After completing this chapter you should be able to

- **1** sketch the graph of the modulus function y = |f(x)|
- **2** sketch the graph of the function y = f(|x|)
- **3** solve equations involving the modulus function
- **4** apply a combination of two (or more) transformations to the same curve
- **5** sketch transformations of the graph y = f(x).

Transforming graphs of functions

5.1 You need to be able to sketch the graph of the modulus function y = |f(x)|.

The modulus of a number a, written as |a|, is its **positive** numerical value.

So, for example, |5| = 5 and also |-5| = 5.

It is sometimes known as the **absolute value**, and is shown on the display of some calculators as, for example, 'Abs -5' or 'Abs(-5)'. If your calculator has a modulus or absolute value button, make sure you understand how to use it.

A modulus function is, in general, a function of the type y = |f(x)|.

When
$$f(x) \ge 0$$
, $|f(x)| = f(x)$.

When
$$f(x) < 0$$
, $|f(x)| = -f(x)$.

Example 1

Sketch the graph of y = |x|.

Step 1

Sketch the graph of y = x. (Ignore the modulus.)

Step 2

For the part of the line below the x-axis (the negative values of y), reflect in the x-axis. For example this will change the y-value -3 into the y-value 3.

Important

If you do steps 1 and 2 above on the same diagram, make sure that you clearly show that you have deleted the part of the graph below the x-axis.

Example 2

Sketch the graph of y = |3x - 2|.

Step 1

Sketch the graph of y = 3x - 2. (Ignore the modulus.)

Step 2

For the part of the line below the x-axis (the negative values of y), reflect in the x-axis. For example, this will change the y-value -2 into the y-value 2.

Example 3

Sketch the graph of $y = |x^2 - 3x - 10|$.

Step 1

Sketch the graph of $y = x^2 - 3x - 10$. (Ignore the modulus.)

Step 2

For the part of the curve below the x-axis (the negative values of y), reflect in the x-axis. For example, this will change the y-value -3 into the y-value 3.

Example 4

The diagram on the right shows the graph of y = f(x). Sketch the graph of y = |f(x)|.

As in the previous examples, the part of the curve below the x-axis must be reflected in the x-axis. The graph of y = |f(x)| looks like this.

Example 5

Sketch the graph of $y = |\sin x|$, $0 \le x \le 2\pi$.

 $y = |\sin x|$ $0.5 - \frac{\pi}{2} = \pi = \frac{3\pi}{2} = 2\pi^{-x}$ $-0.5 - \frac{\pi}{2} = \pi = \frac{3\pi}{2} = 2\pi^{-x}$

First draw the graph of $y = \sin x$.

As before, reflect the part of the curve below the x-axis in the x-axis.

Exercise **5A**

1 Sketch the graph of each of the following. In each case, write down the coordinates of any points at which the graph meets the coordinate axes.

a
$$y = |x - 1|$$

c
$$y = |\frac{1}{2}x - 5|$$

e
$$y = |x^2 - 7x - 8|$$

$$\mathbf{g} \ y = |x^3 + 1|$$

i
$$y = -|x|$$

b
$$y = |2x + 3|$$

d
$$y = |7 - x|$$

f
$$y = |x^2 - 9|$$

$$\mathbf{h} \ y = \left| \frac{12}{x} \right|$$

$$y = -|3x - 1|$$

2 Sketch the graph of each of the following. In each case, write down the coordinates of any points at which the graph meets the coordinate axes.

a
$$y = |\cos x|, \ 0 \le x \le 2\pi$$

b
$$y = |\ln x|, x > 0$$

c
$$y = |2^x - 2|$$

d
$$y = |100 - 10^x|$$

e
$$y = |\tan 2x|, \ 0 < x < 2\pi$$

5.2 You need to be able to sketch the graph of the function y = f(|x|).

For the function y = f(|x|), the value of y at, for example, x = -5 is the same as the value of y at x = 5. This is because f(|-5|) = f(5).

Example 6

Sketch the graph of y = |x| - 2.

Method 1

Step 1

Sketch the graph of y = x - 2 (ignore the modulus) for $x \ge 0$.

