

Mark Scheme (Results)

Summer 2013

GCE Core Mathematics 2 (6664/01R)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA035667 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2+bx+c) = (x+p)(x+q)$, where |pq| = |c|, leading to x =

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x =

2. Formula

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme	Marks	
1.	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 - 16x^{-3}$	M1 A1	
	$2-16x^{-3} = 0$ so $x^{-3} = $ or $x^{3} = $, or $2-16x^{-3} = 0$ so $x = 2$	M1	
	x = 2 only (after correct derivative)	A1	
	$y = 2 \times "2" + 3 + \frac{8}{"2^2"}$	M1	
	= 9	A1	
		(6)	
		Total 6	
	Notes for Question 1		
	1 st M1: At least one term differentiated (not integrated) correctly, so		
	$2x \rightarrow 2$, or $\frac{8}{x^2} \rightarrow -16x^{-3}$, or $3 \rightarrow 0$		
	A1: This answer or equivalent e.g. $2 - \frac{16}{x^3}$		
	2^{nd} M1: Sets $\frac{dy}{dx}$ to 0, and solves to give x^3 = value or x^{-3} = value		
	(or states $x = 2$ with no working following correctly stated $2 - 16x^{-3} = 0$)		
	A1: $x = 2 \operatorname{cso}$ (if $x = -2$ is included this is A0 here)		
	3^{rd} M1: Attempts to substitutes their positive <i>x</i> (found from attempt to differentiate) into		
	$y = 2x + 3 + \frac{8}{x^2}, \ x > 0$		
	Or may be implied by $y = 9$ or correct follow through from their positive x		
	A1: 9 cao (Does not need to be written as coordinates) (ignore the extra (-2,1) here)		

Question Number	Scheme	Marks
2.(a)	$\{x=1.3\}\ y=0.8572$ (only)	B1 cao
		(1)
(b)	$\frac{1}{2} \times 0.1$	B1
	$\{0.7071+0.9487+2(0.7591+0.8090+"0.8572"+0.9037)\}$	M1
	${0.7071+0.9487+2(0.7591+0.8090+"0.8572"+0.9037)}$	A1ft
	$\{0.05(8.3138)\} = 0.41569 = awrt 0.416$	A1
		(4) Total 5
	Notes for Question 2	
(a)	B1: 0.8572 cao	
(b)	B1 for using $\frac{1}{2} \times 0.1$ or 0.05 or equivalent.	
	M1 It needs the first bracket to contain first <i>y</i> value plus last <i>y</i> value and the second bracket to be multiplied by 2 and to be the summation of the remaining <i>y</i> values in the table with no additional values. If the only mistake is a copying error or is to omit one value from 2nd bracket this may be regarded as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark however). M0 if values used in brackets are <i>x</i> values instead of <i>y</i> values	
	A1ft for the correct bracket $\{\dots, \}$ following through candidate's y value found in part (a).	
	NB: Separate trapezia may be used : B1 for 0.05, M1 for $1/2 h(a + b)$ used 4 or 5 times (and A1ft if it is all correct) Then A1 as before. (Equivalent correct formulae may be used) Special case: Bracketing mistake	
	$0.05 \times (0.7071 + 0.9487) + 2(0.7591 + 0.8090 + "0.8572" + 0.9037)$ scores B1 M1 A0 A0 (usually for 6.74079) unless the final answer implies that the calculation has been done correctly (then full marks can be given).	

Question Number	Scheme	Marks
3. Way 1	$\left(2 - \frac{1}{2}x\right)^8 = 2^8 + \binom{8}{1} \cdot 2^7 \left(-\frac{1}{2}x\right) + \binom{8}{2} 2^6 \left(-\frac{1}{2}x\right)^2 + \binom{8}{3} 2^5 \left(-\frac{1}{2}x\right)^3$	
	First term of 256	B1
	$({}^{8}C_{1} \times \times x) + ({}^{8}C_{2} \times \times x^{2}) + ({}^{8}C_{3} \times \times x^{3})$	M1
	$= (256) - 512x + 448x^2 - 224x^3$	A1, A1 (4)
		Total 4
Way 2	$\left(2 - \frac{1}{2}x\right)^8 = 2^8 \left(1 - \frac{1}{4}x\right)^8 = 2^8 \left(1 + \binom{8}{1} \cdot \left(-\frac{1}{4}x\right) + \binom{8}{2} \left(-\frac{1}{4}x\right)^2 + \binom{8}{3} \left(-\frac{1}{4}x\right)^3\right)$	
	Scheme is applied exactly as before except in special case below*	
	Notes for Question 3	
	B1: The first term should be 256 in their expansion	
	M1: Two binomial coefficients must be correct and must be with the correct power of x .	
	Accept ${}^{8}C_{1}$ or $\binom{8}{1}$ or 8 as a coefficient, and ${}^{8}C_{2}$ or $\binom{8}{2}$ or 28 as another Pascal's	
	triangle may be used to establish coefficients.	
	A1: Any two of the final three terms correct (but allow +- instead of -)	
	A1: All three of the final three terms correct and simplified. (Deduct last mark for +-512x and +-	
	$224x^3$ in the series). Also deduct last mark for the three terms correct but unsimplified.	
	(Accept answers without + signs, can be listed with commas or appear on separate lines)	
	The common error $\left(2 - \frac{1}{2}x\right)^8 = 256 + \binom{8}{1} \cdot 2^7 \left(-\frac{1}{2}x\right) + \binom{8}{2} 2^6 \left(-\frac{1}{2}x^2\right) + \binom{8}{3} 2^5 \left(-\frac{1}{2}x^3\right)$	
	would earn B1, M1, A0, A0	
	Ignore extra terms involving higher powers.	
	Condone terms in reverse order i.e. $= -224x^3 + 448x^2 - 512x + (256)$	
	*In Way 2 the error = $2\left(1 + \binom{8}{1} \cdot \left(-\frac{1}{4}x\right) + \binom{8}{2} \left(-\frac{1}{4}x\right)^2 + \binom{8}{3} \left(-\frac{1}{4}x\right)^3\right)$ giving	
	$=2-4x+\frac{7}{2}x^2-\frac{7}{4}x^3$ is a special case B0, M1, A1, A0 i.e. 2/4	

