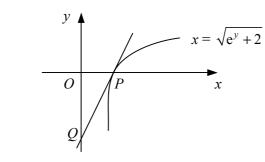
DIFFERENTIATION

(3)

(2)

(3)

- 1 The curve C has equation $y = \frac{1}{4x} \ln x$.
 - **a** Find the gradient of C at the point $(1, \frac{1}{4})$.
 - **b** Find an equation for the normal to *C* at the point $(1, \frac{1}{4})$, giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers. (3)
- 2 A curve has the equation $y = xe^{-2x}$.
 - **a** Find and simplify expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. (4)
 - **b** Find the exact coordinates of the turning point of the curve and determine its nature. (4)



The diagram shows the curve $x = \sqrt{e^y + 2}$ which crosses the x-axis at the point P.

- a Find the coordinates of *P*. (1)
- **b** Find $\frac{dx}{dy}$ in terms of y. (2)

The tangent to the curve at P crosses the y-axis at the point Q.

c Show that the area of triangle *OPQ*, where *O* is the origin, is $3\sqrt{3}$. (5)

4

3

C3

A rock contains a radioactive substance which is decaying.

The mass of the rock, m grams, at time t years after initial observation is given by

 $m = 600 + 80e^{-0.004t}$.

a Find the percentage reduction in the mass of the rock over the first 100 years. (3)

- **b** Find the value of t when m = 640.
- c Find the rate at which the mass of the rock will be decreasing when t = 150. (3)
- 5 Differentiate with respect to x

a
$$\sqrt{\sin x + \cos x}$$
, (3)

b
$$\ln\left(\frac{x-1}{2x+1}\right)$$
. (3)

- 6 A curve has the equation $y = (2x 3)^5$.
 - **a** Find an equation for the tangent to the curve at the point P(1, -1).(4)Given that the tangent to the curve at the point Q is parallel to the tangent at P,
 - **b** find the coordinates of Q.

C3 DIFFERENTIATION

7

8

9

10

11

12

А	curve has the equation $y = \frac{2}{x^2 - 5}$.	
a	Find the coordinates of the stationary point of the curve.	(4)
b	Show that the tangent to the curve at the point with <i>x</i> -coordinate 3 has the equation	
	3x + 4y - 11 = 0.	(3)
	$f: x \to ae^x + a, x \in \mathbb{R}.$	
Gi	ven that <i>a</i> is a positive constant,	
a		(2)
b	Find the inverse function f^{-1} in the form $f^{-1}: x \to \dots$ and state its domain.	(4)
c	Find an equation for the tangent to the curve $y = f(x)$ at the point on the curve with <i>x</i> -coordinate 1.	(4)
a	Use the derivatives of $\sin x$ and $\cos x$ to prove that	
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\cot x\right) = -\mathrm{cosec}^2 x.$	(4)
b	Show that the curve with equation	
	$y = e^x \cot x$	
	has no turning points.	(5)
А	curve has the equation $y = (2 + \ln x)^3$.	
a	Find $\frac{dy}{dx}$.	(2)
b	Find, in exact form, the coordinates of the stationary point on the curve.	(3)
c	Show that the tangent to the curve at the point with <i>x</i> -coordinate e passes through the origin.	(3)
	$f: x \to \ln (9 - x^2), -3 < x < 3.$	
a	Find $f'(x)$.	(2)
b	Find the coordinates of the stationary point of the curve $y = f(x)$.	(2)
c	Show that the normal to the curve $y = f(x)$ at the point with <i>x</i> -coordinate 1 has equation	
	$y = 4x - 4 + 3 \ln 2.$	(4)
А	botanist is studying the regeneration of an area of moorland following a fire.	
Tł	to total biomass in the area after t years is denoted by M tonnes and two models are oposed for the growth of M .	
М	odel A is given by	
	$M = 900 - \frac{1500}{3t+2}.$	
М	odel <i>B</i> is given by $3t+2$	
	$M = 900 - \frac{1500}{2 + 5\ln(t+1)}.$	
	$2 + 5 \ln(t+1)$	

For each model, find

- **a** the value of M when t = 3,
- **b** the rate at which the biomass is increasing when t = 3.

(2) (6)