

Review Exercise

- 1 Expand and simplify $(1 x)^5$.
- 2 In the diagram, ABC is an equilateral triangle with side 8 cm.
 PQ is an arc of a circle centre A, radius 6 cm.
 Find the perimeter of the shaded region in the diagram.

- 3 The sum to infinity of a geometric series is 15. Given that the first term is 5,
 - a find the common ratio,
 - **b** find the third term.
- 4 Sketch the graph of $y = \sin \theta^{\circ}$ in the interval $-\frac{3\pi}{2} \le \theta < \pi$.

- 5 Find the first three terms, in descending powers of b, of the binomial expansion of $(2a + 3b)^6$, giving each term in its simplest form.
- 6 AB is an arc of a circle centre O. Arc AB = 8 cm and OA = OB = 12 cm.
 - **a** Find, in radians, $\angle AOB$.
 - **b** Calculate the length of the chord *AB*, giving your answer to 3 significant figures.
- 7 A geometric series has first term 4 and common ration *r*. The sum of the first three terms of the series is 7.
 - **a** Show that $4r^2 + 4r 3 = 0$.
 - **b** Find the two possible values of *r*. Given that *r* is positive,
 - **c** find the sum to infinity of the series.
- 8 **a** Write down the number of cycles of the graph $y = \sin nx$ in the interval $0 \le x \le 360^{\circ}$.
 - **b** Hence write down the period of the graph $y = \sin nx$.

a Find the first four terms, in ascending powers of x, of the binomial expansion of $(1 + px)^7$, where p is a non-zero constant.

Given that, in this expansion, the coefficients of x and x^2 are equal,

- **b** find the value of p,
- **c** find the coefficient of x^3 .
- 10 A sector of a circle of radius 8 cm contains an angle of θ radians. Given that the perimeter of the sector is 30 cm, find the area of the sector.
- **111** A pendulum is set swinging. Its first oscillation is through 30°. Each succeeding oscillation is $\frac{9}{10}$ of the one before it. What is the total angle described by the pendulum before it stops?
- 12 Write down the exact value of
 - a sin30°,
- **b** $\cos 330^{\circ}$, **c** $\tan (-60^{\circ})$.
- **13 a** Find the first three terms, in ascending powers of x, of the binomial expansion of $(1 - ax)^8$, where a is a non-zero integer.

The first three terms are 1, -24x and bx^2 , where b is a constant.

- **b** Find the value of a and the value of b.
- 14 In the diagram, A and B are points on the circumference of a circle centre O and radius 5 cm.

$$\angle AOB = \theta$$
 radians. $AB = 6$ cm.

- **a** Find the value of θ .
- **b** Calculate the length of the minor arc *AB*.

- 15 The fifth and sixth terms of a geometric series are 4.5 and 6.75 respectively.
 - **a** Find the common ratio.
 - **b** Find the first term.
 - **c** Find the sum of the first 20 terms, giving your answer to 3 decimal places.
- **16** Given that θ is an acute angle measured in degrees, express in term of $\cos 2\theta$
 - **a** $\cos (360^{\circ} + 2\theta)$,
 - **b** $\cos(-2\theta)$,
 - **c** $\cos (180^{\circ} 2\theta)$.
- **17 a** Expand $(1 2x)^{10}$ in ascending powers of x up to and including the term in x^3 .
 - **b** Use your answer to part **a** to evaluate $(0.98)^{10}$ correct to 3 decimal places.
- 18 In the diagram, AB = 10 cm, AC = 13 cm. $\angle CAB = 0.6$ radians. BD is an arc of a circle centre A and radius 10 cm.

- **a** Calculate the length of the arc BD.
- **b** Calculate the shaded area in the diagram.
- 19 The value of a gold coin in 2000 was £180. The value of the coin increases by 5% per annum.
 - **a** Write down an expression for the value of the coin after *n* years.
 - **b** Find the year in which the value of the coin exceeds £360.

- Given that x is an acute angle measured in radians, express in terms of $\sin x$
 - **a** $\sin (2\pi x)$,
- **b** $\sin (\pi + x)$,
- $\mathbf{c} \cos\left(\frac{\pi}{2} x\right)$.
- **21** Expand and simplify $\left(x \frac{1}{x}\right)^6$.
- A cylindrical log, length 2 m, radius 20 cm, floats with its axis horizontal and with its highest point 4 cm above the water level. Find the volume of the log in the water.

- 23 **a** On the same axes, in the interval $0 \le x \le 360^\circ$, sketch the graphs of $y = \tan(x 90^\circ)$ and $y = \sin x$.
 - **b** Hence write down the number of solutions of the equation $\tan (x 90^\circ) = \sin x$ in the interval $0 \le x \le 360^\circ$.
- 24 A geometric series has first term 4 and common ratio $\frac{4}{3}$. Find the greatest number of terms the series can have without its sum exceeding 100.
- 25 Describe geometrically the transformation which maps the graph of
 - **a** $y = \tan x$ onto the graph of $y = \tan (x 45^\circ)$,
 - **b** $y = \sin x$ onto the graph of $y = 3 \sin x$,

- **c** $y = \cos x$ onto the graph of $y = \cos \frac{x}{2}$,
- **d** $y = \sin x$ onto the graph of $y = \sin x 3$.
- 26 If x is so small that terms of x^3 and higher can be ignored, and $(2-x)(1+2x)^5 \approx a+bx+cx^2$, find the values of the constants a, b and c.
- 27 A chord of a circle, radius 20 cm, divides the circumference in the ratio 1:3. Find the ratio of the areas of the segments into which the circle is divided by the chord.
- 28 x, 3 and x + 8 are the fourth, fifth and sixth terms of geometric series.
 - **a** Find the two possible values of *x* and the corresponding values of the common ratio.

Given that the sum to infinity of the series exists,

- **b** find the first term,
- **c** find the sum to infinity of the series.
- 29 **a** Sketch the graph of $y = 1.5 \cos (x 60^{\circ})$ in the interval $0 \le x < 360^{\circ}$.
 - **b** Write down the coordinates of the points where your graph meets the coordinate axes.
- 30 Without using a calculator, solve $\sin(x 20^\circ) = -\frac{\sqrt{3}}{2}$ in the interval $0 \le x \le 360^\circ$.