Question Number	Scheme		Marks
	Way 1	Way 2	
4. (a)	Attempting $f(\pm 1)$ or $f(\pm 3)$	Divides by (x-3) and reaches remainder or divides by (x+1) and reaches remainder	M1
	Sets $f(3)=55$ i.e. $27a - 99 + 3b + 4 = 55$	Sets remainder =55 27a - 99 + 3b + 4 = 55	A1
	Sets f(-1)=-9 i.e. $-a - 11 - b + 4 = -9$ a =/b =	Sets remainder = -9 -a-11-b+4=-9 a=/b=	A1 M1
		a =, b =	Alcao
	u = 0 and	dt v = -4	(5)
			(3)
(b)	$f(x) = (3x+2)(2x^2-5x+2)$ or ($(x+\frac{2}{3})(6x^2-15x+6)$	M1 A1
	=(3x+2)(x-2)(2x-1) or $=(3x+2)(2-x)(1-2x)$		M1 A1
			(4) Total 9
		Question 4	_
(a) (b)	Notes for Question 4Way 1M1: Attempting $f(\pm 1)$ or $f(\pm 3)$ – with numbers substituted into expressionA1: for applying $f(3)$ correctly and setting the result equal to 55 (see correctequation then isw)A1: for applying $f(-1)$ correctly and setting the result equal to -9 (see correctequation then isw)M1: Solve simultaneously to obtain a value for either <i>a</i> or <i>b</i> (may make slip)A1: Both values correct- this could imply M1 if no workingOr Way 2M1: Long division by $(x - 3)$ or $(x + 1)$ A1: A1: correct remainders put equal to 55 or -9 respectivelyM1A1: As in Way 11 st M1: attempting to divide a multiple of their cubic by $(3x + 2)$ or $(x + \frac{2}{3})$ leading to a 3TQ beginning with the correct term, usually $\frac{a}{3}x^2$.A1: for either $(2x^2 - 5x + 2)$ after division by $(3x+2)$ or $(6x^2 - 15x + 6)$ afterdivision by $(x + \frac{2}{3})$ 2^{nd} M1: for a <i>valid</i> attempt to factorise their quadratic 2^{nd} A1 is for any equivalent correct answer and needs all three factors together.		correct correct ke slip) $x + \frac{2}{3}$ (-6) after

Question Number	Scheme	Marks
5.(a)	$a = 4p$, $ar = (3p+15)$ and $ar^2 = 5p+20$	B1
	(So $r = 1$) $\frac{5p+20}{3p+15} = \frac{3p+15}{4p}$ or $4p(5p+20) = (3p+15)^2$ or equivalent	M1
	See $(3p+15)^2 = 9p^2 + 90p + 225$	M1
	$20p^{2} + 80p = 9p^{2} + 90p + 225 \rightarrow 11p^{2} - 10p - 225 = 0 *$	A1 *
		(4)
(b)	(p-5)(11p+45) so $p =$	M1
	p = 5 only (after rejecting - 45/11) <u>N.B. Special case $p = 5$ can be verified in (b) (1 mark only)</u> $11 \times 5^2 - 10 \times 5 - 225 = 275 - 50 - 225 = 0$ M1A0	A1
	$11 \times 5 - 10 \times 5 - 225 = 275 - 50 - 225 = 0$ MIA0	(2)
(c)	$\frac{3 \times 5 + 15}{4 \times 5}$ or $\frac{5 \times 5 + 20}{3 \times 5 + 15}$	M1
	$r = \frac{3}{2}$	A1
		(2)
(d)	$S_{10} = \frac{20\left(1 - \left(\frac{3}{2}\right)^{10}\right)}{\left(1 - \frac{3}{2}\right)}$	M1A1ft
	(= 2266.601568) = 2267	A1
		(3) Total 11
	Notes for Question 5	
(a)	B1: Correct statement (needs all three terms)– this may be omitted and implied by statement in p only as candidates may use geometric mean, or may use ratio of term give a correct line 2 without line 1. (This would earn the B1M1 immediately) M1: Valid Attempt to eliminate a and r and to obtain equation in p only	
	M1: Correct expansion of $(3p+15)^2 = 9p^2 + 90p + 225$	
	A1cso: No incorrect work seen. The printed answer is obtained. NB Those who show $p = 5$ in part (a) obtain no credit for this	
(b)	M1: Attempt to solve quadratic by usual methods (factorisation, completion of square or formula) Must appear in part (b) – not part (a) A1: 5 only and -45/11 should be seen and rejected or $(11p + 45)$ seen and statement $p > 0$	
(c)	M1: Substitutes $p = 5$ completely and attempt ratio (correct way up) A1: 1.5 or any equivalent	
(d)	M1: Use of correct formula with $n = 10 a$ and/or r may still be in terms of p A1ft: Correct expression ft on their r only – must have $a = 20$ and power = 10 here A1 2267 (accept awrt 2267)	

