

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Statistics S1R (6683/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA040120
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number		Scheme	Marks
1. (a)	0.4 + p + 0.05 + 0.15 + p = 1	<u>or</u> verify $0.4 + 0.2 + 0.05 + 0.15 + 0.2 = 1$	M1
	2p = 0.4		
	p = 0.2	conclusion $p = 0.2$ must be stated	A1cso
			(2)
(b)	$E(X) = 0.4 \times -4 + 0.2 \times -2 + 0.$	$05 \times 1 + 0.15 \times 3 + 0.2 \times 5 = -0.5$	M1 A1
(c)	F(0) = P(X = -2) + P(X = -4)	= 0.2 + 0.4 = 0.6	B1 (2)
(4)	$\mathbf{D}(2\mathbf{V} + 2 \times 5) = \mathbf{D}(\mathbf{V} \times 1)$		(1)
(d)		V 5)	M1
	P(3X+2>5) = P(X=3) + P(1) $P(3X+2>5) = 0.35$	A = 3	A1
	P(3A + 2 > 3) = 0.33		(2)
(e)	$Var(aX + 3) = a^2 Var(X)$		M1 (2)
	$53.4 = a^2 13.35$		
	a = +2		A1
	" <u>-</u> -		(2)
		N 7	[Total 9]
(a)	M1 for equating sum of a	Notes	
(1)	The minimum working required is: $0.6 + 2p = 1$ but $2p = 1 - 0.6$ or $2p = 0.4$ is M0 BUT allow $1 - 0.4 - 0.05 - 0.15 = 0.4$ followed by $2p = 0.4$ or $1 - 0.4 - 0.05 - 0.15 = 2p$ Since <u>all</u> of the probabilities are seen.		
	A1cso for a correct solution (For verify method, they must	with no incorrect working seen conclude that $p = 0.2$)	
(b)	M1 for a correct expression May be: -1.6-0.4+0.0 A1 for - 0.5	with at least 3 correct terms $5+0.45+1$	
(c)	B1 for 0.6		
(d)	M1 for identifying $X = 3$ and A1 for 0.35	ad $X = 5$ only $(X > 1)$ is not sufficient)	
(e)	M1 for $Var(aX + 3) = a^2 Va$ A1 for <u>both</u> correct values +	r(X) but this may be implied by seeing $a = 22 and -2$	2 or a = -2

_	estion mber	Scheme	Marks
2.	. (a)	(Discrete) Uniform	B1
	(b)	1	(1)
	(b)	(i) $P(X = 10) = \frac{1}{10}$	B1
		(ii) $P(X < 10) = \frac{9}{10}$	B1
	(c)	(i) $P(Y=10) = 0$	B1 (2)
		(i) $P(Y = 10) = 0$ (ii) $P(Y < 10) = \frac{1}{2}$	B1
			(2)
			[Total 5]
		Notes	
	(a)	B1 for seeing the word uniform	
		Condone "continuous" uniform	

Question Number	Scheme	Marks
	$\sum x = 88$	B1
	$S_{pp} = 11422 - \frac{299.2^2}{8} = [231.92]$ (*)	B1cso
	$S_{xx} = 1160 - \frac{88^2}{8} = 192$	M1 A1
	$S_{xp} = 3449.5 - \frac{88 \times 299.2}{8} = 158.3$ awrt 158	A1
(b)	$r = \left[\frac{S_{xp}}{\sqrt{S_{xx}S_{pp}}} = \right] \frac{'158.3'}{\sqrt{'192' \times 231.92}}$	(5) M1
	r = 0.7501726031 awrt 0.750	A1 (2)
(c)	$b = \left[\frac{S_{xp}}{S_{xx}}\right] = \frac{158.3'}{192'} = 0.824(479166) (*)$	M1 A1cso
	$a = \overline{p} - b\overline{x} = \frac{299.2}{8} - 0.824 \times \frac{"88"}{8} = 28.330729$ awrt 28.3	M1 A1
(d)	$p = 28.3+0.824\times10 = 36.57552$ awrt £3700	(4) M1 A1 (2)
(e)	Goes up £82.40	B1
