                              | M1: Applies this formula $S_{15} = \frac{18(1 - (\text{their } r)^{15})}{1 - (\text{their } r)}$ , can be implied by their answer. For the     | is mark    |
|                                  | they may use any value for $r$ except $r = 1$ or $r = 0$ (even 3/2 or -6 may be used)<br>A1: Answers which round to 53.877                     |            |
| Alternative<br>method for<br>(c) | M1: (Adding terms is an unlikely method for this question) Need to see 15 terms listed as 18+12+0.06165877 or can be implied by correct answer |            |
|                                  | A1: awrt 53.877 <b>Answer only</b> : 53.9 is M0A0 with no working, but 53.877 with no working is M1A1                                          |            |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks         |  |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|
| rumber             | $(2+3x)^4$ - Mark (a) and (b) together                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |  |  |  |  |  |
| 2. (a)             | $2^{4} + {}^{4}C_{1}2^{3}(3x) + {}^{4}C_{2}2^{2}(3x)^{2} + {}^{4}C_{3}2^{1}(3x)^{3} + (3x)^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |  |  |  |
| 2. (a)             | First term of 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1            |  |  |  |  |  |
|                    | $\begin{pmatrix} {}^{4}C_{1} \times \times x \end{pmatrix} + \begin{pmatrix} {}^{4}C_{2} \times \times x^{2} \end{pmatrix} + \begin{pmatrix} {}^{4}C_{3} \times \times x^{3} \end{pmatrix} + \begin{pmatrix} {}^{4}C_{4} \times \times x^{4} \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1            |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |  |  |  |
|                    | $=(16 + )96x + 216x^2 + 216x^3 + 81x^4$ Must use Binomial – otherwise A0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1 A1         |  |  |  |  |  |
|                    | A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4)           |  |  |  |  |  |
| (b)                | $(2-3x)^4 = 16 - 96x + 216x^2 - 216x^3 + 81x^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4)<br>B1ft   |  |  |  |  |  |
| (0)                | $(2-3\lambda) = 10-90\lambda + 210\lambda - 210\lambda + 81\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)           |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5             |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |  |  |  |
| Alternative        | $(2+3x)^4 = 2^4(1+\frac{3x}{2})^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |  |  |  |  |  |
| method (a)         | $24(1 + 4C(3r) + 4C(3r)^2 + 4C(3r)^3 + (3r)^4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |  |  |  |
|                    | $2^{4} \left(1 + {}^{4}C_{1} \left(\frac{3x}{2}\right) + {}^{4}C_{2} \left(\frac{3x}{2}\right)^{2} + {}^{4}C_{3} \left(\frac{3x}{2}\right)^{3} + \left(\frac{3x}{2}\right)^{4}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |  |  |  |  |  |
|                    | Scheme is applied exactly as before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |  |  |  |  |  |
| (a)                | Notes for Question 2  B1: The constant term should be 16 in their expansion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |  |  |  |  |  |
| (4.)               | M1: Two binomial coefficients must be correct and must be with the correct power of $x$ . Acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ept           |  |  |  |  |  |
|                    | ${}^4C_1$ or ${4 \choose 1}$ or 4 as a coefficient, and ${}^4C_2$ or ${4 \choose 2}$ or 6 as another Pascal's triangle may be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |  |  |  |  |  |
|                    | used to establish coefficients.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |  |  |  |
|                    | A1: Any two of the final four terms correct (i.e. two of $96x + 216x^2 + 216x^3 + 81x^4$ ) in ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | xpansion      |  |  |  |  |  |
|                    | following Binomial Method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |  |  |  |  |  |
|                    | A1: All four of the final four terms correct in expansion. (Accept answers without + signs, ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | an be         |  |  |  |  |  |
| <b>(b)</b>         | listed with commas or appear on separate lines) B1ft: Award for correct answer as printed above or <b>ft their previous answer</b> provided it has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fivo          |  |  |  |  |  |
| (b)                | terms ft and must be subtracting the $x$ and $x^3$ terms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IIVC          |  |  |  |  |  |
|                    | Allow terms in (b) to be in descending order and allow +-96x and +-216 $x^3$ in the series. (According to the series of the seri | ept           |  |  |  |  |  |
|                    | answers without + signs, can be listed with commas or appear on separate lines)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             |  |  |  |  |  |
|                    | e.g. The common error $2^4 + {}^4C_12^33x + {}^4C_22^23x^2 + {}^4C_32^13x^3 + 3x^4 = (16) + 96x + 72x^2 + 24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4x^3 + 3x^4$ |  |  |  |  |  |
|                    | would earn B1, M1, A0, A0, and if followed by $=(16)-96x+72x^2-24x^3+3x^4$ gets E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31ft so       |  |  |  |  |  |
|                    | 3/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |  |  |  |  |  |
|                    | Fully correct answer with no working can score B1 in part (a) and B1 in part (b). The question st the Binomial theorem and if there is no evidence of its use then M mark and hence A marks cannot be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |  |  |  |  |  |
|                    | Squaring the bracket and squaring again may also earn B1 M0 A0 A0 B1 if correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |  |  |  |
|                    | Omitting the final term but otherwise correct is B1 M1 A1 A0 B0ft so 3/5 If the series is divided through by 2 or a power of 2 at the final stage after an error or omission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n .           |  |  |  |  |  |
|                    | resulting in all even coefficients then apply scheme to series before this division and ignore s work (isw)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |  |  |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                | Marks                                      |  |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|
| 3. (a)             | Either (Way 1): Attempt $f(3)$ or $f(-3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Or (Way 2): Assume $a = -9$ and attempt $f(3)$ or $f(-3)$                                                                                                                                                                                      | M1                                         |  |  |  |  |
|                    | $f(3) = 54 - 45 + 3a + 18 = 0 \implies 3a = -27 \implies a = -9 *$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f(3) = 0  so  (x - 3)  is factor                                                                                                                                                                                                               | A1 * cso (2)                               |  |  |  |  |
|                    | Or (Way 3): $(2x^3 - 5x^2 + ax + 18) \div (x - 3) = 2x^2 + px$ is an expression in terms of $a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +q where $p$ is a number and $q$                                                                                                                                                                                                               | M1                                         |  |  |  |  |
|                    | Sets the remainder $18+3a+9=0$ and solves to give $a=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = -9                                                                                                                                                                                                                                           | A1* cso (2)                                |  |  |  |  |
