Worksheet E

(3)

(6)

1 Relative to a fixed origin, the line *l* has vector equation

$$\mathbf{r} = \mathbf{i} - 4\mathbf{j} + p\mathbf{k} + \lambda(2\mathbf{i} + q\mathbf{j} - 3\mathbf{k}),$$

where λ is a scalar parameter.

Given that l passes through the point with position vector $(7\mathbf{i} - \mathbf{j} - \mathbf{k})$,

- **a** find the values of the constants p and q,
- **b** find, in degrees, the acute angle *l* makes with the line with equation

$$r = 3i + 4j - 3k + \mu(-4i + 5j - 2k).$$
 (4)

The points A and B have position vectors $\begin{pmatrix} 1 \\ 6 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ 0 \\ -6 \end{pmatrix}$ respectively, relative to a

fixed origin.

a Find, in vector form, an equation of the line l which passes through A and B. (2)

The line m has equation

$$\mathbf{r} = \begin{pmatrix} 5 \\ -5 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix}.$$

Given that lines *l* and *m* intersect at the point *C*,

- **b** find the position vector of C, (5)
- \mathbf{c} show that C is the mid-point of AB. (2)
- Relative to a fixed origin, the points P and Q have position vectors $(5\mathbf{i} 2\mathbf{j} + 2\mathbf{k})$ and $(3\mathbf{i} + \mathbf{j})$ respectively.
 - a Find, in vector form, an equation of the line L_1 which passes through P and Q. (2) The line L_2 has equation

$$\mathbf{r} = 4\mathbf{i} + 6\mathbf{j} - \mathbf{k} + \mu(5\mathbf{i} - \mathbf{j} + 3\mathbf{k}).$$

- **b** Show that lines L_1 and L_2 intersect and find the position vector of their point of intersection.
- c Find, in degrees to 1 decimal place, the acute angle between lines L_1 and L_2 . (4)
- 4 Relative to a fixed origin, the lines l_1 and l_2 have vector equations as follows:

$$l_1$$
: $\mathbf{r} = 5\mathbf{i} + \mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} + 2\mathbf{k}),$
 l_2 : $\mathbf{r} = 7\mathbf{i} - 3\mathbf{j} + 7\mathbf{k} + \mu(-\mathbf{i} + \mathbf{j} - 2\mathbf{k}),$

where λ and μ are scalar parameters.

a Show that lines l_1 and l_2 intersect and find the position vector of their point of intersection. (6)

The points A and C lie on l_1 and the points B and D lie on l_2 .

Given that ABCD is a parallelogram and that A has position vector $(9\mathbf{i} - 2\mathbf{j} + 5\mathbf{k})$,

b find the position vector of *C*. (3)

Given also that the area of parallelogram ABCD is 54,

c find the distance of the point B from the line l_1 . (4)

(1)

- Relative to a fixed origin, the points A and B have position vectors $(4\mathbf{i} + 2\mathbf{j} 4\mathbf{k})$ and $(2\mathbf{i} \mathbf{j} + 2\mathbf{k})$ respectively.
 - **a** Find, in vector form, an equation of the line l_1 which passes through A and B. (2)

The line l_2 passes through the point C with position vector $(4\mathbf{i} - 7\mathbf{j} - \mathbf{k})$ and is parallel to the vector $(6\mathbf{j} - 2\mathbf{k})$.

- **b** Write down, in vector form, an equation of the line l_2 . (1)
- c Show that A lies on l_2 . (2)
- **d** Find, in degrees, the acute angle between lines l_1 and l_2 . (4)
- 6 The points A and B have position vectors $\begin{pmatrix} 5 \\ -1 \\ -10 \end{pmatrix}$ and $\begin{pmatrix} 4 \\ 1 \\ -8 \end{pmatrix}$ respectively, relative to a

fixed origin O.

a Find, in vector form, an equation of the line l which passes through A and B. (2)

The line l intersects the y-axis at the point C.

b Find the coordinates of C. (2)

The point D on the line l is such that OD is perpendicular to l.

- c Find the coordinates of D. (5)
- **d** Find the area of triangle *OCD*, giving your answer in the form $k\sqrt{5}$.
- Relative to a fixed origin, the line l_1 has the equation

$$\mathbf{r} = \begin{pmatrix} 1 \\ -6 \\ -2 \end{pmatrix} + s \begin{pmatrix} 0 \\ 4 \\ -1 \end{pmatrix}.$$

a Show that the point P with coordinates (1, 6, -5) lies on l_1 .

The line l_2 has the equation

$$\mathbf{r} = \begin{pmatrix} 4 \\ -4 \\ -1 \end{pmatrix} + t \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix},$$

and intersects l_1 at the point Q.

b Find the position vector of Q. (3)

The point R lies on l_2 such that PQ = QR.

- c Find the two possible position vectors of the point R. (5)
- Relative to a fixed origin, the points A and B have position vectors $(4\mathbf{i} + 5\mathbf{j} + 6\mathbf{k})$ and $(4\mathbf{i} + 6\mathbf{j} + 2\mathbf{k})$ respectively.
 - **a** Find, in vector form, an equation of the line l_1 which passes through A and B. (2)

The line l_2 has equation

$$\mathbf{r} = \mathbf{i} + 5\mathbf{j} - 3\mathbf{k} + \mu(\mathbf{i} + \mathbf{j} - \mathbf{k}).$$

- **b** Show that l_1 and l_2 intersect and find the position vector of their point of intersection. (4)
- c Find the acute angle between lines l_1 and l_2 . (3)
- **d** Show that the point on l_2 closest to A has position vector $(-\mathbf{i} + 3\mathbf{j} \mathbf{k})$. (5)