Solutionbank C2Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 1

Question:

Expand and simplify $(1-x)^5$.

Solution:

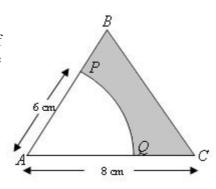
$$(1-x)^5 = 1 + 5(-x) + 10(-x)^2 + 10(-x)$$
 Compare $(1+x)^n$ with $(1-x)^4 + (-x)^5$ $= 1 - 5x + 10x^2 - 10x^3 + 5x^4 - x^5$ Compare $(1+x)^n$. Replace n by 5 and 'x' by $-x$.

Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 2

Question:

In the diagram, ABC is an equilateral triangle with side 8 cm. PQ is an arc of a circle centre A, radius 6 cm. Find the perimeter of the shaded region in the diagram.

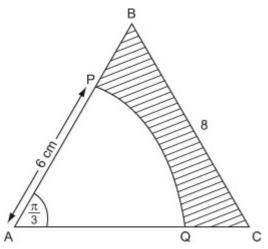


Solution:

Remember: The length of an arc of a circle is $L = r\theta$.

The area of a sector is $A = \frac{1}{2}r^2\theta$.

Draw a diagram. Remember: $60^{\circ} = \frac{\pi}{3}$ radius



Length of arc $PQ = r\theta$

$$=6\left(\frac{\pi}{3}\right)$$

$$=2\pi$$
 cm

Perimeter of shaded region

$$= 2 + 8 + 2 + 2\pi$$

$$= 12 + 2\pi$$

= 18.28 cm

Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 3

Question:

The sum to infinity of a geometric series is 15. Given that the first term is 5,

- (a) find the common ratio,
- (b) find the third term.

Solution:

$$\frac{a}{1-r} = 15$$
, $a = 5$

$$\frac{5}{1-r} = 15$$

$$1 - r = \frac{1}{3}$$

$$r = \frac{2}{3}$$

Remember: $s_{\infty} = \frac{a}{1-r}$, where |r| < 1. Here $s_{\infty} = 15$ and

$$a = 5$$
 so that $15 = \frac{5}{1 - r}$.

$$ar^{2} = 5 \left(\frac{2}{3}\right)^{2}$$
$$= 5 \times \frac{4}{9}$$
$$= \frac{20}{9}$$

Remember: nth term = ar^{n-1} . Here a = 5, $r = \frac{2}{3}$ and

n = 3, so that

$$ar^{n-1} = 5 \left(\frac{2}{3} \right)^{3-1}$$

$$=5 \left(\frac{2}{3} \right)^{2}$$

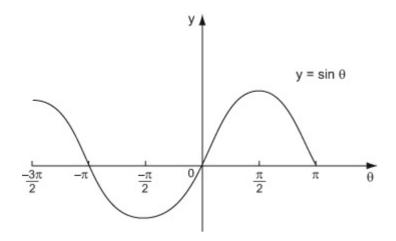
Solutionbank C2Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 4

Question:

Sketch the graph of $y = \sin \theta^{\circ}$ in the interval $-\frac{3\pi}{2} \le \theta < \pi$.

Solution:



Remember: $180^{\circ} = \pi \text{ radians}$

Solutionbank C2Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 5

Question:

Find the first three terms, in descending powers of b, of the binomial expansion of $(2a + 3b)^6$, giving each term in its simplest form.

Solution:

$$(2a + 3b)^{6} = (2a)^{6} + (\frac{6}{1})^{6} (2a)^{5} (3b) + (\frac{6}{2})^{6}$$
 Compare $(2a + 3b)^{n}$ with $(a + b)^{n}$. Replace n by 6 , $(2a)^{4} (3b)^{2} + \cdots$ $= 2^{6}a^{6} + 6 \times 2^{5} \times 3 \times a^{5}b + 15 \times 2^{4} \times 3^{2} \times a^{4}b^{2} + \cdots$ $= 64a^{6} + 576a^{5}b + 2160a^{4}b^{2} + \cdots$

Edexcel Modular Mathematics for AS and A-Level

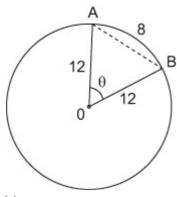
Revision Exercises 2 Exercise A, Question 6

Question:

AB is an arc of a circle centre O. Arc AB = 8 cm and OA = OB = 12 cm.

- (a) Find, in radians, $\angle AOB$.
- (b) Calculate the length of the chord AB, giving your answer to 3 significant figures.

Solution:



Draw a diagram. Let \angle AOB = θ .

(a)

$$\angle$$
 AOB = θ

$$12\theta = 8$$

so
$$\theta = \frac{2}{3}$$

Use $l = r\theta$. Here l = 8 and r = 12.