| (b)                | Either (Way 1): $f(x) = (x-3)(2x^2 + x - 6)$ $= (x-3)(2x-3)(x+2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                | M1A1<br>M1A1<br>(4)                        |  |  |  |  |
|                    | Or (Way 2) Uses trial or factor theorem to obtain $x = -2$ uses trial or factor theorem to obtain both $x = -2$ and $x = 3$ . Puts three factors together (see notes below)  Correct factorisation: $(x - 3)(2x - 3)(x + 2)$ or $(3 - x)(3 - 2(x - 3)(x - \frac{3}{2})(x + 2)$ oe                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3/2                                                                                                                                                                                                                                            | M1<br>A1<br>M1<br>A1<br>(4)                |  |  |  |  |
|                    | Or (Way 3) No working three factors $(x-3)(2x-3)(x-3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + 2) otherwise need working                                                                                                                                                                                                                    | M1A1M1A1                                   |  |  |  |  |
| (c)                | ${3^y = 3 \Rightarrow} \underline{y = 1}$ or $g(1) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                | B1                                         |  |  |  |  |
|                    | ${3^y = 1.5 \Rightarrow \log(3^y) = \log 1.5 \text{ or } y = \log_3 1.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                | M1                                         |  |  |  |  |
|                    | ${y=0.3690702} \Rightarrow y = \text{awrt } 0.37$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                | A1 (3) [9]                                 |  |  |  |  |
| _                  | Notes for Quest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                |                                            |  |  |  |  |
| (a)                | M1 for attempting either $f(3)$ or $f(-3)$ – with <b>numbers substituted into expression</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                |                                            |  |  |  |  |
| (b)                | A1 for applying f (3) <b>correctly</b> , setting the result <b>equal to</b> result given on the paper i.e. $a = -9$ . (Do not accept $x = -9$ If they <b>assume</b> $a = -9$ and <b>verify</b> by factor theorem or division (or equivalent such as QED or a tick).  1 <sup>st</sup> M1: attempting to divide by $(x - 3)$ leading to a 3TQ to (Could divide by $(3 - x)$ , in which case the quadratic would be result of the paper i.e. $a = -9$ .                                                                                                                                                                                                                                                                                  | 9) Note that the answer is given in ision they must state $(x-3)$ is a fact beginning with the correct term, usu                                                                                                                               | part (a). <b>tor</b> for A1 nally $2x^2$ . |  |  |  |  |
| (c)                | of methods including long division, comparison of coeffice $1^{st}$ A1: usually for $2x^2 + x - 6$ Credit when seen and $2^{nd}$ M1: for a <i>valid*</i> attempt to factorise their quadratic (* Core Mathematics Marking section 1) $2^{nd}$ A1 is cao and needs all three factors together. Ignore subsequent work (such as a solution to a quadratic NB: $(x-3)(x-\frac{3}{2})(x+2)$ is M1A1M0A0, $(x-3)(x-\frac{3}{2})(x-3)(x-\frac{3}{2})(x+2)$ is M1A1M1A1. B1: $y=1$ seen as a solution – may be spotted as answer – M1: Attempt to take logs to solve $3^y = \alpha$ or even $3^{ky} = \alpha$ , bu root of $f(x) = 0$ (ft their factorization) A1: for an answer that rounds to 0.37. If a third answer is lose final A mark | eients, inspection etc. use isw if miscopied see notes on page 6 - General Prince equation.) $a(2x + 4)$ is M1A1M1A0, but - no working needed. Allow also for the third equation $a(2x + 4)$ where $a(2x + 4)$ and $a(3x + 4)$ and $a(3x + 4)$ | ciples for $g(1) = 0$ .                    |  |  |  |  |

| Question<br>Number           |                                        |                           |                           |             | Scheme                                                        |                            |                     |                 |               | Marks            |
|------------------------------|----------------------------------------|---------------------------|---------------------------|-------------|---------------------------------------------------------------|----------------------------|---------------------|-----------------|---------------|------------------|
| 4.                           | X                                      | 0                         | 0.5                       | 1           | 1.5                                                           | 2                          | 2.5                 | 3               |               |                  |
| 7.                           | <u>y</u>                               | 5                         | 4                         | 2.5         | 1.538                                                         | 1                          | 0.690               | 0.5             |               |                  |
| (a)                          | $\begin{cases} At \ x = 1 \end{cases}$ | .5, y = 1                 | .538 (only)               | )           |                                                               |                            |                     |                 |               | B1 cao           |
|                              |                                        |                           |                           |             |                                                               |                            |                     |                 |               | [1]              |
| (b)                          | 1                                      |                           |                           |             |                                                               |                            |                     |                 |               | [1]              |
|                              | $\frac{1}{2}$ × 0.5;                   |                           |                           |             |                                                               |                            |                     |                 |               | B1 oe            |
|                              | {5-                                    | +0.5+2(                   | 4 + 2.5 + t               | heir 1.538  | +1+0.690) $)$ $)$ $)$ $)$ $)$ $)$ $)$ $)$ $)$ $)$ $)$ $)$ $)$ |                            | For structu         | <u>re of </u> { | ·····};       | M1 <u>A1ft</u>   |
|                              | $\frac{1}{2} \times 0.5 \times 0.5$    | (5+0.5)                   | + 2(4 + 2                 | 5 + their 1 | .538 + 1 + 0.6                                                | $\{00\}$                   | (24.956) = 0        | $6.239$ } = av  | vrt 6.24      | A1               |
|                              | 2                                      | (6 . 5.6)                 | (                         |             |                                                               | 4                          | (= 112 0)           |                 |               | [4]              |
|                              |                                        |                           |                           |             |                                                               |                            |                     |                 |               | [די]             |
| (c)                          | Adds Are                               | a of Recta                | ingle or fir              | st integral | $= 3 \times 4$ or [                                           | $4x\big]_0^3$ to <b>pr</b> | evious ans          | wer             |               | M1               |
