# **Solutionbank C1**Edexcel Modular Mathematics for AS and A-Level

Algebra and functions Exercise A, Question 1

### **Question:**

Simplify 
$$\frac{x^2 - 2x - 3}{x^2 - 7x + 12}$$
.

#### **Solution:**

$$\frac{x^2 - 2x - 3}{x^2 - 7x + 12}$$

$$= \frac{(x - 3)(x + 1)}{(x - 3)(x - 4)}$$

$$= \frac{x+1}{x-4}$$

Factorise  $x^2 - 2x - 3$ :  $(-3) \times (+1) = -3$  (-3) + (+1) = -2so  $x^2 - 2x - 3 = (x - 3) (x + 1)$ Factorise  $x^2 - 7x + 12$ :  $(-3) \times (-4) = +12$  (-3) + (-4) = -7so  $x^2 - 7x + 12 = (x - 3) (x - 4)$ Divide top and bottom by (x - 3)

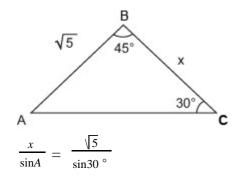
## **Edexcel Modular Mathematics for AS and A-Level**

Algebra and functions Exercise A, Question 2

## **Question:**

In  $\triangle ABC$ , AB =  $\sqrt{5}$ cm,  $\angle ABC = 45^{\circ}$ ,  $\angle BCA = 30^{\circ}$ . Find the length of BC.

### **Solution:**



$$A + 30 + 45 = 180^{\circ}$$

$$A = 105^{\circ}$$
so 
$$\frac{x}{\sin 105^{\circ}} = \frac{\sqrt{5}}{\sin 30^{\circ}}$$

$$x = \frac{\sqrt{5}\sin 105^{\circ}}{\sin 30^{\circ}}$$

$$= 4.32$$

Draw a diagram to show the given information

Use the sine rule  $\frac{a}{\sin A} = \frac{c}{\sin C}$ , where a = x,  $c = \sqrt{5}$  and  $C = 30^{\circ}$ 

Find angle A. The angles in a triangle add to 180  $^{\circ}$  .

Multiply throughout by sin105  $^{\circ}$ 

Give answer to 3 significant figures

## **Edexcel Modular Mathematics for AS and A-Level**

### Algebra and functions Exercise A, Question 3

### **Question:**

- (a) Write down the value of  $\log_3 81$
- (b) Express  $2 \log_a 4 + \log_a 5$  as a single logarithm to base a.

#### **Solution:**

(a) 
$$\log_3 81 = \log_3 (3^4)$$
 Write 81 as a power of 3,  $81 = 3 \times 3 \times 3 \times 3 = 3^4$ .  
 $= 4\log_3^3$  Use the power law:  $\log_a (x^k) = k\log_a x$ , so that  $\log_3 (3^4) = 4\log_3 3$   
 $= 4 \times 1$  Use  $\log_a a = 1$ , so that  $\log_3 3 = 1$ .  
 $= 4$ 

(b) 
$$2\log_a 4 + \log_a 5$$
 Use the power law:  $\log_a (x^k) = k\log_a x$ , so that  $2\log_a 4 = \log_a 4^2$  Use the, multiplication law:  $\log_a xy = \log_a x + \log_a y$  so that  $\log_a 4^2 + \log_a 5 = \log_a (4^2 \times 5)$  Use the multiplication law:  $\log_a xy = \log_a x + \log_a y$  so that  $\log_a 4^2 + \log_a 5 = \log_a (4^2 \times 5)$ 

## **Edexcel Modular Mathematics for AS and A-Level**

### Algebra and functions Exercise A, Question 4

### **Question:**

P is the centre of the circle  $(x-1)^2 + (y+4)^2 = 81$ .

Q is the centre of the circle  $(x+3)^2 + y^2 = 36$ .

Find the exact distance between the points P and Q.

#### **Solution:**

The Coordinates of 
$$P$$
 are  $(1, -4)$ . Compare  $(x-1)^2 + (y+4)^2 = 8$  to  $(x-a)^2 + (y-b)^2 = r^2$ , where  $(a, b)$  is the centre.   
 $(x+3)^2 + y^2 = 36$ 
The Coordinates of  $Q$  are  $(-3, 0)$ . Compare  $(x+3)^2 + y^2 = 36$  to  $(x-a)^2 + (y-b)^2 = r^2$  where  $(a, b)$  is the centre.   
 $(y-b)^2 = r^2$  where  $(a, b)$  is the centre.   
 $(y-b)^2 = r^2$  where  $(a, b)$  is the centre.   
 $(x+3)^2 + y^2 = 36$  to  $(x-a)^2 + (y-b)^2 = r^2$  where  $(x+3)^2 + (y+b)^2 = r^2$  where  $(x+b)^2 + ($ 

## **Edexcel Modular Mathematics for AS and A-Level**

Algebra and functions Exercise A, Question 5

## **Question:**

Divide  $2x^3 + 9x^2 + 4x - 15$  by (x + 3).

#### **Solution:**

$$\begin{array}{r}
2x^{2} \\
x+3 \overline{\smash)2x^{3} + 9x^{2} + 4x - 15} \\
2x^{3} + 6x^{2} \\
3x^{2} + 4x
\end{array}$$

$$\begin{array}{r}
2x^{2} + 3x \\
x + 3 \overline{\smash)2x^{3} + 9x^{2} + 4x - 15} \\
2x^{3} + 6x^{2} \\
3x^{2} + 4x \\
3x^{2} + 9x \\
-5x - 15
\end{array}$$

$$\begin{array}{r}
2x^{2} + 3x - 5 \\
x + 3 \overline{\smash)2x^{3} + 9x^{2} + 4x - 15} \\
2x^{3} + 6x^{2} \\
3x^{2} + 4x \\
3x^{2} + 9x \\
-5x - 15 \\
-5x - 15
\end{array}$$

Start by dividing the first term of the polynomial by x, so that  $2x^3 \div x = 2x^2$ . Next multiply (x+3) by  $2x^2$ , so that  $2x^2 \times (x+3) = 2x^3 + 6x^2$ . Now subtract, so that  $(2x^3 + 9x^2) - (2x^3 + 6x^2) = 3x^2$ . Copy + 4x.

Repeat the method. Divide  $3x^2$  by x, so that  $3x^2 \div x = 3x$ . Multiply (x + 3) by 3x, so that  $3x \times (x + 3)$  =  $3x^2 + 9x$ . Subtract, so that  $(3x^2 + 4x) - (3x^2 + 9x) = -5x$ . Copy -15

Repeat the method. Divide -5x by x, so that  $-5x \div x = -5$ . Multiply (x + 3) by -5, so that  $-5 \times (x + 3) = -5x - 15$ . Subtract, so that (-5x - 15) - (-5x - 15) = 0.

So  $2x^3 + 9x^2 + 4x - 15 \div (x+3) = 2x^2 + 3x - 5$ .

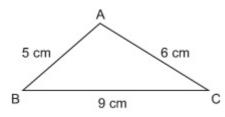
## **Edexcel Modular Mathematics for AS and A-Level**

Algebra and functions Exercise A, Question 6

### **Question:**

In  $\triangle ABC$ , AB = 5cm, BC = 9cm and CA = 6cm. Show that  $\cos \angle TRS = -\frac{1}{3}$ .

#### **Solution:**



$$\cos \angle BAC = \frac{5^2 + 6^2 - 9^2}{2 \times 5 \times 6}$$

$$= \frac{25 + 36 - 81}{60}$$

$$= \frac{-20}{60}$$

$$= \frac{-1}{60}$$

Draw a diagram using the given data.

