DIFFERENTIATION

C4

1	Differentiate with respect to x			
	a 4 <i>y</i> b	y^3	c $\sin 2y$	d $3e^{y^2}$
2	Find $\frac{dy}{dx}$ in terms of x and y in each case.			
	$\mathbf{a} x^2 + y^2 = 2$	b $2x - y + y^2$	$c^2 = 0$ c	$y^4 = x^2 - 6x + 2$
	d $x^2 + y^2 + 3x - 4y = 9$	e $x^2 - 2y^2 +$	$x + 3y - 4 = 0 \qquad \mathbf{f}$	$\sin x + \cos y = 0$
	$g 2e^{3x} + e^{-2y} + 7 = 0$	h $\tan x + \cos x$	$\sec 2y = 1 \qquad i$	$\ln\left(x-2\right) = \ln\left(2y+1\right)$
3	Differentiate with respect to x			
	a xy b	x^2y^3	c $\sin x \tan y$	$\mathbf{d} (x-2y)^3$
4	Find $\frac{dy}{dx}$ in terms of x and y in each case.			
	a $x^2y = 2$	b $x^2 + 3xy - y^2 = 0$ c $4x^2 - 2xy + 3y^2 = 8$		
	$\mathbf{d} \cos 2x \sec 3y + 1 = 0$	e y = (x + y)	² f	$xe^{y} - y = 5$
	$\mathbf{g} 2xy^2 - x^3y = 0$	h $y^2 + x \ln y$	= 3 i	$x\sin y + x^2\cos y = 1$
5	Find an equation for the tangent to each curve at the given point on the curve.			
	a $x^2 + y^2 - 3y - 2 = 0$,	(2, 1)	$\mathbf{b} 2x^2 - xy + y^2 =$	28, (3, 5)
	$\mathbf{c} 4\sin y - \sec x = 0,$	$\left(\frac{\pi}{3},\frac{\pi}{6}\right)$	d $2 \tan x \cos y =$	$1, \qquad \left(\frac{\pi}{4}, \frac{\pi}{3}\right)$
6	A curve has the equation $x^2 + 2y^2 - x + 4y = 6$.			
	a Show that $\frac{dy}{dx} = \frac{1-2x}{4(y+1)}$.			
	b Find an equation for the normal to the curve at the point $(1, -3)$.			
7	A curve has the equation $x^2 + 4xy - 3y^2 = 36$.			
,	a Find an equation for the tangent to the curve at the point $P(4, 2)$.			
	Given that the tangent to the curve at the point Q on the curve is parallel to the tangent at P ,			
	b find the coordinates of Q .			
8	A curve has the equation $y = a^x$, where <i>a</i> is a positive constant.			
	By first taking logarithms, find an expression for $\frac{dy}{dx}$ in terms of <i>a</i> and <i>x</i> .			
9	Differentiate with respect to x			
	a 3 ^x b	6 ^{2x}	c 5^{1-x}	d 2^{x^3}
10	A biological culture is growing exponentially such that the number of bacteria present, N , at time t minutes is given by			
	$N = 800(1.04)^t$.			

Find the rate at which the number of bacteria is increasing when there are 4000 bacteria present.