|                              | So require                             | ed estimat                | $e = {"6.23}$             | 9" + 12 =   | "18.239"} = "a                                                | wrt 18.24                  | " (or 12 + p        | revious ans     | swer).        | A1ft             |
|                              |                                        |                           | `                         |             | added 4 seven                                                 |                            |                     |                 |               | [2]              |
|                              |                                        |                           |                           |             | N                                                             |                            |                     |                 |               | 7                |
| (a)                          | Notes for Question 4 B1: 1.538         |                           |                           |             |                                                               |                            |                     |                 |               |                  |
| ( <b>a</b> )<br>( <b>b</b> ) |                                        |                           | 5 or $\frac{1}{4}$ or 6   | equivalent  |                                                               |                            |                     |                 |               |                  |
| ` ,                          | M1: requi                              | ires the co               | rrect {}                  | bracket s   | tructure. It ne                                               | eds the fir                | st bracket to       | contain fi      | rst y value j | <b>plus</b> last |
|                              | y value ar                             | nd the seco               | ond bracke                | t to be mu  | ltiplied by 2 a                                               | nd to be th                | ne summatio         | on of the re    | maining y     | values in        |
|                              |                                        |                           |                           |             | he only mistal<br>nd the M marl                               |                            | -                   |                 |               |                  |
|                              |                                        | -                         | -                         | _           | brackets are x                                                |                            |                     | _               | iled term ro  | offetts the      |
|                              | A1ft: for                              | the correc                | t bracket {               | } follo     | owing through                                                 | candidate                  | s v value fo        | ound in part    | t (a).        |                  |
|                              |                                        |                           | ch rounds                 | _           |                                                               |                            | J                   | 1               | · /           |                  |
|                              | _                                      | _                         |                           | used: B1    | for 0.25, M1                                                  | for $1/2 h(a$              | + <i>b</i> ) used : | 5 or 6 times    | s (and A1ft   | if it is all     |
|                              | -                                      | Then A1 a                 |                           | ska 0.25 v  | (5+0.5)+2(                                                    | 4 + 2 5 + tl               | hair 1 530 ı        | 1 + 0.600       | Scores P1     | M1 A0            |
|                              |                                        |                           |                           |             | the calculation                                               |                            |                     | ,               |               |                  |
|                              | given). A                              | n answer                  | of 20.831 t               | isually inc | licates this erro                                             | or.                        |                     | •               |               |                  |
| <b>(c)</b>                   |                                        | _                         |                           |             | egral of previous                                             |                            | _                   | -               | ntegrating 4  | 4                |
|                              |                                        | illints, and<br>12 + answ | _                         | by using    | geometry to fi                                                | na rectang                 | te and addi         | ng.             |               |                  |
| Alternative                  | Those wh                               | o do a traj               | pezium rul                |             | (b)- using the                                                |                            |                     |                 |               |                  |
| method                       | Get: M1 f                              | for "their-               | $\frac{1}{4}$ "× $\{9+4.$ | 5+2(8+6)    | 6.5 + their 5.5.                                              | 38 + 5 + 4.                | 690) = (str         | ucture mus      | t be correct  | t – allow        |
| (c)                          | one copyi                              | •                         | •                         |             |                                                               |                            |                     |                 |               |                  |
|                              | And A1ft                               | : for awrt                | 18.24 (or                 | 12 + previ  | ious answer).                                                 |                            |                     |                 |               |                  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                          | Marks      |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                    | Mark (a) and (b) together.                                                                                                                                                                                                                                      |            |
| 5. (a)             | Usually answered in radians: Uses either $\frac{1}{2}ab\sin(\text{angle})$ or $\frac{1}{2}(12)^2(\text{angle})$ or both                                                                                                                                         | M1         |
|                    | Area = $\frac{1}{2}$ (23)(12) sin 0.64 or $\frac{1}{2}$ (12) <sup>2</sup> ( $\pi$ – 0.64) {= 82.41297091 or 180.1146711}                                                                                                                                        | A1         |
|                    | Area = $\frac{1}{2}(23)(12)\sin 0.64 + \frac{1}{2}(12)^2(\pi - 0.64)$ {= 82.41297091 + 180.1146711}                                                                                                                                                             | A1         |
|                    | ${\text{Area} = 262.527642} = \text{awrt } 262.5 \text{ (m}^2) \text{ or } 262.4 \text{(m}^2) \text{ or } 262.6 \text{ (m}^2)$                                                                                                                                  | A1 (4)     |
| <b>(b)</b>         | $CDE = 12 \times (angle), = 12(\pi - 0.64) \{ \Rightarrow CDE = 30.01911 \}$                                                                                                                                                                                    | M1, A1     |