Use the Cosine rule  $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ , where  $A = \angle BAC$ , a = 9 ( cm ) , b = 6 ( cm ) , c = 5 ( cm )

## **Edexcel Modular Mathematics for AS and A-Level**

### Algebra and functions Exercise A, Question 7

## **Question:**

- (a) Find, to 3 significant figures, the value of x for which  $5^x = 0.75$
- (b) Solve the equation  $2 \log_{5} x \log_{5} 3x = 1$

### **Solution:**

(a)

$$5^{x} = 0.75$$

$$\log_{10} (5^x) = \log_{10} 0.75$$

$$x \log_{10} 5 = \log_{10} \ 0.75$$

$$x = \frac{\log_{10} 0.75}{\log_{10} 5}$$

$$= -0.179$$

(b)

$$2\log_5 x - \log_5 3x = 1$$

$$\log_5(x^2) - \log_5 3x = 1$$

$$\log_5(\frac{x^2}{3r}) = 1$$

$$\log_5\left(\frac{x}{3}\right) = 1$$

$$\log_5\left(\begin{array}{c} \frac{x}{3} \end{array}\right) = \log_5 5$$

so 
$$\frac{x}{3} = 5$$

$$x = 15.$$

Take logs to base 10 of each side.

Use the Power law:  $\log_a (x^k) = k \log_a x$  so that  $\log_{10} (5)$ 

$$x = x \log_{10} 5$$

Divide both sides by  $\log_{10} 5$ 

Give answer to 3 significant figures

Use the Power law:  $\log_a (x^k) = k \log_a x$  so that

$$2 \log_5 x = \log_5 (x^2)$$

Use the division law:  $\log_a \left( \frac{x}{y} \right) = \log_a x - \log_b y$  so

that 
$$\log_5(x^2) - \log_5(3x) = \log_5(\frac{x^2}{3x})$$
.

Simplify. Divide top and bottom by x, so that  $\frac{x^2}{3x} = \frac{x}{3}$ .

Use 
$$\log_a a = 1$$
, so that  $1 = \log_5 5$ 

Compare the logarithms, they each have the same base, so  $\frac{x}{3} = 5$ .

## **Edexcel Modular Mathematics for AS and A-Level**

## Algebra and functions Exercise A, Question 8

## **Question:**

The circle C has equation  $(x+4)^2 + (y-1)^2 = 25$ .

The point P has coordinates (-1, 5).

- (a) Show that the point P lies on the circumference of C.
- (b) Show that the centre of C lies on the line x 2y + 6 = 0.

#### **Solution:**

(a)

Substitute (-1,5) into (x+4) $^{2} + (y - 1)^{2} = 25.$  $(-1+4)^2 + (5-1)^2 = 3^2 + 4^2$ 

= 25 as required

so P lies on the circumference of the circle.

Any point (x, y) on the circumference of a circle satisfies the equation of the circle.

(b)

The Centre of C is (-4, 1)

Compare  $(x+4)^2 + (y-1)^2 = 25$  to  $(x-a)^2$  $^2 + (y - b)^2 = r^2$  where (a, b) is the centre.

Substitute (-4, 1) into x - 2y + 6 = 0(-4)-2(1)+6 = -4 - 2 + 6 = 0 As required so the centre of C lies on the line x - 2y + 6 = 0.

Any point (x, y) on a line satisfies the equation of the line.

## **Edexcel Modular Mathematics for AS and A-Level**

### Algebra and functions Exercise A, Question 9

## **Question:**

(a) Show that (2x - 1) is a factor of  $2x^3 - 7x^2 - 17x + 10$ .

(b) Factorise  $2x^3 - 7x^2 - 17x + 10$  completely.

#### **Solution:**

(a)  
f (x) = 
$$2x^3 - 7x^2 - 17x + 10$$
  
f  $(\frac{1}{2})$  =  $2(\frac{1}{2})^3 - 7(\frac{1}{2})^2 - 17(\frac{1}{2})$   
+ 10  
=  $2 \times \frac{1}{8} - 7 \times \frac{1}{4} - 17 \times \frac{1}{2} + 10$   
=  $\frac{1}{4} - \frac{7}{4} - \frac{17}{2} + 10$ 

so, (2x-1) is a factor of  $2x^3 - 7x^2 - 17x + 10$ .

Use the remainder theorem: if f (x) is divided by (ax - b), then the remainder is  $g(\frac{b}{a})$ . Compare (2x - 1) to (ax - b), so a = 2, b = 1 and the remainder is  $f(\frac{1}{2})$ .

The remainder = 0, so (2x - 1) is a factor of  $2x^3 - 7x^2 - 17x + 10$ .

(b) 
$$x^{2} - 3x - 10$$

$$2x - 1 \overline{\smash)2x^{3} - 7x^{2} - 17x + 10}$$

$$2x^{2} - x^{2}$$

$$- 6x^{2} - 17x$$

$$- 6x^{2} + 3x$$

$$- 20x + 10$$

$$- 20x - 10$$

so 
$$2x^3 - 7x^2 - 17x + 10 = (2x - 1)$$
  
 $(x^2 - 3x - 10)$   
 $= (2x - 1)$ 

First divide 
$$2x^3 - 7x^2 - 17x + 10$$
 by  $(2x - 1)$ .

Now factorise 
$$x^2 - 3x - 10$$
:  
 $(-5) \times (+2) = -10$   
 $(-5) + (+2) = -3$   
 $\cos x^2 - 3x - 10 = (x - 5) (x + 2)$ .

## **Edexcel Modular Mathematics for AS and A-Level**

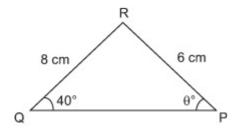
Algebra and functions Exercise A, Question 10

### **Question:**

In  $\triangle PQR$ , QR = 8 cm, PR = 6 cm and  $\angle PQR = 40^{\circ}$ .

Calculate the two possible values of  $\angle QPR$ .

### **Solution:**



Draw a diagram using the given data.

Let 
$$\angle QPR = \theta^{\circ}$$

$$\frac{\sin \theta}{8} = \frac{\sin 40^{\circ}}{6}$$

$$\theta$$
 = 59.0 ° and 121.0 °

Use 
$$\frac{\sin P}{p} = \frac{\sin Q}{q}$$
, where  $P = \theta^{\circ}$ ,  $p = 8$  (cm),

$$Q=40^{\circ}$$
,  $q=6$  (cm).

As 
$$\sin (180 - \theta)^{\circ} = \sin \theta^{\circ}$$
,

 $\theta$  = 180 ° - 59.0 ° = 121.0 ° is the other possible answer.

## **Edexcel Modular Mathematics for AS and A-Level**

### Algebra and functions Exercise A, Question 11

## **Question:**

- (a) Express  $\log_2\left(\frac{4a}{b^2}\right)$  in terms of  $\log_2 a$  and  $\log_2 b$ .
- (b) Find the value of  $\log_{27} \frac{1}{9}$ .

#### **Solution:**

(a) 
$$\log_2\left(\frac{4a}{b^2}\right)$$
  
=  $\log_2 4a - \log_2(b^2)$ 

that
$$= \log_2 4 + \log_2 a - \log_2 (b^2)$$
 Use

$$= 2 + \log_2 a - 2 \log_2 b$$

Use the division law:  $\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$ , so that  $\log_2 \left(\frac{4a}{b^2}\right) = \log_2 4a - \log_2 b^2$ .

Use the multiplication law:  $\log_a(xy)$ =  $\log_a x + \log_b y$ , so that  $\log_2 4a = \log_2 4 + \log_2 a$ Simplify  $\log_2 4$ 

$$\log_{2} 4 = \log_{2} (2^{2})$$

$$= 2 \log_{2} 2$$

$$= 2 \times 1$$

$$= 2$$

Use the power law:  $\log_a(x^K) = K \log_a x$ , so that  $\log_2(b^2) = 2 \log_2 b$ .