Question Number	Sch	eme	Marks
6. (a)	Way 1: $\log_3(9x) = \log_3 9 + \log_3 x$	or Way 2: $\log_3(9x) = \log_3 3^{a+2}$	M1
	=2+a	=2+a	A1
			(2)
(b)	Way 1: $\log_3\left(\frac{x^5}{81}\right) = \log_3 x^5 - \log_3 81$	or Way 2 = $\log_3 \frac{3^{5a}}{3^4}$	M1
	$\log x^5 = 5 \log x \text{ or } \log 81 = 4 \log 3 \text{ or}$ $\log 81 = 4$	$= \log_3 3^{5a-4}$	M1
	= 5 <i>a</i>	-4	A1 cso (3)
(c)	$\log_3(9x) + \log_3\left(\frac{x^5}{81}\right) = 3$		
	Method 1	Method 2	
	$\Rightarrow 2 + a + 5a - 4 = 3$	$\log_3\left(9x.\frac{x^5}{81}\right) = (3 \text{ or } \log 27)$	M1
	$\Rightarrow a = \frac{5}{6}$	$\log_3\left(\frac{x^6}{9}\right) = 3 \text{ or } \log 27$	A1
	$\Rightarrow x = 3^{\frac{5}{6}} \text{ or } \log_{10} x = a \log_{10} 3 \text{ so } x = 3^{\frac{5}{6}}$	$\Rightarrow \frac{x^6}{9} = 3^3 \Rightarrow x^6 = 3^5 \Rightarrow x =$	M1
	x = 2.498 or awrt	x = 2.498 or awrt	A1 (4)
	If $x = -2.498$ appears as well or instea	d this is A0	Total 9
		otes for Question 6	
(a)	Way 1: M1: Use of $log(ab) = log(a) + log(ab)$		
	Way 2: Uses $x = 3^a$ to give $\log_3(9x)$.	$= \log_3 3^{a+2}$, A1 for $a+2$ or $2+a$	
/			
(b)	Way 1: M1: Use of $log(a/b) = log(a) - log(a)$ M1: Use of $nlog(a) = log(a)^n$	og(b)	
	Way 2: M1 Use of correct powers of M1: Subtracts powers	3 in numerator and denominator	
	A1: No errors seen		
(c)	Method 1: M1: Uses (a) and (b) result	Its to form an equation in a (may not b	e linear)
	A1: $a = awrt 0.833$	r abange of base performed correctly	
	M1: Finds x by use of 3 to a power, of A1: $x = 2.498$ (accept answer which the function of the second sec	· · ·)
	Method 2: M1: Use of $\log(ab) = \log(a) +$		· ·
	A1: Equation correct and simplified		
	M1: Tries to undo log by 3 to power corr	-	\T .1 •
	A1: $x = 2.498$ (accept answer which r mark if negative answer is given as w) Lose this

Question Number	Scheme	Marks	
7.(a)	$x^{2} + 2x + 2 = 10 \Rightarrow x^{2} + 2x - 8 = 0$ (so $(x+4)(x-2) = 0$) $\Rightarrow x = \dots$	M1	
	x = -4, 2	A1 (2)	
(b) Way 1	$\int (x^2 + 2x + 2) dx = \frac{x^3}{3} + \frac{2x^2}{2} + 2x(+C)$	M1A1A1	
	$\left[\frac{x^{3}}{3} + \frac{2x^{2}}{2} + 2x\right]_{"-4"}^{"2"} = \left(\frac{8}{3} + \frac{8}{2} + 4\right) - \left(-\frac{64}{3} + \frac{32}{2} - 8\right) (= 24)$	M1	
	Rectangle: $10 \times (2 - 4) = 60$	B1 cao	
	R = "60" - "24"	M1	
	= 36	A1 (7) Total 9	
(b) Way 2	$\int (8 - x^2 - 2x) dx = 8x - \frac{x^3}{3} - \frac{2x^2}{2} (+C)$	M1 A1ft A1	
	$\left[8x - \frac{x^3}{3} - \frac{2x^2}{2}\right]_{=4^{\circ}}^{=2^{\circ}} = \left(16 - \frac{8}{3} - 4\right) - \left(-32 + \frac{64}{3} - 16\right) = (9.3 - (-26.7))$	M1	
	Implied by final answer of 36 after correct work	B1	
	$10 - (x^2 + 2x + 2) = 8 - x^2 - 2x, = 36$	M1, A1	
	Notes for Question 7		
(a)	M1 Set the curve equation equal to 10 and collect terms. Solves quadratic to $x =$ A1 cao : Both values correct – allow $A = -4$, $B = 2$		
(b)	M1: One correct integration $A = -4$, $B = 2$		
	A1: Two correct integrations(ft slips subtracting in Way 2)		
	A1: All 3 terms correct (penalise subtraction errors here in Way 2) M1: Substitute their limits from (a) into the integrated function and subtract (either way round)	
	B1: Way 1: Find area under the line by integration or area of rectangle – should be 60 l		
	follow through) Way 2: (implied by final correct answer in second method) M1: Subtract one area from the other (implied by subtraction of functions in second method)- award even after differentiation A1: Must be 36 not -36.		
	Special case 1: Combines both methods. Uses Way 2 integration, but continues after reaching "36"to subtract "36" from rectangle giving answer as "24" This loses final M1 A1		
	Special case 2: Integrates (x^2+2x-8) between limits -4 and 2 to get -36 and then changes sign		
	and obtains 36. Do not award final A mark – so M1A1A1M1B1M1A0 If the answer is left as -36, then M1A1A1M1B0M1A0		
	N.B. Allow full marks for modulus used earlier in working e.g. $\int_{-4}^{2} x^2 + 2x - 2dx - \int_{-4}^{2} 10dx$		