| , ,                | $AE^2 = 23^2 + 12^2 - 2(23)(12)\cos(0.64) \Rightarrow AE^2 = \text{or } AE = $ { $AE = 15.17376$ }                                                                                                                                                              | M1         |
|                    | Perimeter = 23 + 12 + 15.17376 + 30.01911                                                                                                                                                                                                                       | M1         |
|                    | = 80.19287 = awrt 80.2 (m)                                                                                                                                                                                                                                      | A1         |
|                    |                                                                                                                                                                                                                                                                 | (5)<br>[9] |
|                    | Notes for Question 5                                                                                                                                                                                                                                            |            |
| (a)                | M1: uses either area of triangle formula as given in mark scheme, or area of sector or both (mimplied by answer)                                                                                                                                                |            |
|                    | A1: one correct area expression (with <b>correct angle</b> used) $\frac{1}{2}(23)(12)\sin 0.64$ or $\frac{1}{2}(12)^2(\pi -$                                                                                                                                    | 0.64) or   |
|                    | see awrt 82.4 <b>or</b> awrt 180 (180 may be split as 226.2(semicircle) minus 46.1(small sector)) A1: two correct area expressions (with correct angles) <b>added together</b> (allow 2.5 as implyin $\pi - 0.64$ ) or see awrt 82.4 + awrt 180 ( or 226 - 46 ) | g          |
| <i>a</i> >         | A1: answers which round to 262.5 or 262.4 or 262.6                                                                                                                                                                                                              |            |
| <b>(b)</b>         | $1^{\text{st}}$ M1 for attempt to use $s = r \theta$ (any angle)<br>$1^{\text{st}}$ A1 for $\pi - 0.64$ in the formula (or 2.5)                                                                                                                                 |            |
|                    | $2^{\text{nd}}$ M1: Uses correct cosine rule to obtain $AE$ or $AE^2$ (this may appear in part (a))                                                                                                                                                             |            |
|                    | $3^{\text{rd}}$ M1( <b>independent</b> ): Perimeter = $23 + 12 + \text{their } AE + \text{their } CDE$                                                                                                                                                          |            |
|                    | 2 <sup>nd</sup> A1: awrt 80.2 (ignore units – even incorrect units)                                                                                                                                                                                             |            |
| Degrees            | anglein degrees                                                                                                                                                                                                                                                 |            |
| (a)                | Uses either $\frac{1}{2}ab\sin(\text{angle})$ or $\frac{\text{angle in degrees}}{360} \times \pi(12)^2$ or both for M1                                                                                                                                          |            |
|                    | Area = $\frac{1}{2}$ (23)(12) sin 36.7 <b>or</b> $\frac{(180 - 36.7)}{360} \times \pi (12)^2 \left\{ = awrt \ 82.4 \ or \ 180 \right\}$ A1                                                                                                                      |            |
|                    | Area = $\frac{1}{2}$ (23)(12)sin 36.7 + $\frac{(180-36.7)}{360}$ × $\pi$ (12) <sup>2</sup> {= awrt 82.4 + 180} A1                                                                                                                                               |            |
|                    | Final mark as before                                                                                                                                                                                                                                            |            |
| (b)                | $CDE = \frac{\text{Angle in degrees}}{360} \times 24\pi, = \frac{180 - 36.7}{360} \times 24\pi \{ \Rightarrow CDE = 30.01268 \}$ M1, A1                                                                                                                         |            |
|                    | Final three marks as before                                                                                                                                                                                                                                     |            |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks                       |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 6. (a)             | Seeing -4 and 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1                          |
| (b)                | $x(x+4)(x-2) = \underline{x^3 + 2x^2 - 8x}$ or $\underline{x^3 - 2x^2 + 4x^2 - 8x}$ (without simplifying)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)<br><u>B1</u>            |
|                    | $\int (x^3 + 2x^2 - 8x) dx = \frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2} \{ + c \} \qquad \text{or } \frac{x^4}{4} - \frac{2x^3}{3} + \frac{4x^3}{3} - \frac{8x^2}{2} \{ + c \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1A1ft                      |
|                    | $\left[ \frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2} \right]_{-4}^{0} = (0) - \left( 64 - \frac{128}{3} - 64 \right) \text{ or } \left[ \frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2} \right]_{0}^{2} = \left( 4 + \frac{16}{3} - 16 \right) - (0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dM1                         |
|                    | One integral = $\pm 42\frac{2}{3}$ (42.6 or awrt 42.7 ) <b>or</b> other integral = $\pm 6\frac{2}{3}$ (6.6 or awrt 6.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1                          |
|                    | Hence Area = "their $42\frac{2}{3}$ " + "their $6\frac{2}{3}$ " or Area = "their $42\frac{2}{3}$ " - "-their $6\frac{2}{3}$ "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dM1                         |
|                    | $=49\frac{1}{3} \text{ or } 49.3 \text{ or } \frac{148}{3}  (\text{NOT} - \frac{148}{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1                          |
|                    | (An answer of $=49\frac{1}{3}$ may not get the final two marks – check solution carefully)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (7)                         |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [8]                         |
| (a)                | Notes for Question 6  B1: Need both $-4$ and 2. May see $(-4,0)$ and $(2,0)$ (correct) but allow $(0,-4)$ and $(0,2)$ or $A=-4$ , $B$ indeed any indication of $-4$ and $2$ – check graph also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 2 or                      |
