## GCE Examinations Advanced Subsidiary

# **Core Mathematics C2**

Paper K Time: 1 hour 30 minutes

### Instructions and Information

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.

Full marks may be obtained for answers to ALL questions.

Mathematical formulae and statistical tables are available.

This paper has nine questions.

#### Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.



Written by Shaun Armstrong © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

#### 1. Evaluate

$$\int_{1}^{4} (x^2 - 5x + 4) \, \mathrm{d}x. \tag{4}$$

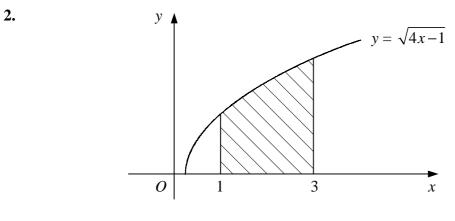


Figure 1

Figure 1 shows the curve with equation 
$$y = \sqrt{4x-1}$$
.

Use the trapezium rule with five equally-spaced ordinates to estimate the area of the shaded region bounded by the curve, the *x*-axis and the lines x = 1 and x = 3. (4)

3. Given that  $y = \log_2 x$ , find expressions in terms of y for *(a)* 

(i) 
$$\log_2\left(\frac{x}{2}\right)$$
,  
(ii)  $\log_2\left(\sqrt{x}\right)$ . (4)

*(b)* Hence, or otherwise, solve the equation

$$2\log_2\left(\frac{x}{2}\right) + \log_2\left(\sqrt{x}\right) = 8.$$
(3)

4.

 $f(x) = 2 - x - x^3$ .

| (a)        | Show that $f(x)$ is decreasing for all values of $x$ .      | (4) |
|------------|-------------------------------------------------------------|-----|
| <i>(b)</i> | Verify that the point (1, 0) lies on the curve $y = f(x)$ . | (1) |

Find the area of the region bounded by the curve y = f(x) and the *(c)* coordinate axes. (4)

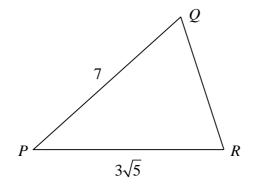


Figure 2

Figure 2 shows triangle *PQR* in which *PQ* = 7 and *PR* =  $3\sqrt{5}$ . Given that  $\sin(\angle QPR) = \frac{2}{3}$  and that  $\angle QPR$  is acute,

| ( <i>a</i> ) | find the exact value of cos (2 | <i>QPR</i> ) in its simplest form, | (2) |
|--------------|--------------------------------|------------------------------------|-----|
|              |                                |                                    |     |

- (b) show that  $QR = 2\sqrt{6}$ , (4)
- (c) find  $\angle PQR$  in degrees to 1 decimal place. (3)

#### **6.** The polynomial p(x) is defined by

$$p(x) = 2x^3 + x^2 + ax + b,$$

where *a* and *b* are constants.

Given that when p(x) is divided by (x + 2) there is a remainder of 20,

| ( <i>a</i> ) | find an expression for b in terms of a.        | (2) |
|--------------|------------------------------------------------|-----|
| Give         | en also that $(x + 3)$ is a factor of $p(x)$ , |     |

- (b) find the values of a and b,
  (c) fully factorise p(x).
  (4)
  - fully factorise p(x). (4)

Turn over

7. (a) Find, to 2 decimal places, the values of x in the interval  $0 \le x < 2\pi$  for which

$$\tan\left(x + \frac{\pi}{4}\right) = 3. \tag{4}$$

(b) Find, in terms of  $\pi$ , the values of y in the interval  $0 \le y < 2\pi$  for which

$$2\sin y = \tan y. \tag{6}$$

**8.** The point *A* has coordinates (4, 6).

Given that OA, where O is the origin, is a diameter of circle C,

| (a) find an equation for $C$ .                                                                                                | (4) |
|-------------------------------------------------------------------------------------------------------------------------------|-----|
| Circle <i>C</i> crosses the <i>x</i> -axis at <i>O</i> and at the point <i>B</i> .                                            |     |
| (b) Find the coordinates of $B$ .                                                                                             | (2) |
| (c) Find an equation for the tangent to C at B, giving your answer in the form $ax + by = c$ , where a, b and c are integers. | (5) |

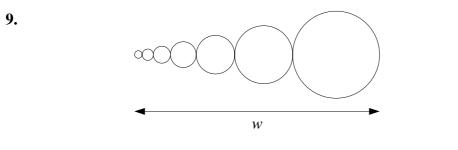


Figure 3

Figure 3 shows part of a design being produced by a computer program.

The program draws a series of circles with each one touching the previous one and such that their centres lie on a horizontal straight line.

The radii of the circles form a geometric sequence with first term 1 mm and second term 1.5 mm. The width of the design is *w* as shown.

| ( <i>a</i> ) | Find the radius of the fourth circle to be drawn.                                         | (2) |
|--------------|-------------------------------------------------------------------------------------------|-----|
| (b)          | Show that when eight circles have been drawn, $w = 98.5$ mm to 3 significant figures.     | (4) |
| ( <i>c</i> ) | Find the total area of the design in square centimetres when ten circles have been drawn. | (5) |