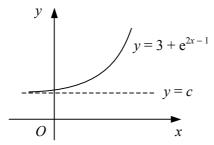
EXPONENTIALS AND LOGARITHMS

C3

Worksheet A


1	Find, to 3 significant figures,	the value of	
	a e^3 b e^{-2}	c 5e d ln 0.55	e $\frac{3}{7} \ln 100$ f $\log_{10} e$
2	Without using a calculator, find the value of		
	a $e^{\ln 4}$ b $e^{\frac{1}{2}\ln 9}$	$\mathbf{c} 2\mathrm{e}^{-\ln 6} \qquad \mathbf{d} \ln \mathrm{e}^7$	e $\ln \frac{1}{e}$ f $5 \ln e^{-0.1}$
3	Find the value of x in each cas	se.	
	a $e^{\ln x} = 4$ b $\ln x$	$e^x = 17$ c $e^{2\ln x} = 25$	$\mathbf{d} \mathrm{e}^{-\ln x} = \frac{1}{3}$
4	Solve each equation, giving y	our answers in terms of e.	
	a $\ln x = 15$	b $\frac{1}{2} \ln t - 3 = 0$	c $\ln(x-4) = 7$
	$d 17 - \ln 5y = 9$	e $\ln(\frac{1}{2}x+3) = 2.5$	f $\ln(4-3x) - 11 = 0$
5	Solve each equation, giving y	our answers in terms of natural le	ogarithms.
	a $e^x = 0.7$	b $9 - 2e^y = 5$	$\mathbf{c} \mathrm{e}^{5x} - 3 = 0$
	d $e^{4t+1} = 12$	$e \frac{1}{2}e^{2x-3} - 7 = 0$	f $2e^{4-5x} + 9 = 16$
6	Solve each equation, giving your answers to 2 decimal places.		
	$\mathbf{a} \frac{1}{3} \mathbf{e}^x = 4$	b $\ln(15x-7) = 4$	c $4e^{\frac{1}{2}y+3} = 11$
	d $\frac{3}{7}\ln(5-2x)-1=0$	e $\ln(10 - 3y) - e = 0$	f $\ln x^2 + \ln x^3 = 19$
	g $e^{2x} = 3e^{-\frac{1}{4}x}$	$\mathbf{h} \mathrm{e}^{5t} = 4\mathrm{e}^{2t+1}$	i $\ln(2x-5) - \ln x = \frac{1}{4}$
7	Find, in exact form, the soluti	-	
	$2e^{2x} + 12 = 11$	e^x .	
8	a Simplify		
	$\frac{3x^2 - 10x + 8}{x^2 - 5x + 6}$		
	b Hence, solve the equation		
	$\ln (3x^2 - 10x)$	$(+8) - \ln (x^2 - 5x + 6) = \ln 2x.$	
9	olve the following simultaneous equations, giving your answers to 2 decimal places.		ers to 2 decimal places.
	$e^{5y} - x = 0$		
	$\ln x^4 = 7 - y$		
10	Sketch each pair of curves on the same diagram, showing the coordinates of any points of intersection with the coordinate axes.		

a $y = e^{x}$
 $y = e^{-2x}$ **b** $y = 2e^{x}$
 $y = e^{x-1}$ **c** $y = 2 + e^{x}$
 $y = e^{2x+1}$ **d** $y = e^{x}$
 $y = \ln x$ **e** $y = -\ln x$
 $y = 2 + \ln x$ **f** $y = \ln (x - 2)$
 $y = \ln 3x$

© Solomon Press

C3 EXPONENTIALS AND LOGARITHMS

- **11 a** Sketch on the same diagram the curves $y = \ln (x + 1)$ and $y = 1 + \ln x$.
 - **b** Show that the x-coordinate of the point where the two curves intersect is $\frac{1}{2}$.
- 12

The diagram shows the curve with the equation $y = 3 + e^{2x-1}$ and the asymptote of the curve which has the equation y = c.

- **a** State the value of the constant *c*.
- **b** Find the exact coordinates of the point where the curve crosses the *y*-axis.
- **c** Find the *x*-coordinate of the point on the curve where y = 7, giving your answer in the form $a + \ln b$, where *a* is rational and *b* is an integer.
- 13 A quantity N is decreasing such that at time t

$$N = 50e^{-0.2i}$$

- **a** Find the value of *N* when t = 10.
- **b** Find the value of t when N = 3.
- 14 A radioactive substance is decaying such that its mass, m grams, at a time t years after initial observation is given by

$$m = 240e^{kt}$$
,

where k is a constant.

Given that when t = 180, m = 160, find

- **a** the value of k,
- **b** the time it takes for the mass of the substance to be halved.
- 15 A quantity N is increasing such that at time t

$$N = 20e^{0.04t}$$
.

- **a** Find the value of *N* when t = 15.
- **b** Find, in terms of the constant k, expressions for the value of t when
 - i N = k,
 - ii N = 2k.
- **c** Hence, show that the time it takes for the value of N to double is constant.
- 16 A quantity N is decreasing such that at time t

$$N = N_0 e^{kt}$$
.

Given that at time t = 10, N = 300 and that at time t = 20, N = 225, find

- **a** the values of the constants N_0 and k,
- **b** the value of t when N = 150.