TRIGONOMETRY

C3

1	a Solve the equation	
	$2 \sec x - 3 \operatorname{cosec} x = 0,$	
	for x in the interval $-180^\circ \le x \le 180^\circ$.	(4)
	b Find all values of θ in the interval $0 \le \theta \le 2\pi$ for which	
	$\cot^2\theta - \cot\theta + \csc^2\theta = 4.$	(6)
2	For values of θ in the interval $0 \le \theta \le 360^\circ$, solve the equation	
	$2\sin\left(\theta+30^\circ\right)=\sin\left(\theta-30^\circ\right).$	(6)
3	a Given that $\sin A = 2 - \sqrt{3}$, find in the form $a + b\sqrt{3}$ the exact value of	
	i $\operatorname{cosec} A$,	
	ii $\cot^2 A$.	(5)
	b Solve the equation	
	$3\cos 2x - 8\sin x + 5 = 0,$	
	for values of x in the interval $0 \le x \le 360^\circ$, giving your answers to 1 decimal place.	(5)
4	$f: x \to \frac{\pi}{2} + 2 \arcsin x, \ x \in \mathbb{R}, \ -1 \le x \le 1.$	
	a Find the exact value of $f(\frac{1}{2})$.	(2)
	b State the range of f.	(2)
	c Sketch the curve $y = f(x)$.	(2)
	d Solve the equation $f(x) = 0$.	(3)
5	a Express $2\sin x - 3\cos x$ in the form $R\sin(x - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$.	
	Give the values of R and α to 3 significant figures.	(4)
	b State the minimum value of $2 \sin x - 3 \cos x$ and the smallest positive value of x for which this minimum occurs.	(3)
	c Solve the equation	
	$2\sin 2x - 3\cos 2x + 1 = 0,$	
	for x in the interval $0 \le x \le \pi$, giving your answers to 2 decimal places.	(5)
6	a Use the identity	
	$\cos (A + B) \equiv \cos A \cos B - \sin A \sin B$	
	to prove that	
	$\cos x \equiv 2\cos^2\frac{x}{2} - 1.$	(3)
	b Solve the equation	
	$\frac{\sin x}{1+\cos x} = 3 \cot \frac{x}{2},$	
	for values of x in the interval $0 \le x \le 360^{\circ}$.	(7)

7	a	Prove the identity	
		$\operatorname{cosec} \theta - \sin \theta \equiv \cos \theta \cot \theta, \theta \neq n\pi, n \in \mathbb{Z} .$	(3)
	b	Find the values of x in the interval $0 \le x \le 2\pi$ for which	
		$2 \sec x + \tan x = 2 \cos x,$	
		giving your answers in terms of π .	(6)
8	a	Sketch on the same diagram the curves $y = 3 \sin x^{\circ}$ and $y = 1 + \csc x^{\circ}$ for x in the interval $-180 \le x \le 180$.	(4)
	b	Find the <i>x</i> -coordinate of each point where the curves intersect in this interval, giving your answers correct to 1 decimal place.	(6)
9	a	Prove the identity	
		$(1 - \sin x)(\sec x + \tan x) \equiv \cos x, x \neq \frac{(2n+1)\pi}{2}, \ n \in \mathbb{Z}.$	(4)
	b	Find the values of y in the interval $0 \le y \le \pi$ for which	
		$2 \sec^2 2y + \tan^2 2y = 3$,	
		giving your answers in terms of π .	(6)
10	a	Express $4 \sin x^\circ - \cos x^\circ$ in the form $R \sin (x - \alpha)^\circ$, where $R > 0$ and $0 < \alpha < 90$.	
		Give the values of R and α to 3 significant figures.	(4)
	b	Show that the equation	
		$2\operatorname{cosec} x^\circ - \operatorname{cot} x^\circ + 4 = 0 \qquad (I)$	
		can be written in the form	
		$4\sin x^\circ - \cos x^\circ + 2 = 0.$	(2)
	c	Using your answers to parts a and b , solve equation (I) for x in the interval $0 \le x \le 360$.	(4)
11	a	Use the identities	
		$\cos (A + B) \equiv \cos A \cos B - \sin A \sin B$	
		and $\cos (A - B) \equiv \cos A \cos B + \sin A \sin B$	
		to prove that $P+Q = P-Q$	
		$\cos P + \cos Q \equiv 2 \cos \frac{P+Q}{2} \cos \frac{P-Q}{2}.$	(4)
	b	Find, in terms of π , the values of x in the interval $0 \le x \le 2\pi$ for which	
		$\cos x + \cos 2x + \cos 3x = 0.$	(7)
12	a	Express $3\cos\theta + 4\sin\theta$ in the form $R\cos(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$.	(4)
	b	Given that the function f is defined by	
		$f(\theta) \equiv 1 - 3\cos 2\theta - 4\sin 2\theta, \ \theta \in \mathbb{R}, \ 0 \le \theta \le \pi,$	
		i state the range of f,	
		ii solve the equation $f(\theta) = 0$.	(6)
	c	Find the coordinates of the turning points of the curve with equation $y = \frac{2}{3\cos x + 4\sin x}$	
		in the interval $[0, 2\pi]$.	(3)

© Solomon Press