DIFFERENTIATION

C3

1	Given that $f(x) = x(x+2)^3$, find f'(x)			
	a by first expanding $f(x)$,		b using the product rule.	
2	Differentiate each of the following with respect to x and simplify your answers.			
	a xe^x	b $x(x+1)^5$	c $x \ln x$	d $x^2(x-1)^3$
	$e x^3 \ln 2x$	$\mathbf{f} x^2 \mathrm{e}^{-x}$	g $2x^4(5+x)^3$	h $x^2(x-3)^4$
3	Find $\frac{dy}{dx}$, simplifying your answer in each case.			
	$\mathbf{a} y = x(2x-1)^3$	$\mathbf{b} y = 3x^4 \mathrm{e}^{2x+1}$	³ c <i>y</i>	$= x\sqrt{x-1}$
	$\mathbf{d} y = x^2 \ln \left(x + 6 \right)$	e y = x(1-5x)	f y f y	$=(x+2)(x-3)^{3}$
	$\mathbf{g} y = x^{\frac{4}{3}} \mathrm{e}^{3x}$	h $y = (x+1)$	$\ln(x^2 - 1)$ i y	$=x^2\sqrt{3x+1}$
4	Find the value of $f'(x)$ at the value of x indicated in each case.			
	$\mathbf{a} \mathbf{f}(x) = 4x \mathrm{e}^{3x},$	x = 0	b $f(x) = 2x(x^2 + 2)^3$,	x = -1
	c $f(x) = (5x - 4) \ln 3x$, $x=\frac{1}{3}$	d $f(x) = x^{\frac{1}{2}}(1-2x)^3$	$x = \frac{1}{4}$
5	Find the coordinates of any stationary points on each curve.			
	a $y = xe^{2x}$	b $y = x(x-4)$	$\mathbf{c} \mathbf{y}$	$=x^2(2x-3)^4$
	d $y = x\sqrt{x+12}$	e $y = 2 + x^2 e^{-x^2}$	f y	$=(1-3x)(3-x)^3$
6	Find an equation for the tangent to each curve at the point on the curve with the given x-coordinate			
	$a y = x(x-2)^4,$	x = 1	b $y = 3x^2 e^x$,	x = 1
	$\mathbf{c} y = (4x - 1) \ln 2x,$	$x = \frac{1}{2}$	$\mathbf{d} y = x^2 \sqrt{x+6} ,$	x = -2
7	Find an equation for the normal to each curve at the point on the curve with the given x-coordinate Give your answers in the form $ax + by + c = 0$, where a, b and c are integers.			
	a $y = x^2(2-x)^3$,	x = 1	b $y = x \ln (3x - 5),$	x = 2
	c $y = (x^2 - 1)e^{3x}$,	x = 0	d $y = x\sqrt{x-4}$,	x = 8
8	$y = xe^{x^2}$			

The diagram shows part of the curve with equation $y = xe^{x^2}$ and the tangent to the curve at the point *P* with *x*-coordinate 1.

- **a** Find an equation for the tangent to the curve at *P*.
- **b** Show that the area of the triangle bounded by this tangent and the coordinate axes is $\frac{2}{3}e$.