Question Number	Scheme	Marks	
8. (a)	Way 1 : $10^2 = 7^2 + 13^2 - 2 \times 7 \times 13 \cos \theta$ or $\cos \theta = \frac{7^2 + 13^2 - 10^2}{2 \times 7 \times 13}$	M1	
	$\cos\theta = \frac{59}{91}$ or $\cos\theta = \frac{7^2 + 13^2 - 10^2}{2 \times 7 \times 13}$ or $\cos\theta = 0.6483$ or 0.8644	A1 o.e	
	$(\theta = 0.8653789549) = 0.865 * (to 3 dp)$	A1* cso (3)	
	Way 2: Uses $\cos \theta = \frac{x}{7}$, where $7^2 - x^2 = 10^2 - (13 - x)^2$ and finds x (= 59/13)	M1	
	$\cos\theta = \frac{59}{91}$ and $(\theta = 0.8653789549) = 0.865 * (to 3 dp) - as in Way 1$	A1, A1 (3)	
(b)	Area triangle $ABC = \frac{1}{2} \times 13 \times 7 \sin 0.865$ or $\frac{1}{2} \times 13 \times 7 \sin 49.6$ or $20\sqrt{3}$	M1	
	Area sector $ABD = \frac{1}{2} \times 7^2 \times 0.865$ or $\frac{49.6}{360} \times \pi \times 7^2$	M1	
	=34.6 (triangle) or 21.2 (Sector)	A1	
	Area of $S = \frac{1}{2} \times 13 \times 7 \sin 0.865 - \frac{1}{2} \times 7^2 \times 0.865$ (=13.4)	M1 A1	
	(Amount of seed =) $13.4 \times 50 = 670$ g or 680 g (need one of these two answers)	M1 A1 (7)	
		Total 10	
(a)	Notes for Question 8M1: use correct cosine formula in any formA1: give a value for $\cos \theta$		
(a)	NB $\cos\theta = \frac{7^2 + 13^2 - 10^2}{2 \times 7 \times 13}$ earns M1A1		
(b)	A1: deduce and state the printed answer $\theta = 0.865$ M1: Uses Correct method for area of the correct triangle i.e. <i>ABC</i> M1: Uses Correct method for the area of the sector		
	A1: This is earned for one of the correct answers. May be implied if these ans	wers are not	
	calculated but the final answer is correct with no errors (or shaded area is 13.4	l or13.5)	
	M1: Their area of Triangle <i>ABC</i> – Area of Sector (may have $kr^2\theta$ but not $k\theta$ A1: Correct expression or awrt 13.4 or 13.5 (may be implied by final answer		
	M1: Multiply their previous answer by 50	.)	
	A1: 670g or 680 g (There is an argument for rounding answer up to provide enough seed)		
N.B. $(\frac{1}{2} \times 1)$	N.B. $(\frac{1}{2} \times 13 \times 7 \sin 0.865 - \frac{1}{2} \times 7^2 \times 0.865) \times 50 = 670$ or 680 earns full marks		
$(\frac{1}{2} \times 13 \times 7 \sin 0.865 - \frac{1}{2} \times 7^2 \times 0.865) \times 50 = $ awrt 670 or 680 just loses last mark			
$(\frac{1}{2} \times 13 \times 7 \sin 0.865 - \frac{1}{2} \times 7^2 \times 0.865) \times 50 = \text{wrong answer M1M1A0M1A1M1A0}$			