(b) 
$$\log_{27}(\frac{1}{9}) = \frac{\log_{10}(\frac{1}{9})}{\log_{10}(27)} = -\frac{2}{3}$$

Change the base of the logarithm. Use  $\log_a x = \frac{\log_b x}{\log_b a}$ , so

that 
$$\log_{27}(\frac{1}{9}) = \frac{\log_{10}(\frac{1}{9})}{\log_{10}(27)}$$
.

Alternative method:

$$\log_{27}(\frac{1}{9}) = \log_{27}(9^{-1})$$
 Use index rules:  $x^{-1} = \frac{1}{x}$ , so that  $\frac{1}{9} = 9^{-1}$   
=  $-\log_{27}(9)$  Use the power law  $\log_a(x^K) = K \log_a x$ .

$$= - \log_{27} (3^{2})$$

$$= - 2 \log_{27} (3)$$
Use the power law  $\log_{a} (x^{K}) = K \log_{a} x$ .
$$= - 2 \log_{27} (27^{\frac{1}{3}})$$

$$= \frac{-2}{3} \log_{27} 27$$
Use the power law  $\log_{a} (x^{K}) = K \log_{a} x$ .
$$= \frac{-2}{3} \log_{27} 27$$
Use the power law  $\log_{a} (x^{K}) = K \log_{a} x$ .
$$= \frac{-2}{3} \times 1$$
Use  $\log_{a} a = 1$ , so that  $\log_{27} 27 = 1$ 

$$= \frac{-2}{3}$$

<sup>©</sup> Pearson Education Ltd 2008

## **Edexcel Modular Mathematics for AS and A-Level**

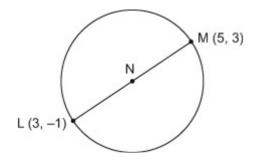
### Algebra and functions Exercise A, Question 12

## **Question:**

The points L(3, -1) and M(5, 3) are the end points of a diameter of a circle, centre N.

- (a) Find the exact length of LM.
- (b) Find the coordinates of the point *N*.
- (c) Find an equation for the circle.

#### **Solution:**



Draw a diagram using the given information

(a)  

$$LM = \sqrt{(5-3)^2 + 3 - (-1)^2} \text{ Use } d = \sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2]} \text{ with}$$

$$= \sqrt{(2)^2 + (4)^2} \qquad (x_1, y_1) = (3, -1) \text{ and } (x_2, y_2) = (5, 3)$$

(b)

The Coordinates of N are 
$$(\frac{3+5}{2}, \text{ Use } (\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}) \text{ with } (x_1, y_1) = (3, -1)$$
  
 $\frac{-1+3}{2}) = (4, 1).$  and  $(x_2, y_2) = (5, 3).$ 

(c)

The equation of the Circle is 
$$(x-4)^2 + (y-1)^2 = (\frac{\sqrt{20}}{2})$$
 Use  $(x-a)^2 + (y-b)^2 = r^2$  where  $(a,b)$  is the centre and r is the radius. Here  $(a,b) = (4,1)$  and  $r = \frac{\sqrt{20}}{2}$ . 
$$(x-4)^2 + (y-1)^2 = 5 \qquad (\frac{\sqrt{20}}{2})^2 = \frac{\sqrt{20}}{2} \times \frac{\sqrt{20}}{2} = \frac{20}{4} = 5$$

## **Edexcel Modular Mathematics for AS and A-Level**

### Algebra and functions Exercise A, Question 13

## **Question:**

 $f(x) = 3x^3 + x^2 - 38x + c$ 

Given that f(3) = 0,

(a) find the value of c,

(b) factorise f(x) completely,

(c) find the remainder when f(x) is divided by (2x-1).

#### **Solution:**

$$f(x) = 3x^3 + x^2 - 38x + c$$

(a)

 $3(3)^{3} + (3)^{2} - 38(3) + c = 0$   $3 \times 27 + 9 - 114 + c = 0$ c = 24

so f  $(x) = 3x^3 + x^2 - 38x + 24$ .

(b)

f (3) = 0, so (x-3) is a factor of  $3x^3 + x^2 - 38x + 24$ 

$$\begin{array}{r}
3x^{2} - 10x - 8 \\
x - 3 \overline{\smash)3x^{3} + x^{2} - 38x + 24} \\
3x^{3} - 9x^{2} \\
10x^{2} - 38x \\
10x^{2} - 30x \\
- 8x - 24 \\
- 8x + 24
\end{array}$$

0

Substitute x = 3 into the polynomial.

Use the factor theorem: If f(p) = 0, then (x - p) is a factor of f(x). Here p = 3

First divide  $3x^3 + x^2 - 38x + 24$  by (x-3).

so 
$$3x^3 + x^2 - 38x + 24 = (x - 3)$$
  
=  $(x - 3)(3x - 2)$   
=  $(x + 4)$ .

Now factorise 
$$3x^2 + 10x - 8$$
.  $ac = -24$  and  $(-2) + (+12) = +10 (=b)$  so  $3x^2 + 10x - 8 = 3x^2 - 2x + 12x - 8$ .  $= x (3x - 2) + 4 (3x - 2)$   $= (3x - 2) (x + 4)$ 

(c)

The remainder when f (x) is divided by (2x-1) Use the rule that if f (x) is divided by is f  $(\sqrt[1]{2})$  (ax - b) then the remainder is f  $(\frac{a}{b})$ .

f ( 
$$\frac{1}{2}$$
 ) = 3 (  $\frac{1}{2}$  )  $\frac{3}{4}$  (  $\frac{1}{2}$  )  $\frac{2}{4}$  - 38 (  $\frac{1}{2}$  ) + 24  
=  $\frac{3}{8}$  +  $\frac{1}{4}$  - 19 + 24  
= 5  $\frac{5}{8}$ 

## **Edexcel Modular Mathematics for AS and A-Level**

### Algebra and functions Exercise A, Question 14

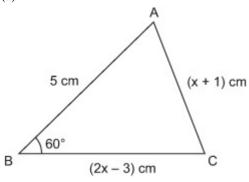
### **Question:**

In  $\triangle ABC$ , AB = 5cm, BC = (2x - 3) cm, CA = (x + 1) cm and  $\angle ABC = 60^{\circ}$ .

- (a) Show that x satisfies the equation  $x^2 8x + 16 = 0$ .
- (b) Find the value of x.
- (c) Calculate the area of the triangle, giving your answer to 3 significant figures.

#### **Solution:**

(a)



$$(x+1)^2 = (2x-3)^2 + 5^2 - 2(2x-3)$$
  
× 5 × cos 60°

$$(x+1)^2 = (2x-3)^2 + 5^2 - 5(2x-3)$$

Draw a diagram using the given data.

Use the cosine rule:

$$b^2 = a^2 + c^2 - 2ac \cos B$$
, where  $a = (2x - 3) \text{ cm}$ ,  $b = (x + 1) \text{ cm}$ ,  $c = 5\text{cm}$ ,  $B = 60^\circ$ .