Step 2

Reflect in the y-axis.

Step 1

Sketch the graph of y = |x|.

Step 2

Vertical translation of −2 units. (See transformations of curves in Book C1, Chapter 4.)

Example 7

Sketch the graph of $y = 4|x| - |x|^3$.

Step 1

Sketch the graph of $y = 4x - x^3$ (ignore the modulus) for $x \ge 0$.

Step 2

Reflect in the *y*-axis.

Exercise 5B

Sketch the graph of each of the following. In each case, write down the coordinates of any points at which the graph meets the coordinate axes.

$$\boxed{1} \quad y = 2|x| + 1$$

$$2 \quad y = |x|^2 - 3|x| - 4$$

$$3 \quad y = \sin|x|, \ -2\pi \le x \le 2\pi$$

$$4 \quad y = 2^{|x|}$$

5.3 You need to be able to solve equations involving a modulus.

Solutions can come from either the 'original' or the 'reflected' part of the graph.

Example 8

Solve the equation $|2x - \frac{3}{2}| = 3$.

Sketch the graph of $y = 2x - \frac{3}{2}$. (Ignore the modulus.)

For the part of the line below the x-axis, reflect in the x-axis.

Draw the line y = 3 on the same sketch.

The solutions are the values of \boldsymbol{x} where the graphs cross (A and B).

A is on the original graph of $y = 2x - \frac{3}{2}$. B is on the reflected part.

At A, $2x - \frac{3}{2} = 3$
$2x = \frac{9}{2}$
$x = \frac{9}{4} = 2\frac{1}{4}$
At B, $-(2x - \frac{3}{2}) = 3$
$-2x + \frac{3}{2} = 3$
$-2x = \frac{3}{2}$
$x = -\frac{3}{4}$
The solutions to the equation are $x = -\frac{3}{4}$
and $x = \frac{9}{4}$.

Original: Use $2x - \frac{3}{2}$.

When f(x) < 0, |f(x)| = -f(x), so, as it is reflected, use $-(2x - \frac{3}{2})$.

Example 9

- **a** On the same diagram, sketch the graphs of y = |5x 2| and y = |2x|.
- **b** Solve the equation |5x 2| = |2x|.

Sketch the graph of y = |5x - 2|. (As usual, for the part of y = 5x - 2 that is below the x-axis, reflect in the x-axis.)

At A, 5x - 2 = 2x

On the same diagram, sketch the graph of y = |2x|.

The solutions for part ${\bf b}$ are the values of ${\bf x}$ where the 2 graphs intersect.

Intersection point A is on the original graph of y = 5x + 2, and on the original graph of y = 2x.

Intersection point B is on the reflected part of y = 5x - 2, and on the original graph of y = 2x.

Original: Use 5x - 2 and 2x.

Reflected: Use -(5x - 2)

Original: Use 2x.

$$3x = 2$$
 $x = \frac{2}{3}$
At B, $-(5x - 2) = 2x$
 $-5x + 2 = 2x$
 $-7x = -2$

 $x = \frac{2}{7}$

Example 10

- **a** On the same diagram, sketch the graphs of $y = |x^2 2x|$ and $y = \frac{1}{4} 2x$.
- **b** Solve the equation $|x^2 2x| = \frac{1}{4} 2x$.

а

Sketch the graph of $y = |x^2 - 2x|$. (As usual, for the part of $y = x^2 - 2x$ that is below the x-axis, reflect in the x-axis.)

-2 $y = \frac{1}{4} - 2x$ -3

On the same diagram, sketch the graph of $y = \frac{1}{4} - 2x$.

The solutions for part **b** are the values of xwhere the 2 graphs intersect.

Intersection point A is on the original part of both graphs.

Intersection point B is on the original graph of $y = \frac{1}{4} - 2x$ and on the reflected part of $y = x^2 - 2x$.