(f)	(i) $r = 0.750$ (ii) $b = 0.412$	B1ft B1 (2)
	Notes	[Total 16]
(a)	1 st B1 for $\sum x = 88$ seen. May be in a correct formula or implied by 192 or 158.3	
	2^{nd} B1cso for a correct expression for S_{pp}	
	M1 for a correct expression for S_{xx} or S_{xp} (ft their Σx). If we don't see an explicit $\Sigma x = k$ but consistent use of k instead of 88 in S_{xp} and S_{xx} then award M1 1^{st} A1 for $S_{xx} = 192$ 2^{nd} A1 for $S_{xp} = \text{awrt } 158$	
(b)	M1 for correct expression for <i>r</i> ft their 192 and 158.3 May be implied b	v r = 0.75
(c)	A1 for awrt 0.750 Allow A1 for $r = 0.75$ if a correct expr' is seen (since 3^{rd} sf is 0) 1^{st} M1 for a correct expression for b using their values NB. use of 158 gives 0.8229	
SC	1 st A1 cso for $b = \text{awrt } 0.824$ If there is no expression but 0.8244or better is seen award 1 mark as M0 2 nd M1 for a correct expression for a ft their Σx	A1
(d)	2^{nd} A1 for $a = \text{awrt } 28.3$ M1 for substituting $x = 10$ into their equation	
(e)	A1 for awrt £3700 (£ 36.58 or £36.58 (hundreds) is A0)	
(f)(i)	B1 for goes up £82.40 (for each additional employee) (£0.824 hundreds	is B0)
(ii)	B1ft for r = their answer to (b) . Allow recalculation. Condone $ r > 1$ B1 for 0.412 only	

Question Number	Scheme	Marks	
4. (a)	$P(A \cap B) = P(A B) \times P(B)$		
	$P(A \cap B) = \frac{2}{5} \times \frac{1}{2} = \frac{1}{5}$	M1 A1 (2)	
(b)	2 intersecting circles and 'P($A \cap B$)' $\frac{3}{20} \text{ and } \frac{3}{10}$	B1ft B1	
	$ \frac{3}{20} \left(\frac{1}{5}\right) \frac{3}{10} \left(\frac{7}{20}\right) $ Box and $\frac{7}{20}$	B1 (3)	
(c)	$P(A) = \frac{3}{20} + \frac{1}{5} = \frac{7}{20} \text{ or } 0.35$	(3) B1ft	
		(1)	
(d)	$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{5}}{\frac{7}{20}}$	M1	
	$=\frac{4}{7}$	A1 cao	
(e)	0.3	B1ft (2) (1)	
		[Total 9]	
	Notes 2 1		
(a)	M1 for $\frac{2}{5} \times \frac{1}{2}$ or a correct probability product expression and one correct prob. Ans	only 2/2	
(b)	1 st B1 for 2 intersecting circles labelled <i>A</i> and <i>B</i> and ft their prob. for intersection Condone missing labels for 2 nd and 3 rd B marks		
(c)	B1ft for 0.35 (o.e.) if no Venn diagram or correct follow through from their diagram or allow 0.35 (or correct ft) from correct working e.g. $0.65 - 0.5 + (a)$ B0 for 0.35 if their diagram does not give 0.35 unless it comes from correct work Don't insist on $P(A) =$ but do not award for $P(A' \cap B') = \frac{7}{20}$		
(d)	M1 for $\frac{\text{their (a)}}{\text{their (c)}} \frac{\text{or}}{\text{a correct ratio of probabilities from their diagram}}$ NB incorrect use of $P(A' \cap B') = \frac{7}{20}$ scores M0 and $\text{num} \ge \text{denom scores M0}$		