| (b)                | B1: Multiplies out cubic correctly (terms may not be collected, but if they are, mark collected term M1: Tries to integrate their expansion with $x^n \to x^{n+1}$ for at least one of the terms A1ft: completely correct integral <b>following through</b> from their CUBIC expansion (if only quadrat quartic this is A0) dM1: (dependent on previous M) substituting EITHER -a and 0 and subtracting either way round similarly for 0 and b. <b>If their limits</b> -a and b are used in ONE integral, apply the Special Case A1: Obtain <b>either</b> $\pm 42\frac{2}{3}$ (or 42.6 or awrt 42.7) from the integral from -4 to 0 or $\pm 6\frac{2}{3}$ (6.6 or awrt from the integral from 0 to 2; NO follow through on their cubic (allow decimal or improper equivalent and $\pm \frac{128}{3}$ or $\pm \frac{20}{3}$ ) is which as subtracting from rectangles. This will be penalized in the next two mark which will be M0A0. dM1 (depends on first method mark) Correct method to obtain shaded area so adds two positive numbers (areas) together or uses their <b>positive</b> value minus their negative value, obtained from the separate definite integrals. A1: Allow 49.3, 49.33, 49.333 etc. Must follow correct logical work with no errors seen. For full marks on this question there must be two definite integrals, from -4 to 0 and from 0 to 2, to the evaluations for 0 may not be seen. (Trapezium rule gets no marks after first two B marks) | OR below. t 6.7) alents ks, |
| (b)                | <b>Special Case: one integral only from</b> $-a$ <b>to</b> $b$ : B1M1A1 available as before, then $\left[\frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2}\right]_{-4}^2 = (4 + \frac{16}{3} - 16) - \left(64 - \frac{128}{3} - 64\right) = -6\frac{2}{3} + 42\frac{2}{3} = \dots$ <b>dM1</b> for correct use of limits $-a$ and $b$ and <b>subtracting</b> either way round. A1 for 36: NO follow through. Final M and A marks not available. Max 5/7 for part (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of their                    |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks               |  |  |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|--|--|
| 7. (i)<br>Method 1 | $\log_2\left(\frac{2x}{5x+4}\right) = -3 \text{ or } \log_2\left(\frac{5x+4}{2x}\right) = 3, \text{ or } \log_2\left(\frac{5x+4}{x}\right) = 4 \text{ (see special case 2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                  |  |  |  |  |  |  |
|                    | $\left(\frac{2x}{5x+4}\right) = 2^{-3} \text{ or } \left(\frac{5x+4}{2x}\right) = 2^{3} \text{ or } \left(\frac{5x+4}{x}\right) = 2^{4} \text{ or } \left(\log_{2}\left(\frac{2x}{5x+4}\right)\right) = \log_{2}\left(\frac{1}{8}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1                  |  |  |  |  |  |  |
|                    | $16x = 5x + 4 \implies x =$ (depends on previous Ms and must be this equation or equivalent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |  |  |  |  |  |  |
|                    | $x = \frac{4}{11}$ or exact recurring decimal $0.\dot{3}\dot{6}$ after correct work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1 cso (4)          |  |  |  |  |  |  |
| 7(i)               | $\log_2(2x) + 3 = \log_2(5x + 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |  |  |  |  |  |  |
| Method 2           | So $\log_2(2x) + \log_2(8) = \log_2(5x + 4)$ (3 replaced by $\log_2 8$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 <sup>nd</sup> M1  |  |  |  |  |  |  |
|                    | Then $\log_2(16x) = \log_2(5x + 4)$ (addition law of logs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 <sup>st</sup> M1  |  |  |  |  |  |  |
|                    | Then final M1 A1 as before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dM1A1               |  |  |  |  |  |  |
| (ii)               | $\log_a y + \log_a 2^3 = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1                  |  |  |  |  |  |  |
|                    | $\log_a 8y = 5$ Applies product law of logarithms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dM1                 |  |  |  |  |  |  |
|                    | $y = \frac{1}{8}a^5$ $y = \frac{1}{8}a^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1cao               |  |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (3)<br>[7]          |  |  |  |  |  |  |
|                    | Notes for Question 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [-]                 |  |  |  |  |  |  |
| (i)                | 1 <sup>st</sup> M1: Applying the subtraction or addition law of logarithms correctly to make <b>two</b> log <b>term</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ns in x             |  |  |  |  |  |  |
|                    | into one log term in $x$ $2^{\text{nd}} \text{ M1: For RHS of either } 2^{-3}, 2^{3}, 2^{4} \text{ or } \log_{2}\left(\frac{1}{8}\right), \log_{2} 8 \text{ or } \log_{2} 16 \text{ i.e. using connection between}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |  |  |  |  |  |  |
|                    | log base 2 and 2 to a power. This may follow an earlier error. Use of $3^2$ is M0 $3^{rd}$ dM1: Obtains <b>correct</b> linear equation in $x$ . usually the one in the scheme and attempts $x = A1$ : cso Answer of 4/11 with <b>no</b> suspect log work preceding this.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |  |  |  |  |  |
| (ii)               | M1: Applies power law of logarithms to replace $3\log_a 2$ by $\log_a 2^3$ or $\log_a 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |  |  |  |  |  |
|                    | dM1: (should not be following M0) Uses addition law of logs to give $\log_a 2^3 y = 5$ or $\log_a 8y = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                   |  |  |  |  |  |  |
| (i)                | <b>Special case 1:</b> $\log_2(2x) = \log_2(5x+4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x+4)} = -3 \Rightarrow \frac{2x}{5x+4} = 2^{-3} \Rightarrow x = \frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{4}{1}$ or    |  |  |  |  |  |  |
|                    | $\log_2(2x) = \log_2(5x+4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x+4)} = -3 \Rightarrow \log_2\frac{2x}{5x+4} = -3 \Rightarrow \frac{2x}{5x+4} = 2^{-3} \Rightarrow x = -3 \Rightarrow \frac{2x}{5x+4} = 2^{-3} \Rightarrow x = -3 \Rightarrow \log_2(2x) = \log_2(5x+4) - 3 \Rightarrow \log_2(5x+4) = -3 \Rightarrow \log_2(5x+$ | $\frac{4}{11}$ each |  |  |  |  |  |  |
|                    | attempt scores M0M1M1A0 – special case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |  |  |  |  |  |  |
|                    | Special case 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |  |  |  |  |  |  |
|                    | $\log_2(2x) = \log_2(5x + 4) - 3 \Rightarrow \log_2 2 + \log_2 x = \log_2(5x + 4) - 3$ , is M0 until the two log terms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s are               |  |  |  |  |  |  |
|                    | combined to give $\log_2\left(\frac{5x+4}{x}\right) = 3 + \log_2 2$ . This earns M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |  |  |  |  |  |  |
|                    | Then $\left(\frac{5x+4}{x}\right) = 2^4$ or $\log_2\left(\frac{5x+4}{x}\right) = \log_2 2^4$ gets second M1. Then scheme as before.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |  |  |  |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                   | Marks       |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 8. (i)             | $( \alpha  = 56.3099)$                                                                                                                                                                                   |             |
|                    | $x = {\alpha + 40 = 96.309993} = $ <b>awrt 96.3</b>                                                                                                                                                      | B1          |
|                    | $x - 40^{\circ} = -180 + "56.3099"$ or $x - 40^{\circ} = -\pi + "0.983"$                                                                                                                                 | M1          |
|                    | $x = \{-180 + 56.3099 + 40 = -83.6901\} = $ <b>awrt -83.7</b>                                                                                                                                            | A1          |
|                    |                                                                                                                                                                                                          | (3)         |