At A, $x^2 - 2x = \frac{1}{4} - 2x$

$$x = -\frac{1}{2}(A)$$

$$x = -\frac{1}{2} (A)$$
or $x = \frac{1}{2} (\text{not valid})$

At B, $\frac{1}{4} - 2x = -(x^2 - 2x)$ \leftarrow $x^2 - 4x + \frac{1}{4} = 0$

$$x = \frac{4 \pm \sqrt{16 - 1}}{2}$$

$$x = 3.94 (2 d.p.)$$
 (not valid)

$$x = 0.06 (2 \text{ d.p.}) (B)$$

The complete set of solutions is $x = -\frac{1}{2}$ and $x = 2 - \frac{1}{2}\sqrt{15}$ (≈ 0.06). Original: Use $x^2 - 2x$ and $\frac{1}{4} - 2x$.

This is not valid, since x < 0.

Reflected: Use $-(x^2 - 2x)$.

Original: Use $\frac{1}{4} - 2x$.

You need to reject any invalid 'solutions'.

Exercise **5C**

- On the same diagram, sketch the graphs of y = -2x and $y = |\frac{1}{2}x 2|$. Solve the equation $-2x = |\frac{1}{2}x 2|$.
- On the same diagram, sketch the graphs of y = |x| and y = |-4x 5|. Solve the equation |x| = |-4x 5|.
- On the same diagram, sketch the graphs of y = 3x and $y = |x^2 4|$. Solve the equation $3x = |x^2 4|$.
- On the same diagram, sketch the graphs of y = |x| 1 and y = -|3x|. Solve the equation |x| 1 = -|3x|.
- On the same diagram, sketch the graphs of $y = 24 + 2x x^2$ and y = |5x 4|. Solve the equation $24 + 2x x^2 = |5x 4|$. (Answers to 2 d.p. where appropriate).
- 5.4 You need to be able to apply a combination of two (or more) transformations to the same curve.

In Book C1, Chapter 4, you saw how to apply various transformations to curves. To summarise these:

- \blacksquare 1) f(x + a) is a horizontal translation of -a
 - (2) f(x) + a is a vertical translation of +a
 - (3) f(ax) is a horizontal stretch of scale factor $\frac{1}{a}$
 - 4 af(x) is a vertical stretch of scale factor a

Example 11

Sketch the graph of $y = (x - 2)^2 + 3$.

Start with $f(x) = x^2$

$$f(x-2) = (x-2)^2$$

Calling this g(x), $g(x) = (x - 2)^2$

$$g(x) + 3 = (x - 2)^2 + 3$$

Step 1 using \bigcirc : Horizontal translation of +2.

Step 2 using \bigcirc : Vertical translation of +3.

Sketch the graph of $f(x) = x^2$.

Step 1

Horizontal translation of +2.

Step 2

Vertical translation of +3.

Example 12

Sketch the graph of $y = \frac{2}{x+5}$.

Start with
$$f(x) = \frac{1}{x}$$

$$f(x+5) = \frac{1}{x+5} \quad \bullet$$

Step 1 using 1: Horizontal translation of -5

$$2g(x) = \frac{2}{x+5}$$

Step 2 using 4:

Vertical stretch, scale factor 2.

Sketch the graph of $f(x) = \frac{1}{x}$.

Step 1

Horizontal translation of -5.

Step 2

Vertical stretch, scale factor 2.

Notice what happens to a point such as $(-4, 1) \dots$ It goes to (-4, 2).

Example 13

Sketch the graph of $y = \cos 2x - 1$.

Start with $f(x) = \cos x$

$$f(2x) = \cos 2x \leftarrow$$

Calling this g(x), $g(x) = \cos 2x$

$$g(x) - 1 = \cos 2x - 1 -$$

Step 1 using 3:

Horizontal stretch, scale factor $\frac{1}{2}$.

Step 2 using \bigcirc : Vertical translation of -1.

Sketch the graph of $f(x) = \cos x$.

Step 1 Horizontal stretch, scale factor $\frac{1}{2}$.

Step 2 Vertical translation of -1.

Example 14

Sketch the graph of y = 3|x - 1| - 2.

Start with f(x) = |x|f(x-1) = |x-1|

Calling this g(x), g(x) = |x - 1|

3q(x) = 3|x - 1|

Calling this h(x), h(x) = 3|x - 1|

h(x) - 2 = 3|x - 1| - 2

Step 1 using 1: Horizontal translation of 1.

