

C4

1

2

3

4

5

6

(2)

the set of values of x for which the expansion is valid. (4) **b** By substituting x = 0.01 in your expansion, find the value of $\sqrt{6}$ to 6 significant figures. (3) $\mathbf{f}(x) \equiv \frac{4}{1+2x-3x^2}.$ **a** Express f(x) in partial fractions. (3) **b** Hence, or otherwise, find the series expansion of f(x) in ascending powers of x up to and including the term in x^3 and state the set of values of x for which the expansion is valid. (5) **a** Expand $(2 - x)^{-2}$, |x| < 2, in ascending powers of x up to and including the term in x^{3} . (4) **b** Hence, find the coefficient of x^3 in the series expansion of $\frac{3-x}{(2-x)^2}$. (2) $f(x) \equiv \frac{4}{\sqrt{1 + \frac{2}{2}x}}, \ -\frac{3}{2} < x < \frac{3}{2}.$ **a** Show that $f(\frac{1}{10}) = \sqrt{15}$. (2) **b** Expand f(x) in ascending powers of x up to and including the term in x^2 . (3) **c** Use your expansion to obtain an approximation for $\sqrt{15}$, giving your answer as an exact, simplified fraction. (2) **d** Show that $3\frac{55}{63}$ is a more accurate approximation for $\sqrt{15}$. (2) **a** Expand $(1 - x)^{\frac{1}{3}}$, |x| < 1, in ascending powers of x up to and including the term in x^2 . (3) **b** By substituting $x = 10^{-3}$ in your expansion, find the cube root of 37 correct to 9 significant figures. (3) The series expansion of $(1 + 5x)^{\frac{3}{5}}$, in ascending powers of x up to and including the term in x^3 , is $1 + 3x + px^2 + qx^3$, $|x| < \frac{1}{5}$. **a** Find the values of the constants *p* and *q*. (4) **b** Use the expansion with a suitable value of x to find an approximate value for $(1.1)^{\frac{3}{5}}$. (2) **c** Obtain the value of $(1.1)^{\frac{3}{5}}$ from your calculator and hence find the percentage error in

a Expand $(1 - 4x)^{\frac{1}{2}}$ in ascending powers of x up to and including the term in x^{3} and state

7 **a** Find the values of A, B and C such that

your answer to part b.

$$\frac{8-6x^2}{(1+x)(2+x)^2} \equiv \frac{A}{1+x} + \frac{B}{2+x} + \frac{C}{(2+x)^2}.$$
(4)

b Hence find the series expansion of $\frac{8-6x^2}{(1+x)(2+x)^2}$, |x| < 1, in ascending powers of x up to and including the term in x^3 , simplifying each coefficient. (7)

© Solomon Press

8	a	Expand $(1 - 2x)^{\frac{1}{2}}$, $ x < \frac{1}{2}$, in ascending powers of x up to and including the term in x^2 .	(3)
	b	By substituting $x = 0.0008$ in your expansion, find the square root of 39 correct to 7 significant figures.	(4)
9	a	Find the series expansion of $(1 + 8x)^{\frac{1}{3}}$, $ x < \frac{1}{8}$, in ascending powers of x up to and including the term in x^2 , simplifying each term.	(3)
	b	Find the exact fraction k such that $\sqrt{2} = 1 \sqrt{2} \sqrt{2}$	
		$\sqrt[3]{5} = k\sqrt[3]{1.08}$	(2)
	c	Hence, use your answer to part a together with a suitable value of x to obtain an estimate for $\sqrt[3]{5}$, giving your answer to 4 significant figures.	(3)
10		$f(x) \equiv \frac{6x}{x^2 - 4x + 3}, \ x < 1.$	
	a	Express $f(x)$ in partial fractions.	(3)
	b	Show that for small values of x ,	
		$f(x) \approx 2x + \frac{8}{3}x^2 + \frac{26}{9}x^3.$	(5)
11	a	Find the binomial expansion of $(4 + x)^{\frac{1}{2}}$ in ascending powers of x up to and including the term in x^2 and state the set of values of x for which the expansion is valid.	(4)
	b	By substituting $x = \frac{1}{20}$ in your expansion, find an estimate for $\sqrt{5}$, giving your answer to 9 significant figures.	(3)
	c	Obtain the value of $\sqrt{5}$ from your calculator and hence comment on the accuracy of the estimate found in part b .	(2)
12	a	Expand $(1 + 2x)^{-\frac{1}{2}}$, $ x < \frac{1}{2}$, in ascending powers of x up to and including the term in x^3 .	(4)
	b	Hence, show that for small values of x ,	
		$\frac{2-5x}{\sqrt{1+2x}} \approx 2-7x+8x^2-\frac{25}{2}x^3.$	(3)
	c	Solve the equation	
		$\frac{2-5x}{\sqrt{1+2x}} = \sqrt{3} \ .$	(3)
	d	Use your answers to parts b and c to find an approximate value for $\sqrt{3}$.	(2)
13	a	Expand $(1 + x)^{-1}$, $ x < 1$, in ascending powers of x up to and including the term in x^3 .	(2)
	b	Hence, write down the first four terms in the expansion in ascending powers of x of $(1 + bx)^{-1}$, where b is a constant, for $ bx < 1$.	(1)
	Gi	ven that in the series expansion of	
		$\frac{1+ax}{1+bx}, bx < 1,$	

the coefficient of x is -4 and the coefficient of x^2 is 12,

- **c** find the values of the constants *a* and *b*,
- **d** find the coefficient of x^3 in the expansion.

(5) (2)