1 Find to 2 decimal places the value of

- a sec 23°
- **b** cosec 185°
- c cot 251.9°
- **d** $\sec (-302^{\circ})$

2 Find the exact value of

- a cosec 30°
- **b** cot 45°
- **c** sec 150°
- d cosec 300°

- e cot 90°
- **f** sec 225°
- g cosec 270°
- **h** cot 330°

- i sec 660°
- j cosec (-45°)
- **k** cot (-240°)
- 1 sec (-315°)

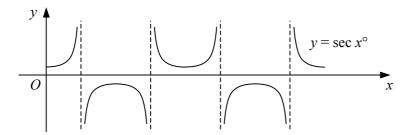
3 Find to 2 decimal places the value of

- $a \cot 0.56^{c}$
- **b** cosec 1.74^{c}
- $c \sec (-2.07^{c})$
- $\mathbf{d} \cot 9.8^{\mathrm{c}}$

4 Find in exact form, with a rational denominator, the value of

- a sec 0
- **b** cosec $\frac{\pi}{4}$
- c cot $\frac{3\pi}{4}$

- e cosec $\frac{2\pi}{3}$ f cot $\frac{7\pi}{2}$ g sec $\frac{5\pi}{4}$ h cosec $(-\frac{5\pi}{6})$
- i cot $\frac{11\pi}{6}$
- $\mathbf{j} \quad \sec (-4\pi)$ $\mathbf{k} \quad \csc \frac{13\pi}{4}$
- 1 cot $\left(-\frac{7\pi}{2}\right)$


Given that $\sin x = \frac{4}{5}$ and that $0 < x < 90^{\circ}$, find without using a calculator the value of 5

- $\mathbf{a} \cos x$
- **b** $\tan x$
- \mathbf{c} cosec x
- **d** $\sec x$

Given that $\cos x = -\frac{5}{13}$ and that $90^{\circ} < x < 180^{\circ}$, find without using a calculator the value of 6

- $\mathbf{a} \sin x$
- **b** $\sec x$
- \mathbf{c} cosec x
- $\mathbf{d} \cot x$

7

The graph shows the curve $y = \sec x^{\circ}$ in the interval $0 \le x \le 720$.

- a Write down the coordinates of the turning points of the curve.
- **b** Write down the equations of the asymptotes.

Sketch each pair of curves on the same set of axes in the interval $-180^{\circ} \le x \le 180^{\circ}$. 8

- a $y = \sin x$
- $y = \csc x$
- **b** $y = \tan x$
- and $y = \cot x$

9 Sketch each of the following curves for x in the interval $0 \le x \le 2\pi$. Show the coordinates of any turning points and the equations of any asymptotes.

- a $y = 3 \sec x$
- **b** $y = 1 + \csc x$
- $\mathbf{c} \quad y = \cot 2x$

- **d** $y = \operatorname{cosec}(x \frac{\pi}{4})$
- e $y = \sec \frac{1}{3}x$
- **f** $y = 3 + 2 \csc x$

- $\mathbf{g} \quad y = 1 \sec 2x$
- **h** $y = 2 \cot (x + \frac{\pi}{2})$
- i $y = 1 + \sec(x \frac{\pi}{6})$

Solve each equation for x in the interval $0 \le x \le 2\pi$, giving your answers in terms of π . 10

$$\mathbf{a} \quad \cot x = 1$$

b
$$\sec x = 2$$

b
$$\sec x = 2$$
 c $\csc x = \sqrt{2}$ **d** $\cot x = 0$

$$\mathbf{d} \quad \cot x = 0$$

e
$$\sec x = -1$$

$$\mathbf{f} \quad \mathbf{cosec} \ x = -2$$

$$\mathbf{g} \cot x = -\sqrt{3}$$

f cosec
$$x = -2$$
 g cot $x = -\sqrt{3}$ **h** sec $x = -\sqrt{2}$

Solve each equation for θ in the interval $0 \le \theta \le 360^{\circ}$, giving your answers to 1 decimal place. 11

a
$$\sec \theta = 1.8$$

h cosec
$$\theta = 2.57$$

b cosec
$$\theta = 2.57$$
 c cot $\theta = 1.06$

d sec
$$\theta = -2.63$$

e cosec
$$\theta = 3$$

$$\mathbf{f} \cot \theta = -0.94$$

g sec
$$\theta = 1.888$$
 h cosec $\theta = -1.2$

h cosec
$$\theta = -1.2$$

12 Solve each equation for x in the interval $-180 \le x \le 180$

Give your answers to 1 decimal place where appropriate

a
$$\csc (x + 30)^{\circ} = 2$$

b
$$\cot (x - 57)^{\circ} = 1.6$$
 c $\sec 2x^{\circ} = 2.35$

c
$$\sec 2x^{\circ} = 2.35$$

d
$$5 - 2 \cot x^{\circ} = 0$$

e
$$\sqrt{3} \sec (x - 60)^\circ = 2$$

d
$$5-2 \cot x^{\circ} = 0$$
 e $\sqrt{3} \sec (x-60)^{\circ} = 2$ **f** $2 \csc \frac{1}{2}x^{\circ} - 7 = 0$

g
$$\sec (2x - 18)^\circ = -1.3$$
 h $\csc 3x^\circ = -3.4$ **i** $\cot (2x + 135)^\circ = 1$

$$\mathbf{h} \quad \mathbf{cosec} \ 3x^{\circ} = -3.4$$

$$i \cot (2x + 135)^{\circ} = 1$$

13 Solve each equation for θ in the interval $0 \le \theta \le 360$.

Give your answers to 1 decimal place where appropriate.

a
$$\csc^2 \theta^{\circ} - 4 = 0$$

b
$$\sec^2 \theta^{\circ} - 2 \sec \theta^{\circ} - 3 = 0$$

$$\mathbf{c}$$
 cot θ° cosec $\theta^{\circ} = 6 \cot \theta^{\circ}$

d cosec
$$\theta^{\circ} = 4 \sec \theta^{\circ}$$

e
$$2\cos\theta^{\circ} = \cot\theta^{\circ}$$

f
$$5 \sin \theta^{\circ} - 2 \csc \theta^{\circ} = 3$$

14 Solve each equation for *x* in the interval $-\pi \le x \le \pi$.

Give your answers to 2 decimal places.

a
$$2 \csc^2 x + 5 \csc x - 12 = 0$$

b
$$\sec x = 3 \tan x$$

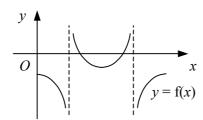
c
$$3 \sec x = 2 \cot x$$

$$\mathbf{d} \quad 4 + \tan x = 5 \cot x$$

e
$$\csc x + 5 \cot x = 0$$

$$\mathbf{f}$$
 6 tan x – 5 cosec x = 0

15 Prove each identity.


$$\mathbf{a} \quad \sec x - \cos x \equiv \sin x \tan x$$

b
$$(1 + \cos x)(\csc x - \cot x) \equiv \sin x$$

$$\mathbf{c} \quad \frac{\cot x - \cos x}{1 - \sin x} \equiv \cot x$$

$$\mathbf{d} (\sin x + \tan x)(\cos x + \cot x) \equiv (1 + \sin x)(1 + \cos x)$$

16

The diagram shows the curve y = f(x), where

$$f(x) \equiv 2 \cos x - 3 \sec x - 5, x \in \mathbb{R}, 0 \le x \le 2\pi.$$

- a Find the coordinates of the point where the curve meets the y-axis.
- **b** Find the coordinates of the points where the curve crosses the x-axis.