1 Calculate

a
$$(i + 2j).(3i + j)$$

b
$$(4i - j).(3i + 5j)$$

c
$$(i-2j).(-5i-2j)$$

2 Show that the vectors (i + 4j) and (8i - 2j) are perpendicular.

3 Find in each case the value of the constant c for which the vectors \mathbf{u} and \mathbf{v} are perpendicular.

$$\mathbf{a} \quad \mathbf{u} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} c \\ 3 \end{pmatrix} \qquad \qquad \mathbf{b} \quad \mathbf{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 3 \\ c \end{pmatrix} \qquad \qquad \mathbf{c} \quad \mathbf{u} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} c \\ -4 \end{pmatrix}$$

b
$$\mathbf{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 3 \\ c \end{pmatrix}$$

$$\mathbf{c} \quad \mathbf{u} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} c \\ -4 \end{pmatrix}$$

4 Find, in degrees to 1 decimal place, the angle between the vectors

a
$$(4i - 3j)$$
 and $(8i + 6j)$

b
$$(7i + j)$$
 and $(2i + 6j)$

c
$$(4i + 2j)$$
 and $(-5i + 2j)$

Relative to a fixed origin O, the points A, B and C have position vectors (9i + j), (3i - j)5 and $(5\mathbf{i} - 2\mathbf{j})$ respectively. Show that $\angle ABC = 45^{\circ}$.

Calculate 6

a
$$(i + 2j + 4k).(3i + j + 2k)$$

b
$$(6i - 2j + 2k) \cdot (i - 3j - k)$$

c
$$(-5i + 2k).(i + 4j - 3k)$$

d
$$(3i + 2j - 8k) \cdot (-i + 11j - 4k)$$

e
$$(3i - 7j + k).(9i + 4j - k)$$

$$f (7i - 3j).(-3j + 6k)$$

7 Given that $\mathbf{p} = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k}$, $\mathbf{q} = \mathbf{i} + 5\mathbf{j} - \mathbf{k}$ and $\mathbf{r} = 6\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$,

- a find the value of p.q.
- **b** find the value of **p.r**,
- c verify that $\mathbf{p}.(\mathbf{q} + \mathbf{r}) = \mathbf{p}.\mathbf{q} + \mathbf{p}.\mathbf{r}$

8 Simplify

a
$$p.(q + r) + p.(q - r)$$

b
$$p.(q + r) + q.(r - p)$$

9 Show that the vectors $(5\mathbf{i} - 3\mathbf{j} + 2\mathbf{k})$ and $(3\mathbf{i} + \mathbf{j} - 6\mathbf{k})$ are perpendicular.

10 Relative to a fixed origin O, the points A, B and C have position vectors (3i + 4j - 6k), $(\mathbf{i} + 5\mathbf{j} - 2\mathbf{k})$ and $(8\mathbf{i} + 3\mathbf{j} + 2\mathbf{k})$ respectively. Show that $\angle ABC = 90^{\circ}$.

11 Find in each case the value or values of the constant c for which the vectors **u** and **v** are perpendicular.

$$\mathbf{n} = (2\mathbf{i} + 3\mathbf{i} + \mathbf{k})$$

$$\mathbf{v} = (c\mathbf{i} - 3\mathbf{j} + \mathbf{k})$$

a
$$\mathbf{u} = (2\mathbf{i} + 3\mathbf{j} + \mathbf{k}), \quad \mathbf{v} = (c\mathbf{i} - 3\mathbf{j} + \mathbf{k})$$
 b $\mathbf{u} = (-5\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}), \quad \mathbf{v} = (c\mathbf{i} - \mathbf{j} + 3c\mathbf{k})$

$$c u = (ci - 2j + 8k),$$

$$\mathbf{v} = (c\mathbf{i} + c\mathbf{j} - 3\mathbf{k})$$

$$\mathbf{c} \quad \mathbf{u} = (c\mathbf{i} - 2\mathbf{j} + 8\mathbf{k}), \quad \mathbf{v} = (c\mathbf{i} + c\mathbf{j} - 3\mathbf{k}) \quad \mathbf{d} \quad \mathbf{u} = (3c\mathbf{i} + 2\mathbf{j} + c\mathbf{k}), \quad \mathbf{v} = (5\mathbf{i} - 4\mathbf{j} + 2c\mathbf{k})$$

12 Find the exact value of the cosine of the angle between the vectors

$$\mathbf{a} \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$
 and $\begin{pmatrix} 8 \\ 1 \\ -4 \end{pmatrix}$

b
$$\begin{pmatrix} 4 \\ 1 \\ -2 \end{pmatrix}$$
 and $\begin{pmatrix} -2 \\ 3 \\ -6 \end{pmatrix}$

$$\mathbf{a} \quad \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} \text{ and } \begin{pmatrix} 8 \\ 1 \\ -4 \end{pmatrix} \qquad \mathbf{b} \quad \begin{pmatrix} 4 \\ 1 \\ -2 \end{pmatrix} \text{ and } \begin{pmatrix} -2 \\ 3 \\ -6 \end{pmatrix} \qquad \mathbf{c} \quad \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 \\ -7 \\ 2 \end{pmatrix} \qquad \mathbf{d} \quad \begin{pmatrix} 5 \\ -3 \\ 4 \end{pmatrix} \text{ and } \begin{pmatrix} 3 \\ -4 \\ -1 \end{pmatrix}$$

d
$$\begin{pmatrix} 5 \\ -3 \\ 4 \end{pmatrix}$$
 and $\begin{pmatrix} 3 \\ -4 \\ -1 \end{pmatrix}$