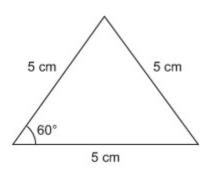
$$\cos 60^{\circ} = \frac{1}{2}, \text{ so } 2(2x - 3)$$
  
 $\times 5 \times \cos 60^{\circ}$   
 $= 2(2x - 3) \times 5 \times \frac{1}{2}$   
 $= 5(2x - 3)$ 

$$x^{2} + 2x + 1 = 4x^{2} - 12x + 9 + 5^{2} - 10x + 15$$
$$3x^{2} - 24x + 48 = 0$$
$$x^{2} - 8x + 16 = 0$$

$$x^2 - 8x + 16 = 0$$
  
(x-4) (x-4) = 0

$$x = 4$$

Factorize 
$$x^2 - 8x + 16 = 0$$
  
 $(-4) \times (-4) = +16$   
 $(-4) + (-4) = -8$   
so  $x^2 - 8x + 16 = (x - 4)(x - 4)$ 



Area = 
$$\frac{1}{2} \times 5 \times 5 \sin 60^{\circ}$$
  
=  $10.8 \text{cm}^2$ 

© Pearson Education Ltd 2008

Draw the diagram using x = 4

Use Area = 
$$\frac{1}{2}ac$$
 sin B, where  $a = 5$ cm,  $c = 5$ cm,  $B = 60$   $^{\circ}$ 

## **Edexcel Modular Mathematics for AS and A-Level**

### Algebra and functions Exercise A, Question 15

## **Question:**

(a) Solve  $0.6^{2x} = 0.8$ , giving your answer to 3 significant figures.

(b) Find the value of x in  $\log_{x} 243 = 2.5$ 

### **Solution:**

(a) 
$$0.6^{2x} = 0.8$$

$$\log_{10} 0.6^{2x} = \log_{10} 0.8$$

$$2x \log_{10} 0.6 = \log_{10} 0.8$$

$$2x = \frac{\log_{10}0.8}{\log_{10}0.6}$$

$$x = \frac{1}{2} \left( \frac{\log_{10} 0.8}{\log_{10} 0.6} \right)$$
$$= 0.218$$

Take logs to base 10 of each side.

Use the power law:  $\log_a(x^K) = K \log_a x$ , so that  $\log_{10} 0.6^{2x} = 2x \log_{10} 0.6$ .

Divide throughout by  $\log_{10} 0.6$ 

(b) 
$$\log_{x} 243 = 2.5$$

$$\frac{\log_{10}243}{\log_{10}x} = 2.5$$

Change the base of the logarithm. Use  $\log_a x = \frac{\log_b x}{\log_b a}$ , so

that 
$$\log_{x} 243 = \frac{\log_{10} 243}{\log_{10} x}$$
.

Rearrange the equation for x.

$$\log_{10} x = \frac{\log_{10} 243}{2.5}$$

$$x = 10^{\left(\frac{\log_{10} 243}{2.5}\right)}$$

 $\log_a n = x$  means that  $a^x = n$ , so  $\log_{10} x = C$  means

$$x = 10^c$$
, where  $c = \frac{\log_{10} 243}{2.5}$ .

## **Edexcel Modular Mathematics for AS and A-Level**

### Algebra and functions Exercise A, Question 16

#### **Ouestion:**

Show that part of the line 3x + y = 14 forms a chord to the circle  $(x - 2)^2 + (y - 3)^2 = 5$  and find the length of this

#### **Solution:**

$$(x-2)^2 + (y-3)^2 = 5$$
 Solve the equations simultaneously.  
 $3x + y = 14$   
 $y = 14 - 3x$   
 $(x-2)^2 + (14 - 3x - 3)^2 = 5$  Rearrange  $3x + y = 14$  for  $y$  and sub-  
 $(y-3)^2 = 5$ .

 $(x-2)^{2} + (14-3x-3)^{2} = 5$  Rearrange 3x + y = 14 for y and substitute into  $(x-2)^{2} + (x-2)^{2} + (x-2)^{2} = 14$  $(y-3)^2=5.$ 

$$(x-2)^2 + (11-3x)^2 = 5$$
 Expand and simplify.  
 $(x-2)^2 = x^2 - 4x + 4$   
 $(11-3x)^2 = 121 - 66x + 9x^2$ 

$$x^{2} - 4x + 4 + 121 - 66x + 9x^{2} = 5$$

$$10x^{2} - 70x + 120 = 0$$
 Divide throughout by 10
$$x^{2} - 7x + 12 = 0$$
 Factorize  $x^{2} - 7x + 12 = 0$ 

$$(x - 3)(x - 4) = 0$$

$$(x - 3)(x - 4) + (x - 3) = -7$$

$$x - 3x + 12 = 0$$

$$(x - 3)(x - 4) + (x - 3) = -7$$

$$x - 3x + 12 = (x - 3)(x - 4)$$

so x = 3, x = 4

Two values of x, so two points of intersection.

So part of the line forms a chord to the Circle.

When 
$$x = 3$$
,  $y = 14 - 3(3)$   
=  $14 - 9$   
=  $5$ 

Find the coordinates of the points where the line meets the circle. Substitute 
$$x = 3$$
 into  $y = 14 - 3x$ . Substitute  $x = 4$  into  $y = 14 - 3x$ 

When 
$$x = 4$$
,  $y = 14 - 3 (4)$   
=  $14 - 12$   
=  $2$ 

So the line meets the chord at the points (3,5) and (4,2).

The distance between these points is

$$\frac{\sqrt{(4-3)^2 + (2-5)^2}}{(2-5)^2} = \frac{\sqrt{1^2 + (2-3)^2}}{(-3)^2} = \sqrt{1+9}$$

$$= \sqrt{10}$$

## **Edexcel Modular Mathematics for AS and A-Level**

(2).

## **Algebra and functions** Exercise A, Question 17

#### **Question:**

$$g(x) = x^3 - 13x + 12$$

- (a) Find the remainder when g(x) is divided by (x-2).
- (b) Use the factor theorem to show that (x-3) is a factor of g(x).
- (c) Factorise g(x) completely.

#### **Solution:**

(a) 
$$g(x) = x^3 - 13x + 12$$
  
 $g(2) = (2)^3 - 13(2) + 12$   
 $= 8 - 26 + 12$   
 $= -6$ .

Use the remainder theorem: If g(x) is divided by (ax - b), then the remainder is  $g(\frac{b}{a})$ . Compare (x - 2) to (ax - b), so a = 1, b = 2 and the remainder is  $g(\frac{2}{1})$ , ie  $g(\frac{2}{1})$ 

(b)  

$$g(3) = (3)^3 - 13(3) + 12$$
  
 $= 27 - 29 + 12$   
 $= 0$ 

Use the factor theorem: If  $g\left(p\right)=0$ , then  $\left(x-p\right)$  is a factor of g(x). Here p=3

so 
$$(x-3)$$
 is a factor of  $x^3 - 13x + 12$ .

(c)

$$x^{2} + 3x - 4$$

$$x - 3) \overline{x^{3} + 0x^{2} - 13x + 12}$$

$$x^{3} - 3x^{2}$$

$$3x^{2} - 13x$$

$$3x^{2} - 9x$$

$$- 4x + 12$$

$$- 4x + 12$$

$$0$$

First divide  $x^3 - 13x + 12$  by (x - 3) . Use  $0x^2$  so that the sum is laid out correctly

so 
$$x^3 - 13x + 12 = (x - 3)$$
  
 $(x^2 + 3x - 4)$   
 $= (x - 3) (x + 4) (x - 1).$ 

Factorize 
$$x^2 + 3x - 4$$
:  
 $(+4) \times (-1) = -4$   
 $(+4) + (-1) = +3$   
so  $x^2 + 3x - 4 = (x+4)(x-1)$ .

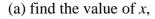
## **Edexcel Modular Mathematics for AS and A-Level**

Algebra and functions Exercise A, Question 18

## **Question:**

The diagram shows  $\triangle ABC$ , with BC = x m, CA = (2x - 1) m and  $\angle BCA = 30^{\circ}$ .

Given that the area of the triangle is  $2.5 \text{ m}^2$ ,



(b) calculate the length of the line *AB*, giving your answer to 3 significant figures.