(b) $9\cos^{2} x - 11\cos x + 3(1 - \cos^{2} x) = 0 \text{ or } 6\cos^{2} x - 11\cos x + 3(\sin^{2} x + \cos^{2} x) = 0$ $6\cos^{2} x - 11\cos x + 3 = 0 \{ as (\sin^{2} x + \cos^{2} x) = 1 \}$ $(3\cos x - 1)(2\cos x - 3) = 0 \text{ implies } \cos x =$ $\cos x = \frac{1}{3}, (\frac{3}{2})$ $x = 70.5$ B1 $x = 360^{-7}70.5^{"}$ $x = 289.5$ M1 $A1 \text{ cao}$ Total 1 Total (a) B1: This statement seen and must contain no errors or may implied by - 36.9 M1: Uses 180 - arcsin (-0.6) i.e. 180 + 36.9 (or $\pi + \arcsin(0.6)$ in radians) (in 3 rd quadrant) A1: allow answers which round to 123.4 or 123.5 must be in degrees M1: Uses 360 + arcsin (-0.6) i.e. 360 - 36.9 (or $2\pi + \arcsin(-0.6)$ in radians) (in 4th quadra A1: allow answers which round to 123.4 or 123.5 must be in degrees M1: Uses 360 + arcsin (-0.6) i.e. 360 - 36.9 (or $2\pi + \arcsin(-0.6)$ in radians) (in 4th quadra A1: allow answers which round to 176.6 must be in degrees (A1 implies M1) Ignore extra answers outside range but lose final A1 for extra answers in the range if both and A marks have been earned) Working in radians may earn B1M1A0M1A0 M1: Use of sin ² $x = (1 - \cos^{2} x)$ or $(\sin^{2} x + \cos^{2} x) = 1$ in the given equation A1: Correct three term quadratic in any equivalent form M1: Use standard method to solve quadratic and obtains cosx = A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: 360 - arcos(their1/3) (or $2\pi - \arccos(their1/3)$ in radians)	Question Number	Scheme	Marks
$\theta = \frac{216.87 + 30}{2} = 123.4 \text{ or } 123.5$ $2\theta - 30 = 360 - 36.9 \text{ or } 323.1$ $\theta = \frac{323.1 + 30}{2} = 176.6$ (b) $9 \cos^2 x - 11\cos x + 3(1 - \cos^2 x) = 0 \text{ or } 6\cos^2 x - 11\cos x + 3(\sin^2 x + \cos^2 x) = 0$ M1 $6\cos^2 x - 11\cos x + 3 = 0 \text{ {as } (sin^2 x + \cos^2 x) = 1}$ (3 $\cos x - 1)(2\cos x - 3) = 0$ implies $\cos x =$ $\cos x = \frac{1}{3}, \left(\frac{3}{2}\right)$ (a) $H = \frac{1}{3}, \left(\frac{3}{2}\right)$ (b) $H = \frac{1}{3}, \left(\frac{3}{2}\right)$ (c) H	9.(a)	$\sin(2\theta - 30) = -0.6$ or $2\theta - 30 = -36.9$ or implied by 216.9	B1
$\begin{array}{c c} 2\theta - 30 = 360 - 36.9 \text{or } 323.1 \\ \theta = \frac{323.1 + 30}{2} = 176.6 \\ \text{(b)} \qquad 9\cos^2 x - 11\cos x + 3(1 - \cos^2 x) = 0 \text{or } 6\cos^2 x - 11\cos x + 3(\sin^2 x + \cos^2 x) = 0 \\ 6\cos^2 x - 11\cos x + 3 = 0 \{ \text{as } (\sin^2 x + \cos^2 x) = 1 \} \\ (3\cos x - 1)(2\cos x - 3) = 0 \text{implies } \cos x = \\ \cos x = \frac{1}{3}, \left(\frac{3}{2} \right) \\ x = 70.5 \\ \text{B1} \\ \hline x = 360 - \text{``} 70.5 \text{``} \\ x = 289.5 \\ \hline \text{M1} \\ \text{A1} \\ \text{A2} \\ \hline \text{M2} \\ \text{A2} \\ \text{A3} \\ \text{A4} \\ \text{A4} \\ \text{A5} \\ $		$2\theta - 30 = 216.87 = (180 + 36.9)$	M1
(b) $\theta = \frac{323.1+30}{2} = 176.6$ (b) $\theta = \frac{323.1+30}{2} = 176.6$ (c) $H = 1000 \text{ for } 6\cos^2 x - 11\cos x + 3\left(\sin^2 x + \cos^2 x\right) = 0$ $H = 1000 \text{ for } 6\cos^2 x - 11\cos x + 3 = 0 \text{ for } 6\cos^2 x - 11\cos x + 3\left(\sin^2 x + \cos^2 x\right) = 0$ $H = 1000 \text{ for } 8x + 3 = 0 \text{ for } 8x + 3\cos^2 x + 3\cos^2 x$		$\theta = \frac{216.87 + 30}{2} = 123.4 \text{ or } 123.5$	A1
(b) $ \begin{array}{l} \theta = \frac{124123}{2} = 176.6 \\ 9\cos^2 x - 11\cos x + 3(1 - \cos^2 x) = 0 \text{ or } 6\cos^2 x - 11\cos x + 3(\sin^2 x + \cos^2 x) = 0 \\ 6\cos^2 x - 11\cos x + 3 = 0 \left\{ as \left(\sin^2 x + \cos^2 x \right) = 1 \right\} \\ (3\cos x - 1)(2\cos x - 3) = 0 \text{ implies } \cos x = \\ \cos x = \frac{1}{3}, \left(\frac{3}{2} \right) \\ x = 70.5 \\ \hline x = 360 - "70.5" \\ x = 289.5 \\ \hline \\ \end{array} $ (a) B1: This statement seen and must contain no errors or may implied by - 36.9 \\ M1: Uses 180 - \arcsin (-0.6) \text{ i.e. } 180 + 36.9 \text{ (or } \pi + \arcsin (0.6) \text{ in } radians) (in 3^{ed} quadrant) \\ A1: allow answers which round to 123.4 \text{ or } 123.5 \text{ must be in degrees} \\ M1: Uses 360 + \arcsin (-0.6) \text{ i.e. } 360 - 36.9 \text{ (or } 2\pi + \arcsin (0.6) \text{ in } radians) (in 4th quadra A1: allow answers which round to 176.6 must be in degrees \\ M1: Uses 360 + \arcsin (-0.6) \text{ i.e. } 360 - 36.9 \text{ (or } 2\pi + \arcsin (-0.6) \text{ in } radians) (in 4th quadra A1: allow answers which round to 176.6 must be in degrees (A1 implies M1) \\ Ignore extra answers outside range but lose final A1 for extra answers in the range if both and A marks have been earned) \\ Working in radians may earn B1M1A0M1A0 \\ (b) M1: Use of sin ² x = (1 - \cos^2 x) \text{ or } (\sin^2 x + \cos^2 x) = 1 \text{ in the given equation} \\ A1: A1 for \frac{1}{3} with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: 360 - arcos(their 1/3) (or $2\pi - \operatorname{arccos}(their 1/3)$ in radians)			