Find, in degrees to 1 decimal place, the angle between the vectors 13

a
$$(3i - 4k)$$
 and $(7i - 4j + 4k)$

b
$$(2i - 6j + 3k)$$
 and $(i - 3j - k)$

c
$$(6i - 2j - 9k)$$
 and $(3i + j + 4k)$

d
$$(i + 5j - 3k)$$
 and $(-3i - 4j + 2k)$

- The points A(7, 2, -2), B(-1, 6, -3) and C(-3, 1, 2) are the vertices of a triangle. 14
 - **a** Find \overrightarrow{BA} and \overrightarrow{BC} in terms of **i**, **j** and **k**.
 - **b** Show that $\angle ABC = 82.2^{\circ}$ to 1 decimal place.
 - **c** Find the area of triangle ABC to 3 significant figures.
- Relative to a fixed origin, the points A, B and C have position vectors $(3\mathbf{i} 2\mathbf{j} \mathbf{k})$, 15 $(4\mathbf{i} + 3\mathbf{j} - 2\mathbf{k})$ and $(2\mathbf{i} - \mathbf{j})$ respectively.
 - **a** Find the exact value of the cosine of angle BAC.
 - **b** Hence show that the area of triangle ABC is $3\sqrt{2}$.
- Find, in degrees to 1 decimal place, the acute angle between each pair of lines. 16

$$\mathbf{a} \quad \mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -4 \\ 2 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 8 \\ 0 \\ -6 \end{pmatrix}$$

$$\mathbf{a} \quad \mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -4 \\ 2 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 8 \\ 0 \\ -6 \end{pmatrix} \qquad \mathbf{b} \quad \mathbf{r} = \begin{pmatrix} 0 \\ -3 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ -1 \\ -18 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} 4 \\ 6 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ -12 \\ 3 \end{pmatrix}$$

$$\mathbf{c} \quad \mathbf{r} = \begin{pmatrix} 7 \\ 1 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} -2 \\ 6 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix}$$

$$\mathbf{c} \quad \mathbf{r} = \begin{pmatrix} 7 \\ 1 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} -2 \\ 6 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix} \qquad \mathbf{d} \quad \mathbf{r} = \begin{pmatrix} 2 \\ -3 \\ -9 \end{pmatrix} + \lambda \begin{pmatrix} -4 \\ -6 \\ 7 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} 11 \\ 1 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ -1 \\ -8 \end{pmatrix}$$

- 17 Relative to a fixed origin, the points A and B have position vectors $(5\mathbf{i} + 8\mathbf{j} - \mathbf{k})$ and $(6\mathbf{i} + 5\mathbf{j} + \mathbf{k})$ respectively.
 - a Find a vector equation of the straight line l_1 which passes through A and B.

The line l_2 has the equation $\mathbf{r} = 4\mathbf{i} - 3\mathbf{j} + 5\mathbf{k} + \mu(-5\mathbf{i} + \mathbf{j} - 2\mathbf{k})$.

- **b** Show that lines l_1 and l_2 intersect and find the position vector of their point of intersection.
- **c** Find, in degrees, the acute angle between lines l_1 and l_2 .
- Find, in degrees to 1 decimal place, the acute angle between the lines with cartesian equations 18

$$\frac{x-2}{3} = \frac{y}{2} = \frac{z+5}{-6}$$
 and $\frac{x-4}{-4} = \frac{y+1}{7} = \frac{z-3}{-4}$.

- 19 The line *l* has the equation $\mathbf{r} = 7\mathbf{i} - 2\mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ and the line *m* has the equation $r = -4i + 7j - 6k + \mu(5i - 4j - 2k).$
 - **a** Find the coordinates of the point A where lines l and m intersect.
 - **b** Find, in degrees, the acute angle between lines *l* and *m*.

The point B has coordinates (5, 1, -4).

- **c** Show that *B* lies on the line *l*.
- **d** Find the distance of B from m.
- **20** Relative to a fixed origin O, the points A and B have position vectors (9i + 6j) and (11i + 5j + k)respectively.
 - a Show that for all values of λ , the point C with position vector $(9 + 2\lambda)\mathbf{i} + (6 \lambda)\mathbf{j} + \lambda\mathbf{k}$ lies on the straight line *l* which passes through *A* and *B*.
 - **b** Find the value of λ for which OC is perpendicular to l.
 - c Hence, find the position vector of the foot of the perpendicular from O to l.
- 21 Find the coordinates of the point on each line which is closest to the origin.

$$\mathbf{a} \quad \mathbf{r} = -4\mathbf{i} + 2\mathbf{j} + 7\mathbf{k} + \lambda(\mathbf{i} + 3\mathbf{j} - 4\mathbf{k})$$

b
$$r = 7i + 11j - 9k + \lambda(6i - 9j + 3k)$$