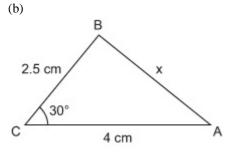
(a) 
$$\frac{1}{2}x(2x-1) \sin 30^{\circ} = 2.5$$

$$\frac{1}{2}x(2x-1) \times \frac{1}{2} = 2.5$$
$$x(2x-1) = 10$$
$$2x^2 - x - 10 = 0$$

$$(x+2)(2x-5)=0$$

$$x = -2 \text{ and } x = \frac{5}{2}$$

so 
$$x = 2.5 \text{ m}$$



Here 
$$a = x$$
 ( m ) ,  $b = (2x - 1)$  ( m ) and angle

B

(2x - 1) m

 $C = 30^{\circ}$ , so use area  $= \frac{1}{2}ab \sin C$ .

$$\sin 30^{\circ} = \frac{1}{2}$$

x m

30°

Multiply both side by 4

Expand the brackets and rearrange into the form

$$ax^2 + bx + c = 0$$

Factorize  $2x^2 - x - 10 = 0$ : ac = -20 and (+4) + (-5) = -1 so

$$2x^{2} - x - 10 = 2x^{2} + 4x - 5x - 10$$
$$= 2x(x+2) - 5(x+2)$$
$$= (x+2)(2x-5)$$

x = -2 is not feasible for this problem as BC would have a negative length.

Draw the diagram using x = 2.5 m

$$x^2 = 2.5^2 + 4^2 - 2 \times 2.5 \times 4 \times \cos 30^\circ$$
 Use the cosine rule  $c^2 = a^2 + b^2 - 2ab \cos C$ , where

$$x = 2.22 \text{ m}$$

$$c=x$$
 ( m ) ,  $a=2.5$  ( m ) ,  $b=4$  ( m ) ,  $C=30$   $^{\circ}$ 

## **Edexcel Modular Mathematics for AS and A-Level**

### Algebra and functions Exercise A, Question 19

#### **Question:**

(a) Solve  $3^{2x-1} = 10$ , giving your answer to 3 significant figures.

(b) Solve 
$$\log_2 x + \log_2 (9 - 2x) = 2$$

#### **Solution:**

(a) 
$$3^{2x-1} = 10$$
$$\log_{10} (3^{2x-1}) = \log_{10} 10$$
$$(2x-1) \log_{10} 3 = 1$$

Take logs to base 10 of each side.

Use the power law: 
$$\log_a(x^K) = K \log_a x$$
, so that  $\log_{10}(3^{2x-1}) = (2x-1) \log_{10} 3$ . Use  $\log_a a = 1$  so that  $\log_{10} 10 = 1$ 

$$2x - 1 = \frac{1}{\log_{10} 3}$$

$$2x = \frac{1}{\log_{10} 3} + 1$$

$$x = \frac{1}{\log_{10} 3} + 1$$

x = 1.55

Rearrange the expression, divide both sides by  $\log_{10} 3$ .

Divide both sides by 2

Add 1 to both sides.

(b) 
$$\log_2 x + \log_2 (9 - 2x) = 2$$
  $\log_2 x (9 - 2x) = 2$ 

Use the multiplication law: 
$$\log_a(xy) = \log_a x + \log_a y$$
 so that  $\log_2 x + \log_2(9-2x) = \log_2 x(9-2x)$ .

so 
$$x(9-2x) = 2^{2}$$
  
 $x(9-2x) = 4$   
 $9x-2x^{2} = 4$   
 $2x^{2}-9x+4=0$ 

$$\log_{a} n = x \text{ means } a^{x} = n \text{ so } \log_{2} x (9 - 2x) = 2 \text{ means}$$
  
 $2^{2} = x (9 - 2x)$ 

$$x = 4, x = \frac{1}{2}$$

(x-4)(2x-1)=0

Factorise 
$$2x^2 - 9x + 4 = 0$$
  $ac = 8$ , and  $(-8) + (-1) = -9$  so  
 $2x^2 - 9x + 4$   
 $= 2x^2 - 8x - x + 4$   
 $= 2x(x-4) - 1(x-4)$   
 $= (x-4)(2x-1)$ 

## **Edexcel Modular Mathematics for AS and A-Level**

Algebra and functions Exercise A, Question 20

### **Question:**

Prove that the circle  $(x + 4)^2 + (y - 5)^2 = 8^2$  lies completely inside the circle  $x^2 + y^2 + 8x - 10y = 59$ .

#### **Solution:**

(a)  

$$x^{2} + y^{2} + 8x - 10y = 59$$

$$x^{2} + 8x + y^{2} - 10y = 59$$

$$(x+4)^{2} - 16 + (y-5)^{2} - 25 = 59$$

$$(x+4)^{2} + (y-5)^{2}$$

$$(x+4)^{2} + (y-5)^{2}$$

$$(x+4)^{2} + (y-5)^{2}$$

The centre and radius of  $x^2 + y^2 + 8x - 10y = 59$  are (-4, 5) and 10.

The centre and radius of  $(x + 4)^2 + (y - 5)^2 = 8^2$  are (-4, 5) and 8.

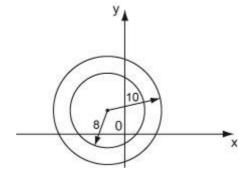
Both circles have the same centre, but each has a different radius. So,  $(x + 4)^2 + (y - 5)^2 = 8^2$  lies completely inside  $x^2 + y^2 + 8x - 10y = 59$ .

Write this circle in the form  $(x-a)^2 + (y-b)^2 = r^2$ 

Rearrange the equation to bring the *x* terms together and the *y* terms together.

 $(x+4)^2 - 16 + (y-5)^2 - 25 = 59$  Complete the square, use  $x^2 + 2ax = (x+a)^2 - a^2$  $(x+4)^2 + (y-5)$  where a = 4, so that  $x^2 + 8x = (x+4)^2 - 4^2$ , and where a = -5, so that  $x^2 - 10x = (x-5)^2 - 5^2$ .

> Compare  $(x + 4)^2 + (y - 5)^2 = 100$  to  $(x - a)^2 + (y - b)^2 = r^2$ , where (a,b) is the centre and r is the radius. Here (a,b) = (-4,5) and r = 10. Compare  $(x + 4)^2 + (y - 5)^2 = 8^2$  to  $(x - a)^2 + (y - b)^2 = r^2$ , where (a,b) is the centre and r is the radius. Here (a,b) = (-4,5) and r = 8.



## **Edexcel Modular Mathematics for AS and A-Level**

### Algebra and functions Exercise A, Question 21

### **Question:**

f  $(x) = x^3 + ax + b$ , where a and b are constants.

When f (x) is divided by (x-4) the remainder is 32.

When f (x) is divided by (x+2) the remainder is -10.

(a) Find the value of a and the value of b.

(b) Show that (x-2) is a factor of f(x).

#### **Solution:**

(a)  
f (4) = 32  
so, (4) 
$$^3 + 4a + b = 32$$
  
 $4a + b = -32$   
f (-2) = -10,  
so (-2)  $^3 + a$  (-2)  $+ b = 32$   
 $-8 - 2a + b = 32$   
 $-2a + b = 40$ 

Solve simultaneously

$$4a + b = -32$$
  
 $-2a + b = 40$   
 $6a = -72$   
so  $a = -12$ 

Substitute a = -12 into 4a + b = -32

$$4(-12) + b = -32$$
  
 $-48 + b = -32$ 

b = 16

Use the remainder theorem: If f (x) is divided by (ax - b), then the remainder is f  $(\frac{b}{a})$ . Compare (x - 4) to (ax - b), so a = 1, b = 4 and the remainder is f (4).