$\frac{1}{6} \cos^2 x - 11\cos x + 3 = 0 \{ as (sin^2 x + cos^2 x) = 1 \}$ $\frac{1}{6} \cos^2 x - 11 \cos x + 3 = 0 \{ as (sin^2 x + cos^2 x) = 1 \}$ $\frac{1}{6} (3\cos x - 1)(2\cos x - 3) = 0 \text{ implies } \cos x =$ $\frac{1}{3}, \left(\frac{3}{2}\right)$ $x = 70.5$ $\frac{1}{x} = 360 - "70.5"$ $x = 289.5$ $\frac{1}{x} = 289.5$ $\frac{1}{x} = 360 - "70.5" + 360 + 36.9 \text{ (or } \pi + \arcsin(0.6) \text{ in radians)} (in 3^{rd} \text{ quadrant})$ $\frac{1}{x} = 180 - \arcsin(-0.6) \text{ i.e. } 180 + 36.9 \text{ (or } \pi + \arcsin(0.6) \text{ in radians)} (in 3^{rd} \text{ quadrant})$ $\frac{1}{x} = 180 - \arcsin(-0.6) \text{ i.e. } 180 + 36.9 \text{ (or } \pi + \arcsin(-0.6) \text{ in radians)} (in 4^{rd} \text{ quadrant})$ $\frac{1}{x} = 180 - \arcsin(-0.6) \text{ i.e. } 180 + 36.9 \text{ (or } \pi + \arcsin(-0.6) \text{ in radians)} (in 4^{rd} \text{ quadrant})$ $\frac{1}{x} = 180 \text{ answers which round to } 123.4 \text{ or } 123.5 \text{ must be in degrees}$ $\frac{1}{x} = 130 \text{ was wers which round to } 176.6 \text{ must be in degrees}$ $\frac{1}{x} = 130 \text{ was wers which round to } 176.6 \text{ must be in degrees} \text{ (A1 implies M1)}$ $\frac{1}{\text{ gnore extra answers outside range but lose final A1 for extra answers in the range if both and A marks have been earned}$ $\frac{1}{x} \cdot 12 \text{ set } 360 + \sin^2 x = (1 - \cos^2 x) \text{ or } (\sin^2 x + \cos^2 x) = 1 \text{ in the given equation}$ $\frac{1}{x} \cdot 2 \text{ corect three term quadratic in any equivalent form}$ $\frac{1}{x} \cdot 2 \text{ uses standard method to solve quadratic and obtains cosx = 31 \text{ A1 for } \frac{1}{3} \text{ with } \frac{3}{2} \text{ ignored but A0 if } \frac{3}{2} \text{ is incorrect}$ $\frac{1}{x} \cdot 360 - \arccos(\text{their}1/3) \text{ (or } 2\pi - \arccos(\text{their}1/3) \text{ in radians)}$		$\theta = \frac{323.1+30}{2} = 176.6$	A1 (5)
(a) B1: This statement seen and must contain no errors or may implied by -36.9 M1 A1 x = 70.5 B1 x = 360 - "70.5" x = 289.5 A1cao Total B1: This statement seen and must contain no errors or may implied by -36.9 M1: Uses $180 - \arcsin (-0.6)$ i.e. $180 + 36.9$ (or $\pi + \arcsin(0.6)$ in radians) (in 3^{rd} quadrant) A1: allow answers which round to 123.4 or 123.5 must be in degrees M1: Uses $360 + \arcsin (-0.6)$ i.e. $360 - 36.9$ (or $2\pi + \arcsin(-0.6)$ in radians) (in 4th quadrant) A1: allow answers which round to 176.6 must be in degrees M1: Uses $360 + \arcsin (-0.6)$ i.e. $360 - 36.9$ (or $2\pi + \arcsin(-0.6)$ in radians) (in 4th quadrant) A1: allow answers which round to 176.6 must be in degrees (A1 implies M1) Ignore extra answers outside range but lose final A1 for extra answers in the range if both and A marks have been earned) Working in radians may earn B1M1A0M1A0 M1: Use of $\sin^2 x = (1 - \cos^2 x) \text{ or } (\sin^2 x + \cos^2 x) = 1$ in the given equation A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains $\cos x =$ A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: $360 - \arccos(their1/3)$ (or $2\pi - \arccos(their1/3)$ in radians)	(b)	$9\cos^2 x - 11\cos x + 3(1 - \cos^2 x) = 0 \text{ or } 6\cos^2 x - 11\cos x + 3(\sin^2 x + \cos^2 x) = 0$	M1
(a) B1: This statement seen and must contain no errors or may implied by $- 36.9$ M1 Al cao Notes for Question 9 (a) B1: This statement seen and must contain no errors or may implied by $- 36.9$ M1: Uses 180 – arcsin (-0.6) i.e. 180 + 36.9 (or π + arcsin(0.6) in radians) (in 3 rd quadrant) A1: allow answers which round to 123.4 or 123.5 must be in degrees M1: Uses 360 + arcsin (-0.6) i.e. 360 – 36.9 (or 2π + arcsin(-0.6) in radians) (in 4th quadrant) A1: allow answers which round to 176.6 must be in degrees (A1 implies M1) Ignore extra answers outside range but lose final A1 for extra answers in the range if both and A marks have been earned) Working in radians may earn B1M1A0M1A0 M1: Use of $\sin^2 x = (1 - \cos^2 x)$ or $(\sin^2 x + \cos^2 x) = 1$ in the given equation A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains $\cos x =$ A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: 360 – arcos(<i>their1</i> /3) (or 2π – arccos(<i>their</i> 1/3) in radians)		$6\cos^2 x - 11\cos x + 3 = 0 \{ as (sin^2 x + cos^2 x) = 1 \}$	A1
$\frac{\cos x = \frac{1}{3}, \left(\frac{1}{2}\right)}{x = 70.5}$ B1 $\frac{x = 360 - "70.5"}{x = 289.5}$ B1 $\frac{x = 360 - "70.5"}{x = 2\pi - accos(their 1/3) in radians)$ B1 $\frac{x = 360 - "70.5"}{x = 2\pi - accos(their 1/3) in radians)$ B1 $\frac{x = 360 - "70.5}{x = 2\pi - accos(their 1/3) in radians)$ B1 $\frac{x = 360 - "70.5}{x = 2\pi - accos(their 1/3) in radians)$ B1 $\frac{x = 360 - "70.5}{x = 2\pi - accos(their 1/3) in radians)$ B1 $\frac{x = 360 - "70.5}{x = 2\pi - accos(their 1/3) in radians)$ B1 $\frac{x = 360 - "70.5}{x = 2\pi - accos(their 1/3) in radians)$ B1 $\frac{x = 360 - "70.5}{x = 2\pi - accos(their 1/3) in radians)$ B1 $\frac{x = 360 - "70.5}{x = 2\pi - accos(their 1/3) in radians)$ B1 $\frac{x = 360 - "70.5}{x = 2\pi - accos(their 1/3) in radians)$ B1 $\frac{x = 360 - "x = 32}{x = 2\pi - accos(their 1/3) in radians)$ B1 $\frac{x = 360 - x = 32}{x = 2\pi - accos(their 1/3) in radians)$ B1 $\frac{x = 360 - x = 32}{x = 2\pi - accos(their 1/3) in radians)$ B1 $\frac{x = 360 - x = 32}{x = 2\pi - accos(their 1/3) in radians)$ B1 $\frac{x = 360 - accos(their 1/3)}{x = 2\pi - accos(their 1/3) in radians)$ B1 $\frac{x = 360 - accos(their 1/3)}{x = 2\pi - accos(their 1/3) in radians)$ $\frac{x = 360 - accos(their 1/3)}{x = 36}$ $\frac{x = 32}{x = 2\pi - accos(their 1/3)}$ $\frac{x = 360 - accos(their 1/3)}{x = 2\pi - accos(their 1/3)}$ $x = 360 - acc$		$(3\cos x-1)(2\cos x-3)=0$ implies $\cos x=$	M1