(b) $AB^{2} = 12^{2} + 12^{2} - 2(12) (12)$ $\cos \left(\frac{2}{3}\right)$ $= 61.66 \dots$

$$AB = 7.85 \text{ cm} (3 \text{ s.f.})$$

Use the cosine formula $c^2 = a^2 + b^2 - 2ab \cos C$. Here c = AB, a = 12, b = 12 and $C = \theta = \frac{2}{3}$. Remember to change your to radians.

Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 7

Question:

A geometric series has first term 4 and common ratio r. The sum of the first three terms of the series is 7.

- (a) Show that $4r^2 + 4r 3 = 0$.
- (b) Find the two possible values of r.

Given that r is positive,

(c) find the sum to infinity of the series.

Solution:

(a)

$$4, 4r, 4r^{2}, ...$$

 $4 + 4r + 4r^{2} = 7$

$$4r^2 + 4r - 3 = 0$$
 (as required)

Use ar^{n-1} to write down expressions for the first 3 terms. Here a = 4 and n = 1, 2, 3.

(b)

$$4r^2 + 4r - 3 = 0$$

(2r - 1) (2r + 3) = 0

$$r = \frac{1}{2} , \quad r = \frac{-3}{2}$$

Factorize $4r^2 + 4r - 3$. ac = -12. (-2) + (+6)

$$4r^2 - 2r + 6r - 3 = 2r(2r - 1) + 3(2r - 1)$$

= $(2r - 1)(2r + 3)$.

(c)

$$r = \frac{1}{2}$$

$$\frac{a}{1-r} = \frac{4}{1-\frac{1}{2}} = 8$$

Use
$$S_{\infty} = \frac{a}{1-r}$$
. Here $a = 4$ and $r = \frac{1}{2}$, so that

$$\frac{a}{1-r} = \frac{4}{1-\frac{1}{2}}$$

$$=\frac{\frac{4}{1}}{2}$$

$$= 8.$$

Solutionbank C2Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 8

Question:

- (a) Write down the number of cycles of the graph $y = \sin nx$ in the interval $0 \le x \le 360^{\circ}$.
- (b) Hence write down the period of the graph $y = \sin nx$.

Solution:

(a) *n*

Consider the graphs of $y = \sin x$, $y = \sin 2x$, $y = \sin 3x$...

 $y = \sin x$ has 1 cycle in the interval $0 \le x \le 360^{\circ}$.

 $y = \sin 2x$ has 2 cycles in the interval $0 \le x \le 360^{\circ}$.

 $y = \sin 3x$ has 3 cycles in the interval $0 \le x \le 360^{\circ}$.

etc.

So $y = \sin nx$ has n cycles in the internal $0 \le x \le 360^{\circ}$.

(b)

$$\frac{360^{\circ}}{n}$$
 (or $\frac{2\pi}{n}$)

Period = length of cycle. If there are *n* cycles in the interval $0 \le x \le 360^{\circ}$, the length of each cycle will be $\frac{360^{\circ}}{n}$.

Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 9

Question:

(a) Find the first four terms, in ascending powers of x, of the binomial expansion of $(1 + px)^{-7}$, where p is a non-zero constant.

Given that, in this expansion, the coefficients of x and x^2 are equal,

- (b) find the value of p,
- (c) find the coefficient of x^3 .

Solution:

$$(1+px) = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!}x^{3} + \dots$$

$$= 1 + 7(px) + \frac{7(6)}{2!}(px)^{2} + \frac{7(6)(5)}{3!}(px)^{3} + \dots$$

$$= 1 + 7px + 21p^{2}x^{2} + 35p^{3}x^{3} + \dots$$

Compare $(1+x)^n$ with $(1+px)^n$. Replace n by 7 and 'x' by px.

(b)

$$7p = 21p^2$$

 $p \neq 0$, so $7 = 21p$
 $p = \frac{1}{3}$

The coefficients of x and x^2 are equal, so $7p = 21p^2$.

(c)
$$35p^3 = 35 \left(\frac{1}{3}\right)^3 = \frac{35}{27}$$

The coefficient of x^3 is $35p^3$. Here $p = \frac{1}{3}$, so that $35p^3 = 35(\frac{1}{3})^3$.

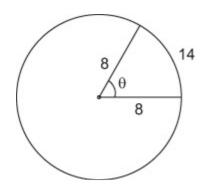
Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 10

Question:

A sector of a circle of radius 8 cm contains an angle of θ radians. Given that the perimeter of the sector is 30 cm, find the area of the sector.

Solution:



Draw a diagram. Perimeter of sector = 30cm, so arc length = 14 cm.

$$8\theta = 14$$

$$\theta = \frac{14}{8}$$

Find the value of θ . Use $L = r\theta$. Here L = 14 and r = 8 so that $8\theta = 14$.