Use the remainder theorem: Compare (x + 2) to (ax - b), so a = 1, b = -2 and the remainder is f(-2).

Eliminate *b*: Subtract the equations, so (4a + b) - (-2a + b) = 6a and (-32) - (40) = -72

Substitute a = -12 into one of the equations. Here we use 4a + b = -32

Substitute the values of a and b into the other equation to check the answer. Here we use -2a + b = 40

Check 
$$-2a + b = 40$$
  
 $-2(-12) + 16 = 24 + 16 = 40$   
(correct)  
so  $a = -12$ ,  $b = 16$ .

(b)  $f(2) = (2)^3 - 12(2) + 16$ 

so f  $(x) = x^3 - 12x + 16$ 

Use the factor theorem : If f(p) = 0, then (x - p) is a factor of f(x). Here p = 2.

= 
$$8 - 24 + 16$$
  
= 0  
so  $(x-2)$  is a factor of  $x^3 - 12x + 16$ 

## **Edexcel Modular Mathematics for AS and A-Level**

### Algebra and functions Exercise A, Question 22

## **Question:**

Ship *B* is 8km, on a bearing of 30  $^{\circ}$ , from ship *A*.

Ship C is 12 km, on a bearing of 140  $^{\circ}$  , from ship B.

- (a) Calculate the distance of ship *C* from ship *A*.
- (b) Calculate the bearing of ship C from ship A.

#### **Solution:**

(a) 8 Km 12 Km

Draw a diagram using the given data.

Find the angle ABC: Angles on a straight line add to  $180^{\circ}$ , so  $140^{\circ} + 40^{\circ} = 180^{\circ}$ . Alternate angles are equal ( = 30  $^{\circ}$  ) so  $\angle$  ABC = 30  $^{\circ}$  + 40  $^{\circ}$  = 70  $^{\circ}$ 

$$x^2 = 8^2 + 12^2 - 2 \times 8 \times 12 \times \cos 70^{\circ}$$

x Km

 $x^2 = 8^2 + 12^2 - 2 \times 8 \times 12 \times \cos 70^\circ$  You have a = 12 (km), c = 8 (km), b = x(km), B = 70°. Use the cosine rule  $b^2 = a^2 + c^2 - a^2 + c^2$ 2ac cos B

$$x = 11.93 \text{ km}$$

The distance of ship C from ship A is 11.93 km.

$$\frac{\sin 70^{\circ}}{11.93} = \frac{\sin A}{12}$$

$$A = 70.9^{\circ}$$

The Bearing of ship C from Ship A is  $30^{\circ} + 70.9^{\circ} = 100.9^{\circ}$ 100.9°

Find the bearing of C from A. First calculate the angle

BAC ( = A ) . Use 
$$\frac{\sin B}{b} = \frac{\sin A}{12}$$
, where B = 70 °,

$$b = x = 11.93 \text{ (km)}, a = 12 \text{ (km)}$$

$$30^{\circ} + 70.9^{\circ} = 100.9^{\circ}$$

## **Edexcel Modular Mathematics for AS and A-Level**

Algebra and functions Exercise A, Question 23

#### **Question:**

(a) Express 
$$\log_{p} 12 - \left(\frac{1}{2} \log_{p} 9 + \frac{1}{3} \log_{p} 8\right)$$
 as a single logarithm to base  $p$ .

(b) Find the value of x in  $\log_4 x = -1.5$ 

#### **Solution:**

(a) 
$$\log_{p}12 - \frac{1}{2} \left( \log_{p}9 + \frac{2}{3} \log_{p}8 \right)$$

$$= \log_{p}12 - \frac{1}{2} \left( \log_{p}9 + \log_{p} \left( 8 \right) \right)$$
Use the power low:  $\log_{a} (x^{K}) = K \log_{a} x$ , so that  $\frac{2}{3} \log_{p}8 = \log_{p} \left( 8^{2/3} \right)$ .
$$= \log_{p}12 - \frac{1}{2} \left( \log_{p}9 + \log_{p}4 \right) \quad 8^{2/3} = \left( 8^{1/3} \right)^{2} = 2^{2} = 4$$

$$= \log_{p}12 - \frac{1}{2} \log_{p}36 \qquad \text{Use the multiplication law: } \log_{a} (xy) = \log_{a}x + \log_{a}y \text{, so that } \log_{p}9 + \log_{p}4 = \log_{p}(9 \times 4) = \log_{p}36$$

$$= \log_{p}12 - \log_{p}\left( 36^{1/2} \right) \qquad \text{Use the power law: } \log_{a} (x^{k}) = k \log_{a}x \text{, so that } \frac{1}{2} \log_{p}36 = \log_{p}\left( 36^{1/2} \right) = \log_{p}6$$

$$= \log_{p}12 - \log_{p}6 \qquad \text{Use the division law: } \log_{a}\left( \frac{x}{y} \right) = \log_{a}x - \log_{b}y \text{, so that } \log_{p}\left( \frac{12}{6} \right) = \log_{p}2$$

$$= \log_{p}2$$

Multiply throughout by  $\log_{10}4$ 

(b) 
$$\log_{4} x = -1.5$$

$$\frac{\log_{10} x}{\log_{10} 4} = -1.5$$

Change the base of the logarithm. Use  $\log_a x = \frac{\log_{10} x}{\log_{10} a}$ , so that  $\log_4 x = \frac{\log_{10} x}{\log_{10} 4}$ .

$$\log_{10} x = -1.5 \log_{10} 4$$

$$x = 10^{-1.5 \log_{10} 4}$$

$$= 0.125$$

 $\log_a n = x$  means  $a^x = n$ , so  $\log_{10} x = c$  means  $x = 10^c$ , where  $c = -1.5 \log_{10} 4$ .

## **Edexcel Modular Mathematics for AS and A-Level**

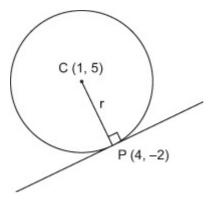
Algebra and functions Exercise A, Question 24

### **Question:**

The point P(4, -2) lies on a circle, centre C(1, 5).

- (a) Find an equation for the circle.
- (b) Find an equation for the tangent to the circle at P.

### **Solution:**



Draw a diagram using the given information

Let CP = r

$$(x-1)^2 + (y-5)^2 = r^2$$

$$r = \sqrt{(4-1)^2 + (-2-5)^2}$$

$$= \sqrt{3^2 + (-7)^2}$$

$$= \sqrt{9+49}$$

$$= \sqrt{58}$$

Use  $(x-a)^2 + (y-b)^2 = r^2$  where (a, b) is the centre of the circle. Here (a, b) = (1, 5).

Use 
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 where  $(x_1, y_1)$   
=  $(1, 5)$  and  $(x_2, y_2) = (4, -2)$ .

The equation of the circle is

$$(x-1)^2 + (y-5)^2 = (\sqrt{58})^2$$
  
 $(x-1)^2 + (y-5)^2 = 58$ 

(b)

The gradient of CP is 
$$\frac{-2-5}{4-1} = \frac{-7}{3}$$
 Use  $\frac{y_2 - y_1}{x_2 - x_1}$ , where  $(x_1, y_1) = (1, 5)$  and  $(x_2, y_2) = (4, -2)$ .

So the gradient of the tangent is  $\frac{3}{7}$ 

The tangent at P is perpendicular to the gradient at P. Use

$$\frac{-1}{m}$$
. Here  $m = -\frac{7}{3}$  so  $\frac{-1}{(\frac{-7}{3})} = \frac{3}{7}$ 

The equation of the tangent at P is

Use  $y - y_1 = m (x - x_1)$ , where  $(x_1, y, ) = (4, -$ 

$$y + 2 = \frac{3}{7} (x - 4)$$

2) and 
$$m = \frac{3}{7}$$
.