	A1 for $\frac{4}{7}$ only		
(e)	B1ft for 0.3 or correct ft from their Venn diagram or ft from $\frac{13}{20}$ – their (c)		

Question Number	Scheme	
5. (a) (b)	Time Frequency density 2-4 5	B1 (1) M1 A1
	2-4 5 5-6 4.5 7 6 8 24 9-10 7 11-15 2.4 f.d = 24 is represented as 6cm, so f.d. = 7 is represented as 1.75(cm)	A1 (3)
(c)	$\frac{3}{3}$ $\frac{3+3+7+2}{2}$ $\frac{3}{2}$	M1, A1 (2)
(d)	Median = $7.5 + \frac{40 - 30}{24} \times 1 = 7.91666$ awrt 7.92 or 7.93(75)	M1 A1
	$Q_1 = 4.5 + \frac{20 - 15}{9} \times 2 = 5.6111111$ awrt 5.61 or 5.66(666) $Q_3 = 8.5 + \frac{60 - 54}{14} \times 2 = 9.357142$ awrt 9.36 or 9.46(4285)	A1 A1 (4)
(e)	$Q_3 - Q_2 (= 1.4 \text{ or } 1.5) < Q_2 - Q_1 (= 2.3) \underline{\text{or}} \text{ (Mean)} < \text{Median} < \text{Mode}$ Therefore negative skew	B1ft dB1cao (2)
	Notes	[Total 12]
(a) (b)	B1 for 4.5 (o.e.) only. NB 1.5~4.5 is B0 M1 for evidence of f/w (at least 3 f.d. found). May be implied by a correct answer. A1 for identifying 9-10 as 2^{nd} highest bar from correct working e.g. $24x = 6 \times 7$ A1 for 1.75(cm). Correct answer only 3/3	
(c)	M1 for a correct expression. May interpolate e.g. $\left[24 + \frac{1}{2} \times 6 - \frac{2}{3} \times 15\right]$ or $(27 - 10)$ A1 for 17	
(d)	M1 for one correct fraction in an expression for Q_1 , Q_2 or Q_3 1^{st} A1 for Q_2 awrt 7.92 (or 7.94 if $(n+1)$ used – look for 40.5 instead of 40) 2^{nd} A1 for Q_1 awrt 5.61 (or 5.67 if $(n+1)$ used – look for 20.25 instead of 20) 3^{rd} A1 for Q_3 awrt 9.36 (or 9.46 if $(n+1)$ used – look for 60.75 instead of 60) NB watch out for working down e.g. $8.5 - \frac{14}{24} \times 1$ for Q_2	
(e)	1^{st} B1ft for a correct comparison of their quartiles e.g. Q_2 closer to Q_3 or using at least two of Mean < Median < Mode (must state mean or mode if using this method). N.B. Mean = 7.71875, mode = 8 2^{nd} B1cao dependent on 1^{st} B1 being awarded for negative skew only (no ft)	

(b) They must clearly ine 2^{nd} B1 for clear, correct labell B1 for 15% or 0.15 NE 1^{st} M1 for $\frac{\pm (28 - \mu)}{\sigma} = z_1$	$\mu = 24 - 0.84(16)\sigma$	B1 B1 B1 M1 B1 A1,A1 M1 A1 A1	(2) (1)
(c) (i) $\frac{(28-\mu)}{\sigma} = 1.64(49)$ or $\frac{(28-\mu)}{\sigma} = 1.64(49)$ or $\frac{(28-\mu)}{\sigma} = 1.64(49)\sigma$, $\frac{(24-0.8416\sigma = 28-1.6449\sigma)}{\sigma = 4.9794597}$ $\frac{(24-0.8416\sigma = 28-1.6449\sigma)}{(24-0.8416\sigma = 28-1.6449\sigma)}$ $\frac{(24-0.8416\sigma = 28-1.6449\sigma)}{(24-0.8416\sigma = 28$	indicated) $ \frac{24 - \mu}{\sigma} = 0.84(16) $ $ \mu = 24 - 0.84(16)\sigma $ eliminating μ or σ $ \mathbf{awrt} \ 4.98 $	B1 M1 B1 A1,A1 M1 A1	