Area of sector
$$= \frac{1}{2} (8)^2 \theta$$
 Use $A = \frac{1}{2} r^2 \theta$. Here $r = 8$ and $\theta = \frac{14}{8}$, so that $A = \frac{1}{2} (8)$

$$= \frac{1}{2} (8)^2 (\frac{14}{8})^2 (\frac{14}{8})^2 .$$

$$= 56 \text{ cm}^2$$

Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 11

Question:

A pendulum is set swinging. Its first oscillation is through 30 $^{\circ}$. Each succeeding oscillation is $\frac{9}{10}$ of the one before it. What is the total angle described by the pendulum before it stops?

Solution:

30, 30 (
$$\frac{9}{10}$$
), 30 ($\frac{9}{10}$) 2, Write down the first 3 term. Use ar^{n-1} . Here $a=30$, $r=\frac{9}{10}$ and $n=1$, 2, 3. Use $S_{\infty}=\frac{a}{1-r}$. Here $a=30$ and $r=\frac{9}{10}$ so that $S_{\infty}=\frac{30}{(\frac{1}{10})}$ = 300 °

Edexcel Modular Mathematics for AS and A-Level

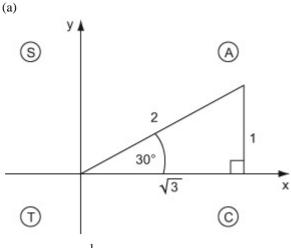
Revision Exercises 2 Exercise A, Question 12

Question:

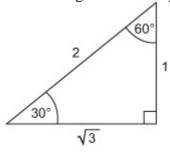
Write down the exact value

(a)
$$\sin 30^{\circ}$$
, (b) $\cos 330^{\circ}$, (c) $\tan (-60^{\circ})$.

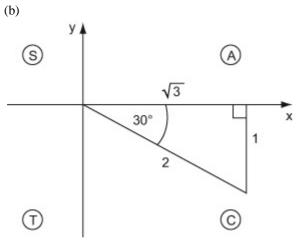
Solution:



Draw a diagram for each part. Remember



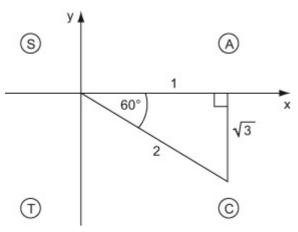
$$\sin 30^{\circ} = \frac{1}{2}$$



$$\cos 330^{\circ} = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

330 $^{\circ}$ is in the fourth quadrant.

(c)



$$\tan (-60^{\circ}) = -\tan 60^{\circ}$$
$$= -\frac{\sqrt{3}}{1}$$
$$= -\sqrt{3}$$

-60 ° is in the fourth quadrant.

Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 13

Question:

(a) Find the first three terms, in ascending powers of x, of the binomial expansion of $(1 - ax)^8$, where a is a non-zero integer.

The first three terms are 1, -24x and bx^2 , where b is a constant.

(b) Find the value of a and the value of b.

Solution:

(a)
$$(1-ax) = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots$$
Compare $(1+x)^n$ with $(1-ax)^n$ Replace n by 8 and 'x' by $-ax$.
$$= 1 + 8(-ax) + \frac{8(8-1)}{2!}$$

$$(-ax)^2 + \dots$$

$$= 1 - 8ax + 28a^2x^2 + \dots$$

(b)

$$-8a = -24$$

 $a = 3$
 $b = 28a^2$
 $= 28(3)^2$
 $= 252$
so $a = 3$ and $b = 252$

Compare coefficients of x, so that -8a = -24.

Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 14

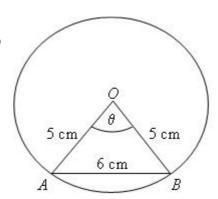
Question:

In the diagram, A and B are points on the circumference of a circle centre O and radius 5 cm.

$$\angle AOB = \theta$$
 radians.

$$AB = 6$$
 cm.

- (a) Find the value of θ .
- (b) Calculate the length of the minor arc *AB*.



Solution:

$$\cos \theta = \frac{5^{2} + 5^{2} - 6^{2}}{2(5)(5)}$$

$$= \frac{7}{25}$$

$$\theta = 1.287 \text{ radians}$$

Use the cosine formula cos $C = \frac{a^2 + b^2 - c^2}{2ab}$. Here $c = \theta$, a = 5, b = 5 and c = 6.

(b)
$$\operatorname{arc} AB = 5\theta$$
 $= 5 \times 1.287$ $= 6.44 \text{ cm}$

Use $C = r\theta$. Here C = arc AB, r = 5 and $\theta = 1.287$ radians.

Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 15

Question:

The fifth and sixth terms of a geometric series are 4.5 and 6.75 respectively.

- (a) Find the common ratio.
- (b) Find the first term.
- (c) Find the sum of the first 20 terms, giving your answer to 3 decimal places.

Solution:

(a)
$$ar^4 = 4.5, ar^5 = 6.75$$
 $\frac{ar^5}{ar^4} = \frac{6.75}{4.5}$

$$r = \frac{3}{2}$$

Find r. Divide
$$ar^5$$
 by ar^4
so that $\frac{ar^5}{ar^4} = \frac{ar^{5-4}}{a}$
= r

and
$$\frac{6.75}{4.5} = 1.5$$
.

(b)

$$a (1.5)^{4} = 4.5$$

 $a = \frac{4.5}{(1.5)^{4}}$
 $a = \frac{8}{9}$

$$S_{20} = \frac{\frac{8}{9} ((1.5)^{20} - 1)}{1.5 - 1}$$

= 5909.790 (3 d.p.)

Use
$$S_n = \frac{a(r^n - 1)}{r - 1}$$
. Here $a = \frac{8}{9}$, $r = 1.5$ and $n = 20$.

Edexcel Modular Mathematics for AS and A-Level

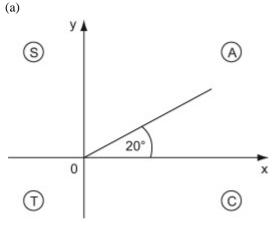
Revision Exercises 2 Exercise A, Question 16

Question:

Given that θ is an acute angle measured in degrees, express in term of $\cos 2\theta$

(a)
$$\cos (360^{\circ} + 2\theta)$$
, (b) $\cos (-2\theta)$, (c) $\cos (180^{\circ} - 2\theta)$

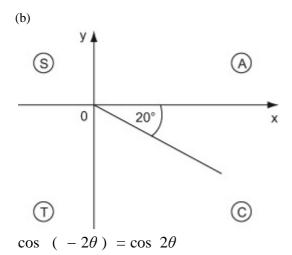
Solution:



Draw a diagram for each part.

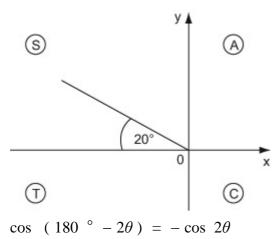
 $\cos (360^{\circ} + 2\theta) = \cos 2\theta$

360 $^{\circ}$ + 2 θ is in the first quadrant.



 -2θ is in the fourth quadrant.

(c)



_, _, _,

 $180^{\circ} - 2\theta$ is in the second quadrant.

Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 17

Question:

- (a) Expand $(1-2x)^{-10}$ in ascending powers of x up to and including the term in x^3 .
- (b) Use your answer to part (a) to evaluate (0.98) ¹⁰ correct to 3 decimal places.

Solution:

$$(1-2x) = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!}x^{3} + \cdots$$

$$= 1 + 10(-2x) + \frac{10(a)}{2}(-2x)^{2} + \frac{10(9)(8)}{6}(-2x)^{3} + \cdots$$

$$= 1 - 20x + 180x^{2} - 960x^{3} + \cdots$$

Compare $(1+x)^n$ with $(1-2x)^n$. Replace n by 10 and 'x' by -2x.

$$(1-2)$$
 = 1 - 20 (0.01) + 180 (0.01) 2 - 960 Find the value of x .
 (0.01) 3 + ... = 1 - 2 (0.01)
 0.98^{10} ≈ 0.817 (3 d.p.)

Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 18

Question:

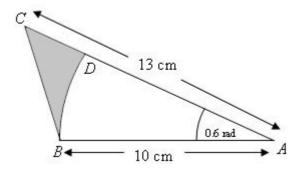
In the diagram,

$$AB = 10 \text{ cm}, AC = 13 \text{ cm}.$$

$$\angle CAB = 0.6$$
 radians.

BD is an arc of a circle centre A and radius 10 cm.

- (a) Calculate the length of the arc BD.
- (b) Calculate the shaded area in the diagram.



Solution:

$$arc BD = 10 \times 0.6$$
$$= 6 cm$$

Use $L = r\theta$. Here L = arc BD, r = 10 and $\theta = 0.6$ radians.

(b)

Shaded area

$$= \frac{1}{2} (10) (13) \sin (0.6)$$

$$= \frac{1}{2} (10)^{2} (0.6)$$

$$= 6.70 \text{ cm}^{2} (3 \text{ s.f.})$$

$$= \frac{1}{2} (10) (13) \sin (0.6) - \text{Use area of triangle} = \frac{1}{2} \text{bc sin A and area of sector} = \frac{1}{2} (10)^{2} (0.6) - \frac{1}{2} r^{2} \theta. \text{ Here } b = 13, c = 10 \text{ and A} = (\theta =) 0.6; r = 10 \text{ and } \theta = 0.6.$$

Solutionbank C2Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 19

Question:

The value of a gold coin in 2000 was £180. The value of the coin increases by 5% per annum.