x = 360 - "70.5" x = 289.5M1 AlcaoNotes for Question 9(a)B1: This statement seen and must contain no errors or may implied by - 36.9 M1: Uses 180 - arcsin (-0.6) i.e. 180 + 36.9 (or π + arcsin(0.6) in radians) (in 3 rd quadrant) A1: allow answers which round to 123.4 or 123.5 must be in degrees M1: Uses 360 + arcsin (-0.6) i.e. 360 - 36.9 (or 2π + arcsin(-0.6) in radians) (in 4th quadra A1: allow answers which round to 176.6 must be in degrees (A1 implies M1) Ignore extra answers outside range but lose final A1 for extra answers in the range if both and A marks have been earned) Working in radians may earn B1M1A0M1A0 M1: Use of sin ² $x = (1 - \cos^2 x)$ or $(\sin^2 x + \cos^2 x) = 1$ in the given equation A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains cosx = A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: 360 -arcos(<i>their1</i> /3) (or 2π - arccos(<i>their</i> 1/3) in radians)		$\cos x = \frac{1}{3}, \left(\frac{3}{2}\right)$	A1
x = 289.5AlcaoTotalNotes for Question 9(a)B1: This statement seen and must contain no errors or may implied by -36.9 M1: Uses 180 $- \arcsin(-0.6)$ i.e. $180 + 36.9$ (or $\pi + \arcsin(0.6)$ in radians) (in 3^{rd} quadrant) A1: allow answers which round to 123.4 or 123.5 must be in degrees M1: Uses $360 + \arcsin(-0.6)$ i.e. $360 - 36.9$ (or $2\pi + \arcsin(-0.6)$ in radians) (in 4th quadra A1: allow answers which round to 176.6 must be in degrees (A1 implies M1) Ignore extra answers outside range but lose final A1 for extra answers in the range if both and A marks have been earned) Working in radians may earn B1M1A0M1A0 M1: Use of $\sin^2 x = (1 - \cos^2 x)$ or $(\sin^2 x + \cos^2 x) = 1$ in the given equation A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains $\cos x =$ A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: 360 $-\arccos(their1/3)$ (or $2\pi - \arccos(their1/3)$ in radians)		<i>x</i> = 70.5	B1
TotalNotes for Question 9(a)B1: This statement seen and must contain no errors or may implied by -36.9 M1: Uses $180 - \arcsin(-0.6)$ i.e. $180 + 36.9$ (or $\pi + \arcsin(0.6)$ in radians) (in 3^{rd} quadrant) A1: allow answers which round to 123.4 or 123.5 must be in degrees M1: Uses $360 + \arcsin(-0.6)$ i.e. $360 - 36.9$ (or $2\pi + \arcsin(-0.6)$ in radians) (in 4th quadrat A1: allow answers which round to 176.6 must be in degrees (A1 implies M1) Ignore extra answers outside range but lose final A1 for extra answers in the range if both and A marks have been earned) Working in radians may earn B1M1A0M1A0 M1: Use of $\sin^2 x = (1 - \cos^2 x)$ or $(\sin^2 x + \cos^2 x) = 1$ in the given equation A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains $\cos x =$ A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: $360 - \arccos(their 1/3)$ (or $2\pi - \arccos(their 1/3)$ in radians)			
Notes for Question 9(a)B1: This statement seen and must contain no errors or may implied by -36.9 M1: Uses $180 - \arcsin(-0.6)$ i.e. $180 + 36.9$ (or $\pi + \arcsin(0.6)$ in radians) (in 3^{rd} quadrant) A1: allow answers which round to 123.4 or 123.5 must be in degrees M1: Uses $360 + \arcsin(-0.6)$ i.e. $360 - 36.9$ (or $2\pi + \arcsin(-0.6)$ in radians) (in 4th quadra A1: allow answers which round to 176.6 must be in degrees (A1 implies M1) Ignore extra answers outside range but lose final A1 for extra answers in the range if both and A marks have been earned) Working in radians may earn B1M1A0M1A0 M1: Use of $\sin^2 x = (1 - \cos^2 x)$ or $(\sin^2 x + \cos^2 x) = 1$ in the given equation A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains $\cos x =$ A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: $360 - \arccos(their1/3)$ (or $2\pi - \arccos(their1/3)$ in radians)		x = 289.5	Alcao (7)
(a) B1: This statement seen and must contain no errors or may implied by -36.9 M1: Uses $180 - \arcsin(-0.6)$ i.e. $180 + 36.9$ (or $\pi + \arcsin(0.6)$ in radians) (in 3^{rd} quadrant) A1: allow answers which round to 123.4 or 123.5 must be in degrees M1: Uses $360 + \arcsin(-0.6)$ i.e. $360 - 36.9$ (or $2\pi + \arcsin(-0.6)$ in radians) (in 4th quadra A1: allow answers which round to 176.6 must be in degrees (A1 implies M1) Ignore extra answers outside range but lose final A1 for extra answers in the range if both and A marks have been earned) Working in radians may earn B1M1A0M1A0 M1: Use of $\sin^2 x = (1 - \cos^2 x)$ or $(\sin^2 x + \cos^2 x) = 1$ in the given equation A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains $\cos x =$ A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: $360 - \arccos(their 1/3)$ (or $2\pi - \arccos(their 1/3)$ in radians)			Total 12
