## C4

## INTEGRATION

## Worksheet M

1 Use the trapezium rule with n intervals of equal width to estimate the value of each integral.

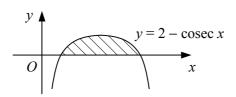
**a** 
$$\int_{1}^{5} x \ln(x+1) dx$$

2 **b** 
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cot x$$

$$n = 2$$

$$c \int_{-2}^{2} e^{\frac{x^2}{10}} dx$$

$$n = 4$$


**a** 
$$\int_{1}^{5} x \ln(x+1) dx$$
  $n=2$  **b**  $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cot x dx$   $n=2$  **c**  $\int_{-2}^{2} e^{\frac{x^{2}}{10}} dx$   $n=4$  **d**  $\int_{0}^{1} \arccos(x^{2}-1) dx$   $n=4$  **e**  $\int_{0}^{0.5} \sec^{2}(2x-1) dx$   $n=5$  **f**  $\int_{0}^{6} x^{3}e^{-x} dx$   $n=6$ 

$$e \int_{0}^{0.5} \sec^2{(2x-1)} dx$$
 n

**f** 
$$\int_{0}^{6} x^{3} e^{-x} dx$$

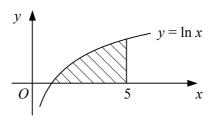
$$n = 6$$

2



The diagram shows the curve with equation  $y = 2 - \csc x$ ,  $0 < x < \pi$ .

a Find the exact x-coordinates of the points where the curve crosses the x-axis.


**b** Use the trapezium rule with four intervals of equal width to estimate the area of the shaded region bounded by the curve and the *x*-axis.

 $f(x) \equiv \frac{\pi}{6} + \arcsin(\frac{1}{2}x), x \in \mathbb{R}, -2 \le x \le 2.$ 3

**a** Use the trapezium rule with three strips to estimate the value of the integral  $I = \int_{-1}^{2} f(x) dx$ .

**b** Use the trapezium rule with six strips to find an improved estimate for *I*.

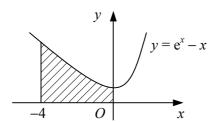
4



The shaded region in the diagram is bounded by the curve  $y = \ln x$ , the x-axis and the line x = 5.

a Estimate the area of the shaded region to 3 decimal places using the trapezium rule with

i 2 strips


ii 4 strips

iii 8 strips

**b** By considering your answers to part **a**, suggest a more accurate value for the area of the shaded region correct to 3 decimal places.

c Use integration to find the true value of the area correct to 3 decimal places.

5



The shaded region in the diagram is bounded by the curve  $y = e^x - x$ , the coordinate axes and the line x = -4. Use the trapezium rule with five equally-spaced ordinates to estimate the volume of the solid formed when the shaded region is rotated completely about the x-axis.