Edexcel AS and A Level Modular Mathematics

 $\begin{array}{c} Coordinate\ geometry\ in\ the\ (x,y)\ plane\\ Exercise\ A,\ Question\ 1 \end{array}$

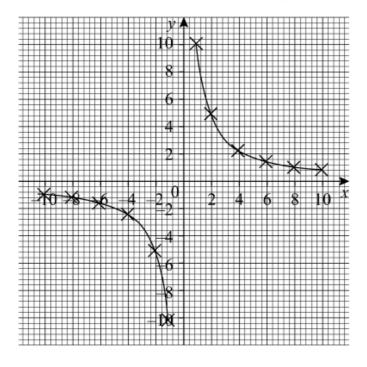
Question:

A curve is given by the parametric equations x = 2t, $y = \frac{5}{t}$ where $t \neq 0$. Complete the table and draw a graph of the curve for $-5 \leq t \leq 5$.

t	-5	-4	-3	-2	-1	-0.5	0.5	1	2	3	4	5
x = 2t	-10	-8				-1						
$y = \frac{5}{t}$	-1	-1.25				20	10					

Solution:

t	-5	-4	-3	-2	-1	-0.5	0.5	1	2	3	4	5
x=2t	-10	-8	-6	-4	-2	-1	1	2	4	6	8	10
$y = \frac{5}{t}$	-1	-1.25	-1.67	-2.5	-5	-10	10	5	2.5	1.67	1.25	1



Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise A, Question 2

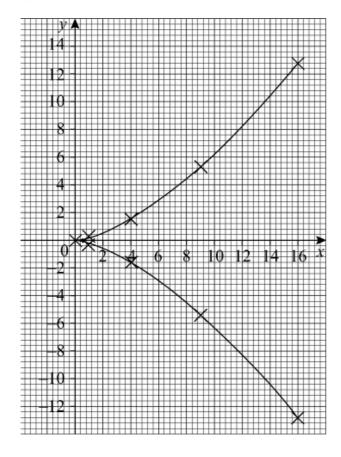
Question:

A curve is given by the parametric equations $x = t^2$, $y = \frac{t^3}{5}$. Complete the table and draw a graph of the curve for $-4 \le t \le 4$.

t	-4	-3	-2	-1	0	1	2	3	4
$x = t^2$	16		0.						
$y = \frac{t^3}{5}$	-12.8								

Solution:

t	-4	-3	-2	-1	0	1	2	3	4
$x = t^2$	16	9	4	1	0	1	4	9	16
$y = \frac{t^3}{5}$	-12.8	-5.4	-1.6	-0.2	0	0.2	1.6	5.4	12.8



Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise A, Question 3

Question:

Sketch the curves given by these parametric equations:

(a)
$$x = t - 2$$
, $y = t^2 + 1$ for $-4 \le t \le 4$

(b)
$$x = t^2 - 2$$
, $y = 3 - t$ for $-3 \le t \le 3$

(c)
$$x = t^2$$
, $y = t (5 - t)$ for $0 \le t \le 5$

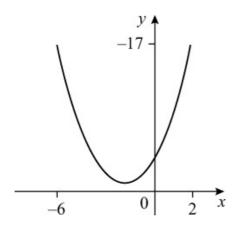
(d)
$$x = 3\sqrt{t}$$
, $y = t^3 - 2t$ for $0 \le t \le 2$

(e)
$$x = t^2$$
, $y = (2 - t) (t + 3)$ for $-5 \le t \le 5$

Solution:

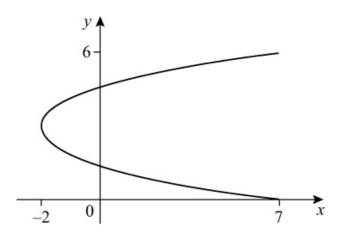
(a)

	t	-4	-3	-2	-1	0	1	2	3	4
	x = t - 2	-6	-5	-4	-3	-2	-1	0	1	2
Γ	$y = t^2 + 1$	17	10	5	2	1	2	5	10	17