Step 2 using 4: Vertical stretch, scale factor 3.

Step 3 using \bigcirc : Vertical translation of -2.

Exercise 5D

1 Using combinations of transformations, sketch the graph of each of the following:

a
$$y = 2x^2 - 4$$

c
$$y = \frac{3}{x} - 2$$

e
$$y = 5 \sin(x + 30^\circ), 0 \le x \le 360^\circ$$

$$g y = |4x| + 1$$

i
$$y = 3 \ln(x - 2), x > 2$$

b
$$y = 3(x + 1)^2$$

d
$$y = \frac{3}{x-2}$$

f
$$y = \frac{1}{2}e^x + 4$$

h
$$y = 2x^3 - 3$$

$$y = |2e^x - 3|$$

5.5 When you are given a sketch of y = f(x), you need to be able to sketch transformations of the graph, showing coordinates of the points to which given points are mapped.

Example 15

The diagram shows a sketch of the graph of y = f(x). The curve passes through the origin O, the point A(2, -1) and the point B(6, 4).

Sketch the graph of:

a
$$y = 2f(x) - 1$$

b
$$y = f(x + 2) + 2$$

c
$$y = \frac{1}{4}f(2x)$$

$$\mathbf{d} \quad y = -\mathbf{f}(x-1)$$

In each case, find the coordinates of the images of the points *O*, A and B.

y = 2f(x) - 1 is shown in red in the diagram.

The images of 0, A and B are (0, -1), (2, -3) and (6, 7) respectively.

Vertical stretch, scale factor 2.

Vertical stretch, scale factor 2, then a vertical translation of -1.

b y = f(x + 2) + 2

Horizontal translation of -2.

Horizontal translation of -2, then a vertical translation of 2.

y = f(x + 2) + 2 is shown in red in the diagram.

The images of 0, A and B are (-2, 2), (0, 1) and (4, 6) respectively.

c $y = \frac{1}{4}f(2x)$

Horizontal stretch, scale factor $\frac{1}{2}$.

Horizontal stretch, scale factor $\frac{1}{2}$, then a vertical stretch, scale factor $\frac{1}{4}$.

 $y = \frac{1}{4}f(2x)$ is shown in red in the diagram.

The images of O, A and B are (0, 0), (1, -0.25) and (3, 1) respectively.

Horizontal translation of 1.

Horizontal translation of 1, then a vertical stretch, scale factor -1.

A 'vertical stretch with scale factor -1' is equivalent to a reflection in the x-axis.

Exercise **5E**

The diagram shows a sketch of the graph of y = f(x). The curve passes through the origin O, the point A(-2, -2) and the point B(3, 4).

Sketch the graph of:

a
$$y = 3f(x) + 2$$

b
$$y = f(x - 2) - 5$$

c
$$y = \frac{1}{2}f(x+1)$$

$$\mathbf{d} \ y = -f(2x)$$

In each case, find the coordinates of the images of the points O, A and B.

2 The diagram shows a sketch of the graph of y = f(x). The curve has a maximum at the point A(-1, 4) and crosses the axes at the points B(0, 3) and C(-2, 0).

Sketch the graph of:

a
$$y = 3f(x - 2)$$

b
$$y = \frac{1}{2}f(\frac{1}{2}x)$$

c
$$y = -f(x) + 4$$
 d $y = -2f(x + 1)$

d
$$v = -2f(x + 1)$$

For each graph, find, where possible, the coordinates of the maximum or minimum and the coordinates of the intersection points with the axes.

3 The diagram shows a sketch of the graph of y = f(x). The lines x = 2 and y = 0 (the x-axis) are asymptotes to the curve.

Sketch the graph of:

a
$$y = 3f(x) - 1$$

b
$$y = f(x + 2) + 4$$

$$\mathbf{c} \ \ y = -\mathbf{f}(2x)$$

For each part, state the equations of the asymptotes.