(c)(i) $\frac{(28-\mu)}{\sigma} = 1.64(49) \text{or} \frac{1}{\sigma}$ 0.8416 and 1.6449 seen $\mu = 28 - 1.64(49)\sigma ,$ (ii) $24 - 0.8416\sigma = 28 - 1.6449\sigma$ $\sigma = 4.9794597$ $\mu = 19.809286$ (d) $z = \frac{(12 - 19.8')}{'4.97'}$ $P(Z < -1.57) = 1 - P(Z < 1.51)$ $1 - 0.9418 = 0.0582$ (a) $1^{\text{st}} B1 24 \text{ and } 28 \text{ labelled on}$ $They must clearly incompared to the second of the second of$	μ = 24 – 0.84(16) σ eliminating μ or σ awrt 4.98	M1 B1 A1,A1 M1 A1	(1)
(a) 1^{st}B1 24 and 28 labelled on They must clearly ine (b) 2^{nd}B1 for clear, correct labell 2^{nt}M1 for $\frac{\pm (28 - \mu)}{\sigma} = z_1$	μ = 24 – 0.84(16) σ eliminating μ or σ awrt 4.98	B1 A1,A1 M1 A1 A1	
(a) 1^{st}B1 24 and 28 labelled on They must clearly ine (b) 2^{nd}B1 for clear, correct labell 2^{nt}M1 for $\frac{\pm (28 - \mu)}{\sigma} = z_1$	μ = 24 – 0.84(16) σ eliminating μ or σ awrt 4.98	A1,A1 M1 A1 A1	
$\sigma = 4.9794597$ $\mu = 19.809286$ (d) $z = \frac{(12-19.8')}{'4.97'}$ $P(Z < -1.57) = 1 - P(Z < 1.57)$ $1 - 0.9418 = 0.0582$ (a) $1^{st} B1 24 \text{ and } 28 \text{ labelled on They must clearly in a contract labell}$ $2^{nd} B1 \text{for clear, correct labell}$ $B1 \text{for } 15\% \text{ or } 0.15 \text{ NE}$ (c) $1^{st} M1 \text{for } \frac{\pm (28 - \mu)}{\sigma} = z_1 \text{ or } 1.57$	awrt 4.98	A1 A1	
P(Z < -1.57) = 1-P(Z < 1.57) 1 - 0.9418 = 0.0582 (a) 1 st B1 24 and 28 labelled on They must clearly in (b) 2 nd B1 for clear, correct labell B1 for 15% or 0.15 NE (c) 1 st M1 for $\frac{\pm (28 - \mu)}{\sigma} = z_1$		3.71	(7)
(a) $1^{\text{st}} B1$ 24 and 28 labelled on They must clearly ine (b) $2^{\text{nd}} B1$ for clear, correct labell (c) $1^{\text{st}} M1$ for $\frac{\pm (28 - \mu)}{\sigma} = z_1$	7)	M1 dM1	(7)
(b) They must clearly inc $2^{\text{nd}} B1$ for clear, correct labell B1 for 15% or 0.15 NE $1^{\text{st}} M1$ for $\frac{\pm (28 - \mu)}{\sigma} = z_1$	awrt 0.06	A1	(3)
(b) They must clearly inc $2^{\text{nd}} B1$ for clear, correct labell B1 for 15% or 0.15 NE $1^{\text{st}} M1$ for $\frac{\pm (28 - \mu)}{\sigma} = z_1$		[Total	13]
(b) They must clearly inc $2^{\text{nd}} B1$ for clear, correct labell B1 for 15% or 0.15 NE $1^{\text{st}} M1$ for $\frac{\pm (28 - \mu)}{\sigma} = z_1$	Notes	, 1	
(c) B1 for 15% or 0.15 NE 1^{st} M1 for $\frac{\pm (28 - \mu)}{\sigma} = z_1$	n the horizontal axis above the mean in the co licate where 24 and 28 are on the horizontal a	axis.	er.