- (a) Write down an expression for the value of the coin after n years.
- (b) Find the year in which the value of the coin exceeds £360.

Solution:

(b)

180 , 180 (1.05) , 180 (1.05) Write down the first 3 terms. Use
$$ar^{n-1}$$
. Here $a=180$, $r=1.05$ and $n=1$, 2 , 3.

Value after n years = 180 (1.05) n

180 (1.05)
$$^{n} > 360$$

180 (1.05) $^{14} = 356.39$
180 (1.05) $^{15} = 374.21$

The value of the coin will exceed £ 360 in 2014.

Substitute values of n. The value of the coin after 14 years is £ 356.39, and after 15 years is £ 374.21. So the value of the coin will exceed £ 360 in the 15th year.

Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 20

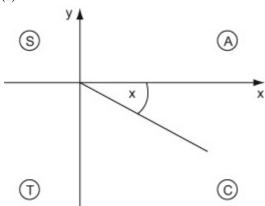
Question:

Given that x is an acute angle measured in radians, express in terms of $\sin x$

(a)
$$\sin (2\pi - x)$$
, (b) $\sin (\pi + x)$, (c) $\cos \left(\frac{\pi}{2} - x\right)$.

Solution:

(a)



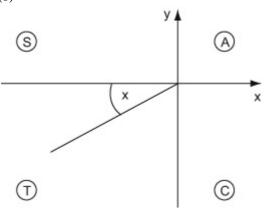
Draw a diagram for each part.

 $\sin (2\pi - x) = -\sin x$

 $\sin (\pi + x) = -\sin x$

Remember: π Radians = 180 ° $2\pi - x$ is in the fourth quadrant.

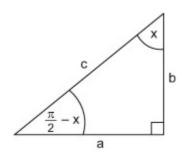
(b)



 $\pi + x$ is in the third quadrant.

(c)

 $180^{\circ} = \pi \text{ radians, so } 90^{\circ} = \frac{\pi}{2} \text{ radians.}$



$$\cos \left(\frac{\pi}{2} - x\right) = \sin x \left(=\frac{a}{c}\right).$$

Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 21

Question:

Expand and simplify $\left(x - \frac{1}{x}\right)^6$

Solution:

$$(x - \frac{1}{x})^{6} = x^{6} + (\frac{6}{1})^{3} x^{5} (\frac{-1}{x})^{3} + (\frac{6}{2})^{3} x^{4} ($$
 Compare $(x - \frac{1}{x})^{n}$ with $(a + b)^{n}$. Replace n by 6 , 'a' with x and 'b' with $\frac{-1}{x}$.

$$+ (\frac{6}{4})^{3} x^{2} (\frac{-1}{x})^{4} + (\frac{6}{5})^{3} x (\frac{-1}{x})^{3}$$

$$= x^{6} + 6x^{5} (\frac{-1}{x})^{3} + 15x^{4} (\frac{1}{x^{2}})^{3} + 20x^{3} (\frac{-1}{x})^{3} = \frac{-1}{x} \times \frac{-1}{x} = \frac{1}{x^{2}}$$

$$(\frac{-1}{x})^{3} = \frac{-1}{x} \times \frac{-1}{x} \times \frac{-1}{x} = \frac{-1}{x^{3}}$$

$$+ 15x^{2} (\frac{1}{x^{4}})^{3} + 6x (\frac{-1}{x^{5}})^{3} + \frac{1}{x^{6}}$$

$$= x^{6} - 6x^{4} + 15x^{2} - 20 + \frac{15}{x^{2}} - \frac{6}{x^{4}} + \frac{1}{x^{6}}$$

$$= x^{6} - 6x^{4} + 15x^{2} - 20 + \frac{15}{x^{2}} - \frac{6}{x^{4}} + \frac{1}{x^{6}}$$

$$= x^{6} - 6x^{4} + 15x^{2} - 20 + \frac{15}{x^{2}} - \frac{6}{x^{4}} + \frac{1}{x^{6}}$$

$$= x^{6} - 6x^{4} + 15x^{2} - 20 + \frac{15}{x^{2}} - \frac{6}{x^{4}} + \frac{1}{x^{6}}$$

$$= x^{6} - 6x^{4} + 15x^{2} - 20 + \frac{15}{x^{2}} - \frac{6}{x^{4}} + \frac{1}{x^{6}}$$

$$= x^{6} - 6x^{4} + 15x^{2} - 20 + \frac{15}{x^{2}} - \frac{6}{x^{4}} + \frac{1}{x^{6}}$$