| (ii)(a)            | $\sin\theta \left(\frac{\sin\theta}{\cos\theta}\right) = 3\cos\theta + 2$                                                                                                                                | M1          |
|                    | $\left(\frac{1-\cos^2\theta}{\cos\theta}\right) = 3\cos\theta + 2$                                                                                                                                       | dM1         |
|                    | $1 - \cos^2 \theta = 3\cos^2 \theta + 2\cos \theta \implies 0 = 4\cos^2 \theta + 2\cos \theta - 1$                                                                                                       | A1 cso *    |
|                    |                                                                                                                                                                                                          | (3)         |
| <b>(b)</b>         | $\cos \theta = \frac{-2 \pm \sqrt{4 - 4(4)(-1)}}{8}$                                                                                                                                                     |             |
|                    | o                                                                                                                                                                                                        | M1          |
|                    | or $4(\cos\theta \pm \frac{1}{4})^2 \pm q \pm 1 = 0$ , or $(2\cos\theta \pm \frac{1}{2})^2 \pm q \pm 1 = 0$ , $q \ne 0$ so $\cos\theta =$                                                                |             |
|                    | One solution is 72° or 144°, Two solutions are 72° and 144°                                                                                                                                              | A1, A1      |
|                    | $\theta = \{72, 144, 216, 288\}$                                                                                                                                                                         | M1 A1       |
|                    |                                                                                                                                                                                                          | (5)<br>[11] |
|                    | Notes for Question 8                                                                                                                                                                                     | [11]        |
| <b>(i)</b>         | B1: 96.3 by any or no method                                                                                                                                                                             |             |
|                    | M1: Takes 180 degrees from arctan (1.5) or from their "96.3" May be implied by A1. (Could obtained by adding 180, then subtracting 360).                                                                 | be          |
|                    | A1: awrt –83.7                                                                                                                                                                                           |             |
|                    | Extra answers: ignore extra answers outside range. Any extra answers in range lose final A ma earned)                                                                                                    | ark (if     |
|                    | Working in radians – could earn M1 for $x - 40^{\circ} = -\pi + "0.983"$ so B0M1A0                                                                                                                       |             |
|                    | •                                                                                                                                                                                                        |             |
| (ii) (a)           | M1: uses $\tan \theta = \frac{\sin \theta}{\cos \theta}$ or equivalent in equation (not just $\tan \theta = \frac{\sin \theta}{\cos \theta}$ , with not                                                  | 0           |
|                    | argument)                                                                                                                                                                                                |             |
|                    | dM1: uses $\sin^2 \theta = 1 - \cos^2 \theta$ (quoted correctly) in equation<br>A1: completes proof correctly, with no errors to give printed answer*. Need at least three step                          | s in proof  |
|                    | and need to achieve the correct quadratic with all terms on one side and "=0"                                                                                                                            | s iii proor |
| <b>(b)</b>         |                                                                                                                                                                                                          |             |
|                    | M1: Attempts to solve quadratic by correct quadratic formula, or completion of the square . Factorisation attempts score M0.                                                                             |             |
|                    | 1 <sup>st</sup> A1: Either 72 or 144, 2 <sup>nd</sup> A1: both 72 and 144 (allow 72.0 etc.)                                                                                                              |             |
|                    | M1: 360 – "a previous solution" (provided that cos was being used) (not dependent on previous                                                                                                            | ·           |
|                    | A1: All four solutions correct (Extra solutions in range lose this A mark, but outside range - ig ( <b>Premature approximation</b> : e.g. 71.9, 144.1, 288.1 and 215.9 – lose first A1 then ft other ang |             |
|                    | Do <b>not</b> require degrees symbol for the marks                                                                                                                                                       | B103)       |
|                    | Special case: Working in radians                                                                                                                                                                         |             |
|                    | M1: as before, A1 for either $\theta = \frac{2}{5}\pi$ or $\theta = \frac{4}{5}\pi$ or decimal equivalents, and $2^{\text{nd}}$ A1: both                                                                 |             |
|                    | M1: $2\pi - \alpha_1$ or $2\pi - \alpha_2$ then A0 so 4/5                                                                                                                                                |             |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks            |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 9. (a)             | $\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = \right\} 2x - 16x^{-\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                            | M1 A1            |
|                    | $2x - 16x^{-\frac{1}{2}} = 0 \implies x^{\frac{3}{2}} = , x^{-\frac{3}{2}} = $ , or $2x - 16x^{-\frac{1}{2}}$ then squared then obtain $x^3 = [\text{or } 2x - 16x^{-\frac{1}{2}} = 0 \implies x = 4 \text{ (no wrong work seen)}]$                                                                                                                                                                                                                                    | M1               |
|                    | $(x^{\frac{3}{2}} = 8 \Rightarrow) x = 4$                                                                                                                                                                                                                                                                                                                                                                                                                              | A1               |
