Practice paper

(Marks are shown in brackets.)

(
1	The sector AOB is removed from a circle of radius 5 cm. The $\angle AOB$ is 1.4 radians and $OA = OB$. a Find the perimeter of the sector AOB . b Find the area of sector AOB .	(3) (2)
2	Given that $\log_2 x = p$: a Find $\log_2 (8x^2)$ in terms of p .	(4)
	b Given also that $p = 5$, find the value of x .	(2)
3	a Find the value of the constant a so that $(x-3)$ is a factor of $x^3 - ax - 6$. b Using this value of a , factorise $x^3 - ax - 6$ completely.	(3) (4)
4	a Find the coefficient of x^{11} and the coefficient of x^{12} in the binomial expansion of $(2+x)^{15}$. The coefficient of x^{11} and the coefficient of x^{12} in the binomial expansion of $(2+kx)^{15}$ are equal.	(4)
	b Find the value of the constant k .	(3)
5	a Prove that: $\frac{\cos^2 \theta}{\sin \theta + \sin^2 \theta} = \frac{1 - \sin \theta}{\sin \theta}, \ 0 < \theta < 180^{\circ}.$	(4)
	b Hence, or otherwise, solve the following equation for $0 < \theta < 180^\circ$: $\frac{\cos^2 \theta}{\sin \theta + \sin^2 \theta} = 2$ Give your answers to the nearest degree.	(4)
	•	(4)
6	a Show that the centre of the circle with equation $x^2 + y^2 = 6x + 8y$ is (3, 4) and find the radius of the circle.	(5)
	b Find the exact length of the tangents from the point (10, 0) to the circle.	(4)
7	A father promises his daughter an eternal gift on her birthday. On day 1 she receives £75 and each following day she receives $\frac{2}{3}$ of the amount given to her the day before. The father promises that this will go on for ever.	
	a Show that after 2 days the daughter will have received £125.	(2)
	b Find how much money the father should set aside to ensure that he can cover the	

After k days the total amount of money that the daughter will have received exceeds £200.

(3)

(5)

cost of the gift.

c Find the smallest value of *k*.

- **8** Given $I = \int_{1}^{3} \left(\frac{1}{x^2} + 3\sqrt{x} \right) dx$:
 - **a** Use the trapezium rule with the table below to estimate I to 3 significant figures. (4)

- **b** Find the exact value of I. (4)
- **c** Calculate, to 1 significant figure, the percentage error incurred by using the trapezium rule as in part **a** to estimate *I*. (2)
- **9** The curve C has equation $y = 6x^{\frac{7}{3}} 7x^2 + 4$.
 - **a** Find $\frac{\mathrm{d}y}{\mathrm{d}x}$. (2)
 - **b** Find $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$. (2)
 - **c** Use your answers to parts **a** and **b** to find the coordinates of the stationary points on *C* and determine their nature. (9)