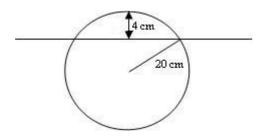
$$= x^{6} - 6x^{4} + 15x^{2} - 20 + \frac{15}{x^{2}} - \frac{6}{x^{4}} + \frac{1}{x^{6}}$$

Edexcel Modular Mathematics for AS and A-Level

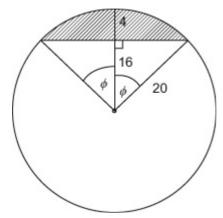
Revision Exercises 2 Exercise A, Question 22

Question:

A cylindrical log, length 2m, radius 20 cm, floats with its axis horizontal and with its highest point 4 cm above the water level. Find the volume of the log in the water.



Solution:



$$\cos \varphi = \frac{16}{20} (= 0.8)$$

Area above water level = $\frac{1}{2}r^2$ (2φ) $-\frac{1}{2}r^2\sin$ Use area of segment = $\frac{1}{2}r^2\theta$ – (2φ)

$$= \frac{1}{2} (20)^{2} (2\varphi) - \frac{1}{2}$$
 $\frac{1}{2}r^{2}\sin \theta$. Here $r = 20$ cm and $\theta = 2 \times \cos^{-1} (0.8)$

$$(20)^{2}\sin(2\varphi)$$

$$= 65.40 \text{ cm}^2$$

Area below water level = π (20) ² - 65.40

$$= 1191.24 \text{ cm}^2$$

Volume below water level = 1191.24×200

$$= 238248 \text{ cm}^3$$

$$(=0.238 \text{ cm}^3)$$

Draw a diagram. Let sector angle = 2φ .

$$\theta = 2 \times \cos^{-1} (0.8)$$

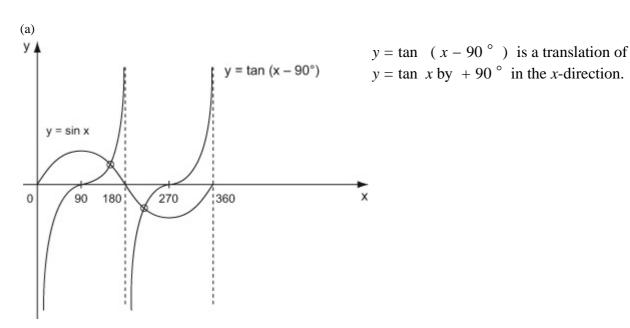
Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 23

Question:

- (a) On the same axes, in the interval $0 \le x \le 360^{\circ}$, sketch the graphs of $y = \tan (x 90^{\circ})$ and $y = \sin x$.
- (b) Hence write down the number of solutions of the equation tan $(x 90^{\circ}) = \sin x$ in the interval $0 \le x \le 360^{\circ}$.

Solution:



2 solutions in the interval $0 \le x \le 360$.

From the sketch, the graphs of $y = \tan (x - 90^{\circ})$ and $y = \sin x$ meet at two points. So there are 2 solutions in the internal $0 \le x \le 360^{\circ}$.

Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 24

Question:

A geometric series has first term 4 and common ratio $\frac{4}{3}$. Find the greatest number of terms the series can have without its sum exceeding 100.

Solution:

$$a = 4$$
 , $r = \frac{4}{3}$

$$S_n = \frac{4((\frac{4}{3})^n - 1)}{\frac{4}{3} - 1}$$

Use
$$S_n = \frac{a(r^n - 1)}{r - 1}$$
. Here $a = 4$ and $r = \frac{4}{3}$.

$$= \frac{4((\frac{4}{3})^{n}-1)}{\frac{1}{3}}$$

$$= 12((\frac{4}{3}))$$

$$= 12((\frac{4}{3}))$$

Now, 12 (
$$(\frac{4}{3})^n - 1$$
) < 100
 $(\frac{4}{3})^n - 1 < \frac{100}{12}$
 $(\frac{4}{3})^n < \frac{100}{12} + 1$
 $(\frac{4}{3})^n < 9^{\frac{1}{3}}$

$$\left(\frac{4}{3}\right)^{7} = 7.492$$

 $\left(\frac{4}{3}\right)^{8} = 9.990$

Substitute values of
$$n$$
. The largest value of n for which ($\frac{4}{3}$) $^{n} < 9^{1/3}$ is 7.

so n = 7

Solutionbank C2Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 25

Question:

Describe geometrically the transformation which maps the graph of

- (a) $y = \tan x$ onto the graph of $y = \tan (x 45^\circ)$,
- (b) $y = \sin x$ onto the graph of $y = 3\sin x$,
- (c) $y = \cos x$ onto the graph of $y = \cos \frac{x}{2}$,
- (d) $y = \sin x$ onto the graph of $y = \sin x 3$.

