1 Describe how the graph of y = f(x) is transformed to give the graph of

a
$$v = 2 + f(x + 3)$$
 b $v = 2f(-x)$

b
$$v = 2f(-x)$$

c
$$y = 3f(x - 1)$$
 d $y = 4 - f(x)$

d
$$y = 4 - f(x)$$

a Express $x^2 + 6x + 2$ in the form $a(x+b)^2 + c$. 2

> **b** Hence, describe two transformations that would map the graph of $y = x^2$ onto the graph of $y = x^2 + 6x + 2$.

Each of the following graphs is translated by 3 units in the positive x-direction and then stretched 3 by a factor of 2 in the y-direction, about the x-axis.

Find and simplify an equation of the graph obtained in each case.

a
$$v = 2x + 7$$

$$\mathbf{b} \quad y = 3\mathrm{e}^x$$

c
$$y = x^2 - 3x + 1$$
 d $y = \frac{1}{x}$

d
$$y = \frac{1}{x}$$

Describe in order two transformations that would map the graph of 4

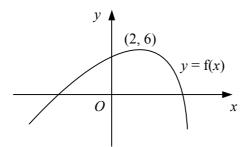
a
$$y = |x|$$
 onto the graph of $y = -|3x|$ **b** $y = e^x$ onto the graph of $y = 5 + e^{-x}$

b
$$y = e^x$$
 onto the graph of $y = 5 + e^{-x}$

c
$$y = \frac{1}{x}$$
 onto the graph of $y = \frac{3}{x+4}$

d
$$y = \ln x$$
 onto the graph of $y = 2 + 3 \ln x$

5



The diagram shows the curve with equation y = f(x) which is stationary at the point (2, 6).

Showing the coordinates of the stationary point in each case, sketch on separate diagrams the graphs of

a
$$v = 1 + f(x - 4)$$

b
$$v = 3 - f(x)$$

$$v = 2f(x+1)$$

a
$$y = 1 + f(x - 4)$$
 b $y = 3 - f(x)$ **c** $y = 2f(x + 1)$ **d** $y = \frac{1}{2}f(2x)$

The graph of $y = x^2 + 4x - 2$ undergoes the following three transformations: 6

> translation by -2 units in the positive x-direction, first:

second: stretch by a factor of 3 in the y-direction, about the x-axis,

third: reflection in the y-axis.

Find and simplify an equation of the graph obtained.

a Express $2x^2 - 4x + 7$ in the form $a(x+b)^2 + c$. 7

> **b** Hence, describe in order a sequence of transformations that would map the graph of $v = 2x^2 - 4x + 7$ onto the graph of $v = x^2$.

 $f(x) \equiv x^3 - 3x^2 + 4, x \in \mathbb{R}.$ 8

a Find the coordinates of the stationary points on the graph of y = f(x).

b Hence, find the coordinates of the stationary points on each of the following graphs.

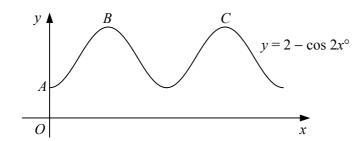
i
$$y = -2f(x)$$

ii
$$y = 3 + f(\frac{1}{2}x)$$

iii
$$y = \frac{1}{4} f(x - 2)$$

- a Describe clearly, in order, the sequence of transformations that would map the graph of 9 $y = \sqrt{x}$ onto the graph of $y = 2 - 3\sqrt{x}$.
 - **b** Sketch the graph of $y = 2 3\sqrt{x}$ showing the coordinates of any points where the graph meets the coordinate axes.

10



The diagram shows part of the curve with equation $y = 2 - \cos 2x^{\circ}$, x > 0.

- a State the period of the curve.
- **b** Write down the coordinates of the point A where the curve meets the y-axis.
- **c** Write down the coordinates of B and C, the first two maximum points on the curve.
- Sketch each of the following curves for x in the interval $0 \le x \le 360$. Show the coordinates of 11 any turning points and the equations of any asymptotes.

a
$$y = 3 \cos 2x^{\circ}$$

b
$$y = \tan (-2x^{\circ})$$

c
$$v = 1 + 2 \sin x^{\circ}$$

d
$$y = -\sin(x + 60)^{\circ}$$
 e $y = 2\cos(x - 45)^{\circ}$ **f** $y = 3 - \tan x^{\circ}$

e
$$y = 2 \cos (x - 45)^{\circ}$$

$$\mathbf{f} \quad v = 3 - \tan x^{\circ}$$

g
$$y = 2 + \cos \frac{1}{2}x^{\circ}$$

h
$$y = 4 \sin \frac{3}{2} x^{\circ}$$

$$i \quad y = 1 - 2\cos x^{\circ}$$

12 State the period of the curves with the equations

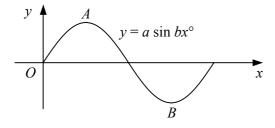
a
$$y = 2 \tan 3x^{\circ}$$
,

b
$$y = 1 + \sin kx^{\circ}$$
, giving your answer in terms of k.

$$f(x) \equiv 2 \sin \frac{1}{2} x, \quad 0 \le x \le 2\pi.$$

- **a** Sketch the graph y = f(x).
- **b** State the coordinates of the maximum point of the curve.
- c Solve the equation $f(x) = \sqrt{2}$, giving your answers in terms of π .

14



The graph shows the curve $y = a \sin bx^{\circ}$, $0 \le x \le 180$.

The curve has a maximum at the point A with coordinates (45, 4).

- **a** Find the values of the constants a and b.
- **b** Write down the coordinates of the minimum point of the curve, B.