|                    | $x = 4$ , $y = 4^2 - 32\sqrt{4} + 20 = -28$ (ignore $y = 100$ as second answer)                                                                                                                                                                                                                                                                                                                                                                                        | M1 A1 (6)        |
| (b)                | $\left\{ \frac{d^2 y}{dx^2} = \right\} 2 + 8x^{-\frac{3}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                          | M1 A1            |
|                    | $(\frac{d^2y}{dx^2} > 0 \Rightarrow) y$ is a minimum (there should be no wrong reasoning)                                                                                                                                                                                                                                                                                                                                                                              | A1 (3) [9]       |
| (b)                | Alternative Method: Gradient Test:  M1 for finding the gradient either side of their $x$ -value from part (a).  A1 for both gradients calculated correctly to 1 significant figure, then using $< 0$ and $> 0$ responded by use of sketch or table. (See appendix for gradient values. This is <b>not ft their</b> $x$ )  A1 states minimum needs M1A1 to have been awarded.                                                                                           | <u>pectively</u> |
|                    | Notes for Question 9                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
| (a)                | 1 <sup>st</sup> M1: At least one term differentiated correctly, so $x^2 \to 2x$ , or $32\sqrt{x} \to 16x^{-\frac{1}{2}}$ , or 20 - A1: This answer or equivalent e.g. $2x - \frac{16}{\sqrt{x}}$ 2 <sup>nd</sup> M1: Sets their $\frac{dy}{dx}$ to 0, and solves to give $x^{\frac{3}{2}} = $ , $x^{-\frac{3}{2}} = or x^3 = $ after correct squaring or (NB $\left\{\frac{d^2y}{dx^2} = 0\right\}$ so $2 + 8x^{-\frac{3}{2}} = 0$ is M0)                              |                  |
|                    | N.B. Common error: Putting derivative = 0 and merely obtaining $x = 0$ is M0A0, then M0A0 two marks. (The first two marks in (a) and marks for second derivative may be earned in part A1: $x = 4$ cao [ $x = -4$ is A0 and $x = \pm 4$ is also A0] 3 <sup>rd</sup> M1: Substitutes <b>their positive</b> found $x$ ( <b>NOT zero</b> ) into $y = x^2 - 32\sqrt{x} + 20$ , $x > 0$ . So                                                                                | rt (b).)         |
|                    | follow attempting to set $\frac{dy}{dx} = 0$ and not setting $\frac{d^2y}{dx^2} = 0$                                                                                                                                                                                                                                                                                                                                                                                   |                  |
| (b)                | A1: -28 cao (Does not need to be written as coordinates) M1: Attempts differentiation of their first derivative with at least one term differentiated cor Should be seen or referred to (in part (b)) in determining the nature of the stationary point. A1: Answer in scheme or equivalent A1: States minimum (Second derivative should be correct- can follow incorrect positive x. M1A1 to have been awarded- should not follow incorrect reasoning – (need not say | •                |
|                    | $\frac{d^2y}{dx^2} > 0$ but should not have said $\frac{d^2y}{dx^2} = 0$ for example)                                                                                                                                                                                                                                                                                                                                                                                  |                  |

| Question<br>Number    | Scheme                                                                                                                                                                                                            | Marks      |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 10. (a)               |                                                                                                                                                                                                                   |            |
|                       | Equation of form $(x \pm 5)^2 + (y \pm 9)^2 = k$ , $k > 0$                                                                                                                                                        | M1         |
|                       | Equation of form $(x - a)^2 + (y - b)^2 = 5^2$ , with values for a and b                                                                                                                                          | M1         |
|                       | $(x+5)^2 + (y-9)^2 = 25 = 5^2$                                                                                                                                                                                    | A1         |
|                       | R(9, 7) Let control of circle $= V(.5, 0)$                                                                                                                                                                        | (3)        |
|                       | P(8,-7). Let centre of circle = $X(-5,9)$                                                                                                                                                                         |            |
| <b>(b)</b>            | $PX^2 = (8 - 5)^2 + (-7 - 9)^2 \text{ or } PX = \sqrt{(8 - 5)^2 + (-7 - 9)^2}$                                                                                                                                    | M1         |
|                       | $(PX = \sqrt{425} \text{ or } 5\sqrt{17}) \qquad PT^2 = (PX)^2 - 5^2 \text{ with numerical } PX$                                                                                                                  | dM1        |
|                       | $PT \left\{ = \sqrt{400} \right\} = 20$ (allow 20.0)                                                                                                                                                              | A1 cso     |
|                       |                                                                                                                                                                                                                   | (3)<br>[6] |
| Alternative 2 for (a) | Equation of the form $x^2 + y^2 \pm 10x \pm 18y + c = 0$                                                                                                                                                          | M1         |
|                       | Uses $a^2 + b^2 - 5^2 = c$ with their a and b or substitutes (0, 9) giving $+9^2 \pm 2b \times 9 + c = 0$                                                                                                         | M1         |
|                       | $x^2 + y^2 + 10x - 18y + 81 = 0$                                                                                                                                                                                  | A1         |
|                       |                                                                                                                                                                                                                   | (3)        |
| Alternative           | An attempt to find the point T may result in pages of algebra, but solution needs to reach                                                                                                                        |            |