Solution:

- (a) A translation of $+45^{\circ}$ in the x direction
- (b) A stretch of scale factor 3 in the y direction
- (c) A stretch of scale factor 2 in the x direction
- (d) A translation of -3 in the y direction

[©] Pearson Education Ltd 2008

Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 26

Question:

If x is so small that terms of x^3 and higher can be ignored, and (2-x) (1+2x) $^5 \approx a+bx+cx^2$, find the values of the constants a, b and c.

Solution:

Compare
$$(1+2x)^{5} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \dots$$

$$= 1 + 5(2x) + \frac{5(4)}{2}$$

$$(2x)^{2} + \dots$$

$$= 1 + 10x + 40x^{2} + \dots$$

$$= 2 + 20x + 80x^{2} + \dots$$

$$- x - 10x^{2} + \dots$$

$$2 + 19x + 70x^{2} + \dots$$

$$= 2 + 20x + 80x^{2} + \dots$$

$$- x - 10x^{2} + \dots$$

$$2 + 19x + 70x^{2} + \dots$$

$$= 2 + 20x + 80x^{2} + \dots$$
and
$$- x \times (1 + 10x + 40x^{2} + \dots)$$

$$= 2 + 20x + 80x^{2} + \dots$$
and
$$- x \times (1 + 10x + 40x^{2} + \dots)$$

$$= 2 + 20x + 80x^{2} + \dots$$
and
$$- x \times (1 + 10x + 40x^{2} + \dots)$$

$$= -x - 10x^{2} - 40x^{3}$$
simplify so that
$$2 + 20x - x + 80x^{2} - 10x^{2} + \dots$$

$$= 2 + 19x + 70x^{2} + \dots$$
So $a = 2$, $b = 19$, $c = 70$
Compare $2 + 19x + 70x^{2} + \dots$ with $a + bx + cx^{2} + \dots$ so that $a = 2$, $b = 19$ and $c = 70$.

Edexcel Modular Mathematics for AS and A-Level

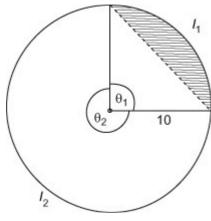
Revision Exercises 2 Exercise A, Question 27

Question:

A chord of a circle, radius 20 cm, divides the circumference in the ratio 1:3.

Find the ratio of the areas of the segments into which the circle is divided by the chord.

Solution:



Draw a diagram. Let the minor are \boldsymbol{l}_1 have angle $\boldsymbol{\theta}_1$ and the major are l_2 have angle θ_2 .

 $l_1: l_2 = 1:3$

$$10\theta_1 : 10\theta_2 = 1 : 3$$

$$\theta_1:\theta_2=1:3$$

so
$$\theta_1 = \frac{1}{4} \times 2\pi = \frac{\pi}{2}$$

 $^2\sin\theta_1$

$$=25\pi-50$$

Area of large segment = π (10) ² – $(25\pi - 50)$

$$= 100\pi - 25\pi + 50$$
$$= 75\pi + 50$$

Ratio of small segment to large segment is

$$25\pi - 50:75\pi + 50$$

$$\pi - 2 : 3\pi + 2$$

or 1:
$$\frac{3\pi + 2}{\pi - 2}$$

Use $l = r\theta$ so that $l_1 = 10\theta_1$ and $l_2 = 10\theta_2$.

Shaded area $=\frac{1}{2}(10)^2\theta_1 - \frac{1}{2}(10)$ Use area of segment $=\frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin\theta$. Here r = 10 and $\theta = \theta_1 = \frac{\pi}{2}$

Divide throughout by 25.

Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 28

Question:

x, 3 and x + 8 are the fourth, fifth and sixth terms of geometric series.

(a) Find the two possible values of x and the corresponding values of the common ratio.

Given that the sum to infinity of the series exists,

- (b) find the first term,
- (c) the sum to infinity of the series.

Solution:

$$ar^{3} = x$$

$$ar^{4} = 3$$

$$ar^{5} = x + 8$$

$$\frac{ar^{5}}{ar^{4}} = \frac{ar^{4}}{ar^{3}}$$
so
$$\frac{x+8}{3} = \frac{3}{x}$$

$$x(x+8) = 9$$

$$x^{2} + 8x - 9 = 0$$

$$(x+9)(x-1) = 0$$

$$x = 1, x = -9$$

$$r = \frac{ar^{4}}{ar^{3}} = \frac{x}{3}$$

$$\frac{ar^5}{ar} = r \text{ and } \frac{ar^4}{ar^3} = r \text{ so } \frac{ar^5}{ar^4} = \frac{ar^4}{ar^3}.$$

Clear the fractions. Multiply each side by 3x so that $3x \times \frac{x+8}{3} = x$ (x+8) and $3x \times \frac{3}{x} = 9$.