## **Edexcel Modular Mathematics for AS and A-Level**

Algebra and functions Exercise A, Question 25

## **Question:**

The remainder when  $x^3 - 2x + a$  is divided by (x - 1) is equal to the remainder when  $2x^3 + x - a$  is divided by (2x + 1) . Find the value of a.

#### **Solution:**

$$f(x) = x^3 - 2x + a$$

$$g(x) = 2x^3 + x - a$$

$$f(1) = g(-\frac{1}{2})$$

Use the remainder theorem: If f (x) is divided by ax - b, then the remainder is f  $(\frac{b}{a})$ . Compare (x-1) to ax - b, so a = 1, b = 1 and the remainder is f (1). Use the remainder theorem: If g (x) is divided by ax - b, then the remainder is g  $(\frac{b}{a})$  . Compare (2x+1) to ax - b, so a = 2, b = -1 and the remainder is g  $\left(-\frac{1}{2}\right)$ The remainders are equal so f(1) = g(-1/2).

$$(1)^{3} - 2(1) + a = 2(-\frac{1}{2})$$

$$^{3} + (\frac{-1}{2}) - a$$

$$1 - 2 + a = -\frac{1}{4} - \frac{1}{2} - a \qquad (\frac{-1}{2})^{3} = \frac{-1}{8}$$

$$1 - 2 + a = -\frac{\pi}{4} - \frac{\pi}{2} - a$$

$$2a = \frac{1}{4}$$

so 
$$a = \frac{1}{8}$$
.

$$(\frac{-1}{2})^3 = \frac{-1}{8}$$

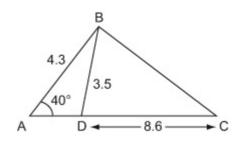
$$2 \times - \frac{1}{8} = - \frac{1}{4}$$

## **Edexcel Modular Mathematics for AS and A-Level**

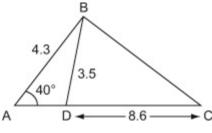
Algebra and functions Exercise A, Question 26

### **Question:**

The diagram shows  $\triangle ABC$ . Calculate the area of  $\triangle ABC$ .



#### **Solution:**



$$\frac{\sin \angle BDA}{4.3} = \frac{\sin 40^{\circ}}{3.5}$$

$$\sin \angle BDA = \frac{4.3 \sin 40^{\circ}}{3.5}$$

$$\angle$$
 BDA = 52.16  $^{\circ}$ 

$$\angle$$
 ABD = 180 ° - (52.16 ° + 40 ° )  
= 87.84 °

$$\frac{AD}{\sin 87.84} = \frac{3.5}{\sin 40^{\circ}}$$

$$AD = \frac{3.5 \sin 87.84}{\sin 40}$$

$$= 5.44$$
 cm

$$AC = AD + DC = 5.44 + 8.6$$

$$= 14.04$$

Area of 
$$\triangle ABC = \frac{1}{2} \times 4.3 \times 14.04 \times \sin 40^{\circ}$$
  
= 19.4 cm<sup>2</sup>

In 
$$\triangle ABD$$
, use  $\frac{\sin D}{d} = \frac{\sin A}{a}$ , where  $D = \angle BDA$ ,  $d = 4.3$ ,  $A = 40^{\circ}$ ,  $a = 3.5$ .

Angles in a triangle sum to 180  $^{\circ}$  .

In 
$$\triangle ABD$$
, use  $\frac{b}{\sin B} = \frac{a}{\sin A}$ , where  $b = AD$ ,  $B = 87.84$ °,  $a = 3.5$ ,  $A = 40$ °.

In 
$$\triangle$$
ABC, use Area =  $\frac{1}{2}$   $bc$  sin A where  $b = 14.04$ ,  $c = 4.3$ , A =  $40^{\circ}$ .

## **Edexcel Modular Mathematics for AS and A-Level**

Algebra and functions Exercise A, Question 27

### **Question:**

Solve  $3^{2x+1} + 5 = 16 (3^x)$ .

#### **Solution:**

$$3^{2x+1} + 5 = 16 (3^{x})$$

$$3 (3^{2x}) + 5 = 16 (3^{x})$$

$$3 (3^{x})^{2} + 5 = 16 (3^{x})$$

$$1 \text{ let } y = 3^{x}$$

$$1 \text{ so } 3y^{2} + 5 = 16y$$

$$1 \text{ so } 3y^{2} + 5 = 16y$$

$$1 \text{ so } 3y^{2} - 16y + 5 = 0$$

$$1 \text{ so } 3y - 1 \text{ so } (y - 5) = 0$$

$$1 \text{ so } y = \frac{1}{3}, y = 5$$

$$1 \text{ Now } 3^{x} = \frac{1}{3}, \text{ so } x = -1.$$

$$1 \text{ and } 3^{x} = 5,$$

$$1 \text{ log } 10 (3^{x}) = 10g 105$$

$$1 \text{ so } 10^{3} = 10g 105$$

$$x = \frac{\log_{10} 5}{\log_{10} 3}$$
= 1.46  
so  $x = -1$  and  $x = 1.46$ 

© Pearson Education Ltd 2008

Use the rules for indices: 
$$a^m \times a^n = a^{m+n}$$
, so that  $3^{2x+1} = 3^{2x} \times 3^1$   
= 3 (3  $^{2x}$ ).  
Also,  $(a^m)^n = a^{mn}$ , so that  $3^{2x} = (3^x)^2$ .

Factorise 
$$3y^2 - 16y + 5 = 0$$
.  $ac = 15$  and  $(-15) + (-1) = -16$ , so that  
 $3y^2 - 16y + 5 = 3y^2 - 15y - y + 5$   
 $= 3y (y - 5) - 1 (y - 5)$   
 $= (y - 5) (3y - 1)$ 

Take logarithm to base 10 of each side.

Use the power law:  $\log_a(x^K) = K \log_a x$ , so that  $\log_{10}(3^x) = x \log_{10}3$ 

Divide throughout by  $\log_{10} 3$ 

## **Edexcel Modular Mathematics for AS and A-Level**

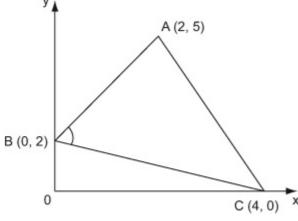
Algebra and functions Exercise A, Question 28

### **Question:**

The coordinates of the vertices of  $\triangle ABC$  are A(2,5), B(0,2) and C(4,0).

Find the value of  $\cos \angle ABC$ .

#### **Solution:**



Draw a diagram using the given information.

$$AB^{2} = (2-0)^{2} + (5-2)^{2}$$

$$= 2^{2} + 3^{2}$$

$$= 4 + 9$$

$$= 13$$

$$BC^{2} = (0-4)^{2} + (2-0)^{2}$$

$$= (-4)^{2} + (2)^{2}$$

$$= 16 + 4$$

$$= 20$$

$$CA^{2} = (4-2)^{2} + (0-5)^{2}$$
  
=  $2^{2} + (-5)^{2}$   
=  $4 + 25$   
=  $29$ 

$$\cos \angle ABC = \frac{AB^2 + BC^2 - AC^2}{2 \times AB \times BC}$$
$$= \frac{13 + 20 - 29}{2\sqrt{13}\sqrt{20}}$$
$$\angle ABC = 82.9^{\circ}$$

Use 
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$
, with  $(x_1, y_1) = (0, 2)$  and  $(x_2, y_2) = (2, 5)$ .

Use 
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$
 with  $(x_1, y_1) = (4, 0)$  and  $(x_2, y_2) = (0, 2)$ .