Mixed exercise **5F**

- **1** a Using the same scales and the same axes, sketch the graphs of y = |2x| and y = |x a|, where a > 0.
 - **b** Write down the coordinates of the points where the graph of y = |x a| meets the axes.
 - **c** Show that the point with coordinates (-a, 2a) lies on both graphs.
 - **d** Find the coordinates, in terms of a, of a second point which lies on both graphs.
- **2** a Sketch, on a single diagram, the graphs of $y = a^2 x^2$ and y = |x + a|, where a is a constant and a > 1.
 - **b** Write down the coordinates of the points where the graph of $y = a^2 x^2$ cuts the coordinate axes.
 - **c** Given that the two graphs intersect at x = 4, calculate the value of a.

- **3** a On the same axes, sketch the graphs of y = 2 x and y = 2|x + 1|.
 - **b** Hence, or otherwise, find the values of x for which 2 x = 2|x + 1|.

4 Functions f and g are defined by

$$f: x \to 4 - x \quad \{x \in \mathbb{R}\}$$

 $g: x \to 3x^2 \quad \{x \in \mathbb{R}\}$

- **a** Find the range of g.
- **b** Solve gf(x) = 48.
- **c** Sketch the graph of y = |f(x)| and hence find the values of x for which |f(x)| = 2.

- **5** The function f is defined by $f: x \to |2x a| \{x \in \mathbb{R}\}$, where a is a positive constant.
 - **a** Sketch the graph of y = f(x), showing the coordinates of the points where the graph cuts the axes.
 - **b** On a separate diagram, sketch the graph of y = f(2x), showing the coordinates of the points where the graph cuts the axes.
 - **c** Given that a solution of the equation $f(x) = \frac{1}{2}x$ is x = 4, find the two possible values of a.

- **6 a** Sketch the graph of y = |x 2a|, where a is a positive constant. Show the coordinates of the points where the graph meets the axes.
 - **b** Using algebra solve, for x in terms of a, $|x 2a| = \frac{1}{3}x$.
 - **c** On a separate diagram, sketch the graph of y = a |x 2a|, where a is a positive constant. Show the coordinates of the points where the graph cuts the axes.

- **7** a Sketch the graph of y = |2x + a|, a > 0, showing the coordinates of the points where the graph meets the coordinate axes.
 - **b** On the same axes, sketch the graph of $y = \frac{1}{x}$.
 - **c** Explain how your graphs show that there is only one solution of the equation x|2x + a| 1 = 0.
 - **d** Find, using algebra, the value of x for which x|2x + a| 1 = 0.

8 The diagram shows part of the curve with equation y = f(x), where

$$f(x) = x^2 - 7x + 5 \ln x + 8 \quad x > 0$$

The points A and B are the stationary points of the curve.

- **a** Using calculus and showing your working, find the coordinates of the points A and B.
- **b** Sketch the curve with equation y = -3f(x 2).
- **c** Find the coordinates of the stationary points of the curve with equation y = -3f(x 2). State, without proof, which point is a maximum and which point is a minimum.

Summary of key points

- 1 The modulus of a number a, written as |a|, is its **positive** numerical value.
 - For $|a| \ge 0$, |a| = a.
 - For |a| < 0, |a| = -a.
- **2** To sketch the graph of y = |f(x)|:
 - Sketch the graph of y = f(x).
 - Reflect in the *x*-axis any parts where f(x) < 0 (parts below the *x*-axis).
 - Delete the parts below the x-axis.
- **3** To sketch the graph of y = f(|x|):
 - Sketch the graph of y = f(x) for $x \ge 0$.
 - Reflect this in the *y*-axis.
- **4** To solve an equation of the type |f(x)| = g(x) or |f(x)| = |g(x)|:
 - Use a sketch to locate the roots.
 - Solve algebraically, using -f(x) for reflected parts of y = f(x) and -g(x) for reflected parts of y = g(x).
- **5** Basic types of transformation are
 - f(x + a) a horizontal translation of -a
 - f(x) + a a vertical translation of +a
 - f(ax) a horizontal stretch of scale factor $\frac{1}{a}$
 - af(x) a vertical stretch of scale factor a

These may be combined to give, for example bf(x + a), which is a horizontal translation of -a followed by a vertical stretch of scale factor b.

6 For combinations of transformations, the graph can be built up 'one step at a time', starting from a basic or given curve.