(c) $1^{\text{st}} M1 \text{ for } \frac{\pm (28 - \mu)}{\sigma} = z_1$	2 nd B1 for clear, correct labelling of probabilities. Must be associated with correct <u>area</u> .		
	$1^{\text{st}} \text{ M1 for } \frac{\pm (28 - \mu)}{\sigma} = z_1 \text{ or } \frac{\pm (24 - \mu)}{\sigma} = z_2 \text{ where } z_1 > 1.5 \text{ and } z_2 < 1$		
1 st A1 for $\mu = 28 - 1.64(49)c$ 2 nd A1 for $\mu = 24 - 0.84(16)$	and 1.6449 or better seen. Calc: 0.8416212, σ or any correct arrangement (allow 1.64 ~1.65 in σ or any correct arrangement (allow 0.84 or e simultaneous equations by eliminating μ or	clusive) better)	3
3 rd A1 for awrt 4.98 (Condo 4 th A1 for awrt 19.8	3^{rd} A1 for awrt 4.98 (Condone $\sigma = 5$ or awrt 5.0 if B0 scored)		
	or 0.84 and 1.65 giving σ = awrt 4.94 and μ = awrt 19.8 score M1B0A1A1M1A1A1		
$1^{\text{st}} M1$ for standardising w If $\sigma < 0$ from their $2^{\text{nd}} dM1$ for $1-P(Z < 1.57)$ A1 for awrt 0.06 from σ		o prob < 0).5

Question Number	Scheme	Marks
7. (a)		
	$0.30 \qquad \text{bike owner} \qquad \frac{117}{500}$	
	0.78 car owner	B1
	$(0.70) not bike owner \frac{273}{500}$	B1
	$(0.22) \text{ not car owner} \qquad 0.85 $ bike owner $\frac{187}{1000}$	B1
	Time owner 1000	ы
	$(0.15) not bike owner \frac{33}{1000}$	
		(3)
(b)	P(car or bike but not both)= $0.78 \times 0.70 + 0.22 \times 0.85 = 0.733$	M1 A1
(c)	$P(car \cap bike)$ 0.78×0.30	(2) M1A1
(-)	$[P(car bike)] = \frac{P(car \cap bike)}{P(bike)} = \frac{0.78 \times 0.30}{0.78 \times 0.30 + 0.22 \times 0.85}, = 0.555819$	
	40.556	A1
	awrt 0.556	(3)
(d)	$P(bike) = 0.78 \times 0.30 + 0.22 \times 0.85 = 0.421, \ P(not bike) = 1 - 0.421$	M1
	$0.421 \times 0.579 + 0.579 \times 0.421$ = 0.487518 awrt 0.488	dM1 A1 (3)
		[Total 11]
	Notes	
(a)	1 st B1 for a (2+4) tree with 6 branches 2 nd B1 for 0.78 with label	
	3 rd B1 for 0.30 and 0.85 with label	
(b)	M1 for correct expression of follow through their correct tree branches	
, ,	A1 for 0.733 or exact equivalent e.g. $\frac{733}{1000}$ and allow 73.3%	
(c)	MI for a correct expression correct it or correct formula and ————	oduct 2 products
	With at least 2 products correct or correct ft. Ratio must be small	•
	1 st A1 for finding the denominator correctly. Fully correct expression or =	= 0.421 (oe)
	2^{nd} A1 for awrt 0.556 or exact equivalent e.g. $\frac{234}{421}$ and allow 55.6%	
(d)	M1 for their $P(bike) \times (1 - P(bike))$	
	$dM1$ for $\times 2$	
	A1 for awrt 0.488	