Use 
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$
 with  $(x_1, y_1) = (2, 5)$  and  $(x_2, y_2) = (4, 0)$ .

Use cos B = 
$$\frac{a^2 + c^2 - b^2}{2ac}$$
, where B =  $\angle$  ABC,  $a = BC$ ,  $c = AB$ ,  $b = AC$ 

## **Edexcel Modular Mathematics for AS and A-Level**

Algebra and functions Exercise A, Question 29

## **Question:**

Solve the simultaneous equations

$$4 \log_{9} x + 4 \log_{3} y = 9$$

$$6 \log_{3} x + 6 \log_{27} y = 7$$

#### **Solution:**

$$4 \log_{9} x + 4 \log_{3} y = 9$$

$$4 \frac{\log_{3} x}{\log_{3} 9} + 4 \log_{3} y = 9$$

$$2 \log_3 x + 4 \log_3 y = 9$$

$$6 \log_{3} x + 6 \log_{27} y = 7$$

$$6 \log_{3} x + \frac{6 \log_{3} y}{\log_{2} 27} = 7$$

$$6 \log_3 x + 2 \log_3 y = 7$$
 ②

Change the base of the logarithm, use  $\log_a x = \frac{\log_b x}{\log_b a}$ , so

that 
$$\log_9 x = \frac{\log_3 x}{\log_3 9}$$
.

$$\log_{3}9 = \log_{3}(3^{2})$$
  
=  $2\log_{3}3 = 2 \times 1 = 2$ 

$$\frac{4\log_{3}x}{\log_{3}9} = \frac{4\log_{3}x}{2} = 2\log_{3}x$$

Change the base of the logarithm, use  $\log_a x = \frac{\log_b x}{\log_b a}$ , so

that 
$$\log_{27} y = \frac{\log_3 y}{\log_3 27}$$

$$\log_{3}27$$
 =  $\log_{3}(3^{3})$   
=  $3\log_{3}3$   
=  $3 \times 1 = 3$ 

so 
$$\frac{6 \log_3 y}{\log_3 27} = \frac{6 \log_3 y}{3}$$
$$= 2 \log_3 y$$

Solve ① & ② simultaneously.

Let 
$$\log_3 x = X$$
 and  $\log_3 y = Y$ 

so 
$$2X + 4Y = 9$$
  
 $6X + 2Y = 7$ 

$$6X + 12Y = 27$$

$$-6X + 2Y = 7$$
$$10Y = 20$$

$$Y = 2$$

Sub 
$$Y = 2$$
 into  $2X + 4Y = 9$ 

Multiply ① throughout by 3

$$2X + 4(2) = 9$$
  
 $2X + 8 = 9$   
 $2X = 1$   
 $X = \frac{1}{2}$ 

Check sub 
$$X = \frac{1}{2}$$
 and  $Y = 2$  into  $6x + 2y = 7$ 

$$6\left(\frac{1}{2}\right) + 2(2)$$
  
= 3 + 4 = 7  $\checkmark$  (correct)

so 
$$(X = ) \log_3 x = \frac{1}{2}$$
  
i.e.  $x = 3^{1/2}$ 

i.e. 
$$x = 3^{1/2}$$
  $\log_a n = x \text{ means } a^x = n, \text{ so } \log_3 x = \frac{1}{2} \text{ means } x = 3^{1/2}.$ 

and 
$$(Y = ) log_3 y = 2$$
  
i.e.  $y = 3^2 = 9$   
so  $(x, y) = (3^{1/2}, 9)$ 

$$\log_a n = x$$
 means  $a^x = n$ , so  $\log_3 y = 2$  means  $y = 3^2$ 

## **Edexcel Modular Mathematics for AS and A-Level**

### Algebra and functions Exercise A, Question 30

### **Question:**

The line y = 5x - 13 meets the circle  $(x - 2)^2 + (y + 3)^2 = 26$  at the points A and B.

(a) Find the coordinates of the points A and B.

M is the midpoint of the line AB.

(b) Find the equation of the line which passes through M and is perpendicular to the line AB. Write your answer in the form ax + by + c = 0, where a, b and c are integers.

#### **Solution:**

(a) 
$$y = 5x - 13$$
  $(x - 2)^2 + (y + 3)^2 = 26$   $(x - 2)^2 + (5x - 13 + 3)^2 = 26$  into  $(x - 2)^2 + (y + 3)^2 = 26$ . Expand and Simplify  $(5x - 10)^2 = 26$  Expand and Simplify  $(5x - 10)^2 = 26$   $x^2 - 4x + 4 + 25x^2 - 100x + 100 = 26$   $26x^2 - 104x + 78 = 0$  Divide throughout by  $26$   $x^2 - 4x + 3 = 0$  Factorise  $x^2 - 4x + 3$ .  $(x - 3)$   $(x - 3) \times (x - 1) = 4$   $(x - 3) \times (x - 1) = 4$  So  $x^2 - 4x + 3 = (x - 3) \times (x - 1)$  Find the Corresponding  $x = 5x - 13$  End the Corresponding  $x = 5x - 13$  Substitute  $x = 1$  into  $x = 5x - 13$  End the Corresponding  $x = 5x - 13$  Substitute  $x = 1$  into  $x = 5x - 13$  End the Corresponding  $x = 5x - 13$  Substitute  $x = 1$  into  $x = 5x - 13$  End the Corresponding  $x =$ 

So the coordinates of the points of intersection are (1, -8) and (3, 2).

(b)

The Midpoint of AB is 
$$(\frac{1+3}{2}, \text{ Use } (\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}) \text{ with } (x_1, y_1) = (1, -8)$$
  
 $\frac{-8+2}{2}) = (2, -3).$  and  $(x_2, y_2) = (3, 2)$ 

to 
$$y = 5x - 13$$
 is  $-\frac{1}{5}$ 

so, 
$$y + 3 = \frac{-1}{5} (x - 2)$$

$$5y + 15 = -1 (x - 2)$$
  
 $5y + 15 = -x + 2$   
 $x + 5y + 13 = 0$ 

The gradient of the line perpendicular The gradient of the line perpendicular to y = mx + c is - $\frac{1}{m}$ . Here m=5.

Use 
$$y - y_1 = m(x - x_1)$$
 with  $m = \frac{-1}{5}$  and  $(x_1, y_1) = (2, -3)$ 

Clear the fraction. Multiply each side by 5.

<sup>©</sup> Pearson Education Ltd 2008

## **Edexcel Modular Mathematics for AS and A-Level**

Algebra and functions Exercise A, Question 31

### **Question:**

The circle C has equation  $x^2 + y^2 - 10x + 4y + 20 = 0$ . Find the length of the tangent to C from the point (-4, 4).

#### **Solution:**

The angle between a tangent and a radius is a right-angle, so form a right-angled triangle with the tangent, the radius and the distance between the centre of the circle and the point (-4, 4).

$$x^{2} + y^{2} - 10x + 4y + 20 = 0$$
  
 $(x - 5)^{2} - 25 + (y + 2)^{2} - 4 = -20$   
 $(x - 5)^{2} + (y + 2)^{2} = 9$   
So circle has centre  $(5, -2)$  and radius:

So circle has centre 
$$(5, -2)$$
 and radius 3  
 $\sqrt{(5-4)^2 + (-2-4)^2}$   
=  $\sqrt{81+36} = \sqrt{117}$ 

Therefore 
$$117 = 3^2 + x^2$$
  
 $x^2 = 108$ 

 $x = \sqrt{108}$ 

Find the equation of the tangent in the form  $(x-a)^2 + (y-b)^2 = r^2$ 

Calculate the distance between the centre of the circle and (-4, 4)

Using Pythagoras