M1: Uses 180 – arcsin (-0.6) i.e. 180 + 36.9 (or π + arcsin(0.6) in radians) (in 3 rd quadrant) A1: allow answers which round to 123.4 or 123.5 must be in degrees M1: Uses 360 + arcsin (-0.6) i.e. 360 – 36.9 (or 2π + arcsin(-0.6) in radians) (in 4th quadra A1: allow answers which round to 176.6 must be in degrees (A1 implies M1) Ignore extra answers outside range but lose final A1 for extra answers in the range if both and A marks have been earned) Working in radians may earn B1M1A0M1A0 M1: Use of sin ² $x = (1 - \cos^2 x)$ or $(\sin^2 x + \cos^2 x) = 1$ in the given equation A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains cosx = A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: 360 – arcos(<i>their1/3</i>) (or 2π – arccos(<i>their1/3</i>) in radians)			
A1: allow answers which round to 123.4 or 123.5 must be in degrees M1: Uses $360 + \arcsin(-0.6)$ i.e. $360 - 36.9$ (or $2\pi + \arcsin(-0.6)$ in radians) (in 4th quadra A1: allow answers which round to 176.6 must be in degrees (A1 implies M1) Ignore extra answers outside range but lose final A1 for extra answers in the range if both and A marks have been earned) Working in radians may earn B1M1A0M1A0 M1: Use of $\sin^2 x = (1 - \cos^2 x)$ or $(\sin^2 x + \cos^2 x) = 1$ in the given equation A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains $\cos x =$ A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: 360 -arcos(<i>their1/3</i>) (or 2π - arccos(<i>their1/3</i>) in radians)	(a)		wadrant)
(b) M1: Uses $360 + \arcsin(-0.6)$ i.e. $360 - 36.9$ (or $2\pi + \arcsin(-0.6)$ in radians) (in 4th quadra A1: allow answers which round to 176.6 must be in degrees (A1 implies M1) Ignore extra answers outside range but lose final A1 for extra answers in the range if both and A marks have been earned) Working in radians may earn B1M1A0M1A0 M1: Use of $\sin^2 x = (1 - \cos^2 x)$ or $(\sin^2 x + \cos^2 x) = 1$ in the given equation A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains $\cos x =$ A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: 360 - $\arccos(their1/3)$ (or $2\pi - \arccos(their1/3)$ in radians)			[uadrant)
(b) A1: allow answers which round to 176.6 must be in degrees (A1 implies M1) Ignore extra answers outside range but lose final A1 for extra answers in the range if both and A marks have been earned) Working in radians may earn B1M1A0M1A0 M1: Use of $\sin^2 x = (1 - \cos^2 x)$ or $(\sin^2 x + \cos^2 x) = 1$ in the given equation A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains $\cos x =$ A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: 360 -arcos(<i>their1/3</i>) (or 2π - arccos(<i>their1/3</i>) in radians)		•	(4th quadrant)
(b) Ignore extra answers outside range but lose final A1 for extra answers in the range if both and A marks have been earned) Working in radians may earn B1M1A0M1A0 M1: Use of $\sin^2 x = (1 - \cos^2 x)$ or $(\sin^2 x + \cos^2 x) = 1$ in the given equation A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains $\cos x =$ A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: 360 –arcos(<i>their1/3</i>) (or 2π – arccos(<i>their1/3</i>) in radians)			1,
(b) Working in radians may earn B1M1A0M1A0 M1: Use of $\sin^2 x = (1 - \cos^2 x)$ or $(\sin^2 x + \cos^2 x) = 1$ in the given equation A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains $\cos x =$ A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: 360 -arcos(<i>their1/3</i>) (or 2π - arccos(<i>their1/3</i>) in radians)			ge if both B
(b) M1: Use of $\sin^2 x = (1 - \cos^2 x)$ or $(\sin^2 x + \cos^2 x) = 1$ in the given equation A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains $\cos x =$ A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: 360 -arcos(<i>their1/3</i>) (or 2π - arccos(<i>their1/3</i>) in radians)		and A marks have been earned)	
A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains $\cos x =$ A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: 360 –arcos(<i>their1/3</i>) (or 2π – arccos(<i>their1/3</i>) in radians)	(-)		
M1: Uses standard method to solve quadratic and obtains $\cos x =$ A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect B1: 70.5 or answers which round to this value M1: 360 – $\arccos(their1/3)$ (or $2\pi - \arccos(their1/3)$ in radians)	(b)	M1: Use of $\sin^2 x = (1 - \cos^2 x)$ or $(\sin^2 x + \cos^2 x) = 1$ in the given equation	
B1: 70.5 or answers which round to this value M1: 360 –arcos(<i>their1/3</i>) (or 2π – arccos(<i>their1/3</i>) in radians)		M1: Uses standard method to solve quadratic and obtains $\cos x =$	
M1: 360 –arcos(<i>their1/3</i>) (or 2π – arccos(<i>their1/3</i>) in radians)			
Al: Second answer			
		A1: Second answer	
Working in radians in (b) may earn M1A1M1A1B0M1A0 Extra values in the range coming from arcos (1/3) – deduct final A mark - so A0			

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA035667 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