When
$$x = 1$$
, $r = \frac{1}{3}$

When
$$x = -9$$
, $r = -3$

Find r. Substitute
$$x = 1$$
, then $x = -9$, into $\frac{ar^4}{ar^3} = \frac{x}{3}$, so that

Remember $S_{\infty} = \frac{a}{1-r}$ for |r| < 1, so $r = \frac{1}{3}$.

$$r = \frac{1}{3}$$
 and $r = \frac{-9}{3} = -3$.

$$r = \frac{1}{3}$$

$$ar^4 = 3$$

$$a\left(\frac{1}{3}\right)^4 = 3$$

$$a = 243$$

(b)

$$\frac{a}{1-r} = \frac{243}{1-\frac{1}{3}} = 364 \frac{1}{2}$$

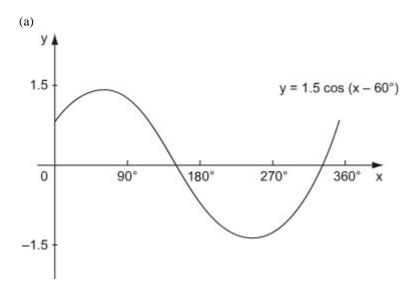
Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 29

Question:

- (a) Sketch the graph of $y = 1.5 \cos (x 60^{\circ})$ in the interval $0 \le x < 360^{\circ}$
- (b) Write down the coordinates of the points where your graph meets the coordinate axes.

Solution:



(b) When x = 0,

$$y = 1.5 \cos (-60^{\circ})$$

= 0.75
so (0,0.75)
 $y = 1.5 \cos (x - 60^{\circ})$

$$y = 0$$
,
when $x = 90^{\circ} + 60^{\circ}$
= 150°
and $x = 270^{\circ} + 60^{\circ}$

 $= 330^{\circ}$

= $\cos 60^{\circ} = \frac{1}{2} \text{so } y = 1.5 \times \frac{1}{2} = 0.75$ The graph of $y = 1.5 \cos (x - 60^{\circ})$ meets the x-axis when y = 0. $\cos (x - 60^{\circ})$ represents a translation of $\cos x$ by $+ 60^{\circ}$ in the x-direction $\cos x$ meets the x-axis at

The graph of $y = 1.5 \cos (x - 60^{\circ})$ meets the y axis

so that $y = 1.5 \cos (-60^{\circ}) \cdot \cos (-60^{\circ})$

when x = 0. Substitute x = 0 into $y = 1.5 \cos (x - 60^{\circ})$

90 ° and 270 °, so y = 1.5 ($\cos x - 60$ °) meets the x-axis at 90 ° + 60 ° = 150 ° and 270 ° + 60 ° = 330 °.

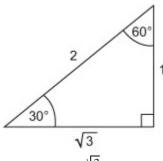
Edexcel Modular Mathematics for AS and A-Level

Revision Exercises 2 Exercise A, Question 30

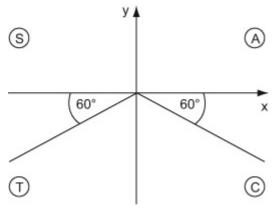
Question:

Without using a calculator, solve sin $(x-20^{\circ}) = -\frac{\sqrt{3}}{2}$ in the interval $0 \le x \le 360^{\circ}$.

Solution:



$$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$$



$$\sin (240^{\circ}) = -\frac{\sqrt{3}}{2}$$

$$\sin (300^{\circ}) = -\frac{\sqrt{3}}{2}$$

so
$$x - 20^{\circ} = 240^{\circ}$$

$$x = 260^{\circ}$$

and
$$x - 20^{\circ} = 300^{\circ}$$

$$x = 320^{\circ}$$

 $\sin x = -\frac{\sqrt{3}}{2}$. $\sin x$ is negative in the 3rd and 4th quadrants.

$$\sin 240^{\circ} = -\frac{\sqrt{3}}{2}$$
 but $\sin (x - 20^{\circ}) = -\frac{\sqrt{3}}{2}$ so $x - 20^{\circ} = 240^{\circ}$, i.e. $x = 260^{\circ}$. Similarly $\sin 300^{\circ} = -\frac{\sqrt{3}}{2}$ but $\sin (x - 20^{\circ}) = -\frac{\sqrt{3}}{2}$ so $x - 20^{\circ} = 300^{\circ}$, i.e. $x = 320^{\circ}$.