1 A curve is given by the parametric equations

$$x = 2 + t$$
, $y = t^2 - 1$.

- a Write down expressions for $\frac{dx}{dt}$ and $\frac{dy}{dt}$.
- **b** Hence, show that $\frac{dy}{dx} = 2t$.

Find and simplify an expression for $\frac{dy}{dx}$ in terms of the parameter t in each case. 2

a
$$x = t^2$$
, $y = 3t$

b
$$x = t^2 - 1$$
, $y = 2t^3 + t^2$

$$\mathbf{c}$$
 $x = 2 \sin t$, $y = 6 \cos t$

a
$$x = t^2$$
, $y = 3t$
b $x = t^2 - 1$, $y = 2t^3 + t^2$
c $x = 2 \sin t$, $y = 6 \cos t$
d $x = 3t - 1$, $y = 2 - \frac{1}{t}$
e $x = \cos 2t$, $y = \sin t$
f $x = e^{t+1}$, $y = e^{2t-1}$

$$\mathbf{e} \quad x = \cos 2t, \quad y = \sin t$$

f
$$x = e^{t+1}$$
, $y = e^{2t}$

$$\mathbf{g} \quad x = \sin^2 t, \quad y = \cos^3 t$$

h
$$x = 3 \sec t$$
, $y = 5 \tan t$

g
$$x = \sin^2 t$$
, $y = \cos^3 t$ **h** $x = 3 \sec t$, $y = 5 \tan t$ **i** $x = \frac{1}{t+1}$, $y = \frac{t}{t-1}$

3 Find, in the form y = mx + c, an equation for the tangent to the given curve at the point with the given value of the parameter t.

a
$$x = t^3$$
, $y = 3t^2$

$$t = 1$$

b
$$x = 1 - t^2$$
, $y = 2t - t^2$

$$t = 2$$

a
$$x = t^3$$
, $y = 3t^2$, $t = 1$ **b** $x = 1 - t^2$, $y = 2t - t^2$, $t = 2$ **c** $x = 2 \sin t$, $y = 1 - 4 \cos t$, $t = \frac{\pi}{3}$ **d** $x = \ln (4 - t)$, $y = t^2 - 5$, $t = 3$

d
$$x = \ln (4 - t), y = t^2 - 5, t = 3$$

Show that the normal to the curve with parametric equations 4

$$x = \sec \theta$$
, $y = 2 \tan \theta$, $0 \le \theta < \frac{\pi}{2}$,

at the point where $\theta = \frac{\pi}{3}$, has the equation

$$\sqrt{3} x + 4y = 10\sqrt{3} .$$

A curve is given by the parametric equations 5

$$x = \frac{1}{t}, \quad y = \frac{1}{t+2}$$

- **a** Show that $\frac{dy}{dx} = \left(\frac{t}{t+2}\right)^2$.
- **b** Find an equation for the normal to the curve at the point where t = 2, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

A curve has parametric equations 6

$$x = \sin 2t, \quad y = \sin^2 t, \quad 0 \le t < \pi.$$

- a Show that $\frac{dy}{dx} = \frac{1}{2} \tan 2t$.
- **b** Find an equation for the tangent to the curve at the point where $t = \frac{\pi}{6}$.

7 A curve has parametric equations

$$x = 3\cos\theta$$
, $y = 4\sin\theta$, $0 \le \theta < 2\pi$.

a Show that the tangent to the curve at the point $(3 \cos \alpha, 4 \sin \alpha)$ has the equation

$$3y \sin \alpha + 4x \cos \alpha = 12$$
.

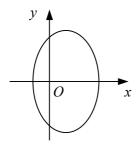
b Hence find an equation for the tangent to the curve at the point $(-\frac{3}{2}, 2\sqrt{3})$.

8 A curve is given by the parametric equations

$$x = t^2$$
, $y = t(t-2)$, $t \ge 0$.

- a Find the coordinates of any points where the curve meets the coordinate axes.
- **b** Find $\frac{dy}{dx}$ in terms of x
 - i by first finding $\frac{dy}{dx}$ in terms of t,
 - ii by first finding a cartesian equation for the curve.

9



The diagram shows the ellipse with parametric equations

$$x = 1 - 2\cos\theta$$
, $y = 3\sin\theta$, $0 \le \theta < 2\pi$.

- **a** Find $\frac{dy}{dx}$ in terms of θ .
- **b** Find the coordinates of the points where the tangent to the curve is
 - i parallel to the x-axis,
 - ii parallel to the y-axis.
- 10 A curve is given by the parametric equations

$$x = \sin \theta$$
, $y = \sin 2\theta$, $0 \le \theta \le \frac{\pi}{2}$.

- a Find the coordinates of any points where the curve meets the coordinate axes.
- **b** Find an equation for the tangent to the curve that is parallel to the x-axis.
- **c** Find a cartesian equation for the curve in the form y = f(x).
- 11 A curve has parametric equations

$$x = \sin^2 t$$
, $y = \tan t$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$.

- a Show that the tangent to the curve at the point where $t = \frac{\pi}{4}$ passes through the origin.
- **b** Find a cartesian equation for the curve in the form $y^2 = f(x)$.
- 12 A curve is given by the parametric equations

$$x = t + \frac{1}{t}, \quad y = t - \frac{1}{t}, \quad t \neq 0.$$

- **a** Find an equation for the tangent to the curve at the point P where t = 3.
- **b** Show that the tangent to the curve at *P* does not meet the curve again.
- c Show that the cartesian equation of the curve can be written in the form

$$x^2 - y^2 = k,$$

where k is a constant to be found.