| 2 for (b)             | $(-8, 5)$ or $\left(\frac{-8}{17}, 11\frac{2}{17}\right)$ to get first M1 (even if gradient is found first)                                                                                                       | M1         |
|                       | M1: Use either of the correct points with $P(8, -7)$ and distance between two points                                                                                                                              | dM1        |
|                       | formula<br>A1: 20                                                                                                                                                                                                 | Alcso      |
|                       | A1. 20                                                                                                                                                                                                            | (3)        |
| Alternative 3 for (b) | Substitutes (8, -7) into circle equation so $PT^2 = 8^2 + (-7)^2 + 10 \times 8 - 18 \times (-7) + 81$                                                                                                             | M1         |
|                       | Square roots to give $PT = \sqrt{400} = 20$                                                                                                                                                                       | dM1A1 (3)  |
|                       | Notes for Question 10                                                                                                                                                                                             |            |
| (a)                   | The three marks in (a) each require a circle equation – (see special cases which are not M1: Uses coordinates of centre to obtain LHS of circle equation (RHS must be $r^2$ or $k > 0$ )                          |            |
| (a)                   | positive value)                                                                                                                                                                                                   | or a       |
|                       | M1: Uses $r = 5$ to obtain RHS of circle equation as 25 or $5^2$                                                                                                                                                  |            |
|                       | A1: correct circle equation in any equivalent form                                                                                                                                                                |            |
|                       | <b>Special cases</b> $(x \pm 5)^2 + (x \pm 9)^2 = (5^2)$ is <b>not a circle</b> equation so M0M0A0                                                                                                                |            |
|                       | Also $(x \pm 5)^2 + (y-9) = (5^2)$ And $(x \pm 5)^2 - (y \pm 9)^2 = (5^2)$ are not circles and gain MOM                                                                                                           | 0A0        |
|                       | <b>But</b> $(x-0)^2 + (y-9)^2 = 5^2$ gains M0M1A0                                                                                                                                                                 |            |
| (b)                   | M1: Attempts to find distance from their <b>centre of circle</b> to $P$ (or square of this value). If t called $PT$ and given as answer this is M0. Solution may use letter other than $X$ , as centre w          |            |
|                       | labelled in the question.  N.B. Distance from (0, 9) to (8, -7) is incorrect method and is M0, followed by M0A0.                                                                                                  |            |
|                       | dM1: Applies the <b>subtraction</b> form of Pythagoras to find $PT$ or $PT^2$ (depends on previous mark for distance from <b>centre to</b> $P$ ) or uses appropriate complete method involving trigono A1: 20 cso |            |
|                       |                                                                                                                                                                                                                   |            |

| Question<br>Number |                                        | Scheme                |                                           |  |  |  |  |
|--------------------|----------------------------------------|-----------------------|-------------------------------------------|--|--|--|--|
| Aliter             | Gradient                               | Test Met              | hod:                                      |  |  |  |  |
| 9. (b)             | $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$ | $-16x^{-\frac{1}{2}}$ |                                           |  |  |  |  |
| Way 2              | Helpful ta                             |                       |                                           |  |  |  |  |
|                    |                                        | <i>x</i>              | $\frac{\mathrm{d}y}{\mathrm{d}x}$ -3.2376 |  |  |  |  |
|                    |                                        | 3.1                   | -2.88739                                  |  |  |  |  |
|                    |                                        | 3.2                   | -2.54427                                  |  |  |  |  |
|                    |                                        | 3.3                   | -2.20771                                  |  |  |  |  |
|                    |                                        | 3.4                   | -1.87722                                  |  |  |  |  |
|                    |                                        | 3.5                   | -1.55236                                  |  |  |  |  |
|                    |                                        | 3.6                   | -1.23274                                  |  |  |  |  |
|                    |                                        | 3.7                   | -0.918                                    |  |  |  |  |
|                    |                                        | 3.8                   | -0.60783                                  |  |  |  |  |
|                    |                                        | 3.9                   | -0.30191                                  |  |  |  |  |
|                    |                                        | 4.1                   | 0<br>0.298163                             |  |  |  |  |
|                    |                                        | 4.1                   | 0.298103                                  |  |  |  |  |
|                    |                                        | 4.3                   | 0.884115                                  |  |  |  |  |
|                    |                                        | 4.4                   | 1.172299                                  |  |  |  |  |
|                    |                                        | 4.5                   | 1.457528                                  |  |  |  |  |
|                    |                                        | 4.6                   | 1.739962                                  |  |  |  |  |
|                    |                                        | 4.7                   | 2.01975                                   |  |  |  |  |
|                    |                                        | 4.8                   | 2.297033                                  |  |  |  |  |
|                    |                                        | 4.9                   | 2.571937                                  |  |  |  |  |
|                    |                                        | 5                     | 2.844582                                  |  |  |  |  |
|                    |                                        |                       |                                           |  |  |  |  |

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA035664 Summer 2013

For more information on Edexcel qualifications, please visit our website  $\underline{www.edexcel.com}$ 

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE