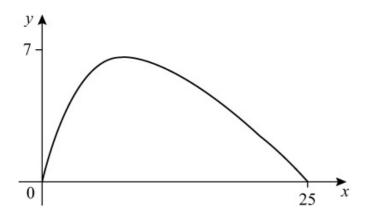
(b)

t	-3	-2	-1	0	1	2	3
$x = t^2 - 2$	7	2	-1	-2	-1	2	7
y=3-t	6	5	4	3	2	1	0



(c)

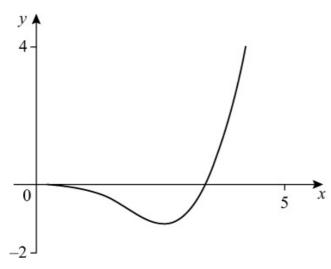
/							
	t	0	1	2	3	4	5
	$x = t^2$	0	1	4	9	16	25
	y = t(5 - t)	0	4	6	6	4	0



(d)

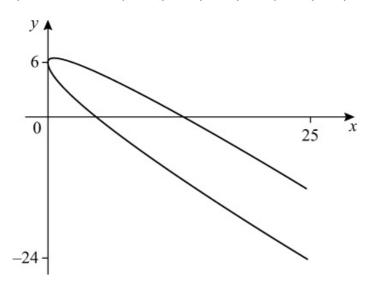
t	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2
$x = 3\sqrt{t}$	0	1.5	2.12	2.60	3	3.35	3.67	3.97	4.24
$y = t^3 - 2t$	0	-0.48	-0.88	-1.08	-1	-0.55	0.38	1.86	4

Answers have been rounded to 2 d.p.



(e)

t	-5	-4	-3	-2	-1	0	1	2	3	4	5
$x = t^2$	25	16	9	4	1	0	1	4	9	16	25
y = (2-t)(t+3)	-14	-6	0	4	6	6	4	0	-6	-14	-24



© Pearson Education Ltd 2009

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise A, Question 4

Question:

Find the cartesian equation of the curves given by these parametric equations:

(a)
$$x = t - 2$$
, $y = t^2$

(b)
$$x = 5 - t$$
, $y = t^2 - 1$

(c)
$$x = \frac{1}{t}$$
, $y = 3 - t$, $t \neq 0$

(d)
$$x = 2t + 1, y = \frac{1}{t}, t \neq 0$$

(e)
$$x = 2t^2 - 3$$
, $y = 9 - t^2$

(f)
$$x = \sqrt{t}$$
, $y = t (9 - t)$

(g)
$$x = 3t - 1$$
, $y = (t - 1)(t + 2)$

(h)
$$x = \frac{1}{t-2}$$
, $y = t^2$, $t \neq 2$

(i)
$$x = \frac{1}{t+1}$$
, $y = \frac{1}{t-2}$, $t \neq -1$, $t \neq 2$

(j)
$$x = \frac{t}{2t-1}$$
, $y = \frac{t}{t+1}$, $t \neq -1$, $t \neq \frac{1}{2}$

Solution:

(a)
$$x = t - 2$$
, $y = t^2$
 $x = t - 2$
 $t = x + 2$

Substitute
$$t = x + 2$$
 into $y = t^2$
 $y = (x + 2)^2$

So the cartesian equation of the curve is $y = (x + 2)^2$.

(b)
$$x = 5 - t$$
, $y = t^2 - 1$

$$x = 5 - t$$

 $t = 5 - x$
Substitute $t = 5 - x$ into $y = t^2 - 1$
 $y = (5 - x)^2 - 1$
 $y = 25 - 10x + x^2 - 1$

So the cartesian equation of the curve is $y = x^2 - 10x + 24$.

(c)
$$x = \frac{1}{t}$$
, $y = 3 - t$

$$x = \frac{1}{t}$$

$$t = \frac{1}{x}$$

 $y = x^2 - 10x + 24$

Substitute $t = \frac{1}{x}$ into y = 3 - t

$$y = 3 - \frac{1}{x}$$

So the cartesian equation of the curve is $y = 3 - \frac{1}{x}$.

(d)
$$x = 2t + 1$$
, $y = \frac{1}{t}$
 $x = 2t + 1$
 $2t = x - 1$
 $t = \frac{x - 1}{2}$

Substitute $t = \frac{x-1}{2}$ into $y = \frac{1}{t}$

$$y = \frac{1}{\left(\frac{x-1}{2}\right)}$$

$$y = \frac{2}{x-1}$$
 Note: This uses $\frac{1}{(\frac{a}{b})} = \frac{b}{a}$

So the cartesian equation of the curve is $y = \frac{2}{x-1}$.

(e)
$$x = 2t^2 - 3$$
, $y = 9 - t^2$
 $x = 2t^2 - 3$
 $2t^2 = x + 3$
 $t^2 = \frac{x+3}{2}$

Substitute $t^2 = \frac{x+3}{2}$ into $y = 9 - t^2$

$$y = 9 - \frac{x+3}{2}$$

$$y = \frac{18 - (x+3)}{2}$$

$$y = \frac{15 - x}{2}$$

So the cartesian equation is $y = \frac{15 - x}{2}$.

(f)
$$x = \sqrt{t}$$
, $y = t (9 - t)$
 $x = \sqrt{t}$
 $t = x^2$
Substitute $t = x^2$ into y

Substitute $t = x^2$ into y = t (9 - t) $y = x^2 (9 - x^2)$

So the cartesian equation is $y = x^2 (9 - x^2)$.

(g)
$$x = 3t - 1$$
, $y = (t - 1) (t + 2)$
 $x = 3t - 1$
 $3t = x + 1$
 $t = \frac{x+1}{3}$

Substitute $t = \frac{x+1}{3}$ into y = (t-1)(t+2)

$$y = \left(\frac{x+1}{3} - 1\right) \left(\frac{x+1}{3} + 2\right)$$

$$y = \left(\frac{x+1}{3} - \frac{3}{3}\right) \left(\frac{x+1}{3} + \frac{6}{3}\right)$$

$$y = \left(\frac{x+1-3}{3}\right) \left(\frac{x+1+6}{3}\right)$$

$$y = \left(\frac{x-2}{3}\right) \left(\frac{x+7}{3}\right)$$

$$y = \frac{1}{9} \left(x - 2 \right) \left(x + 7 \right)$$

So the cartesian equation of the curve is $y = \frac{1}{9} \left(x - 2 \right) \left(x + 7 \right)$.

(h)
$$x = \frac{1}{t-2}$$
, $y = t^2$

$$x = \frac{1}{t-2}$$

$$x(t-2) = 1$$

$$t-2 = \frac{1}{x}$$

$$t = \frac{1}{x} + 2$$

$$t = \frac{1}{x} + \frac{2x}{x}$$

$$t = \frac{1+2x}{x}$$
Substitute $t = \frac{1+2x}{x}$ into $y = t^2$

$$y = \left(\frac{1+2x}{x}\right)^2$$

So the cartesian equation of the curve is $y = \left(\frac{1+2x}{x}\right)^2$.

(i)
$$x = \frac{1}{t+1}$$
, $y = \frac{1}{t-2}$
 $x = \frac{1}{t+1}$
 $(t+1) x = 1$
 $t+1 = \frac{1}{x}$
 $t = \frac{1}{x} - 1$

Substitute $t = \frac{1}{x} - 1$ into $y = \frac{1}{t-2}$

$$y = \frac{1}{\left(\frac{1}{x} - 1\right) - 2}$$

$$y = \frac{1}{\frac{1}{x} - 3}$$

$$y = \frac{1}{\frac{1}{x} - \frac{3x}{x}}$$

$$y = \frac{1}{\left(\frac{1-3x}{x}\right)}$$

$$y = \frac{x}{1 - 3x}$$
 Note: This uses $\frac{1}{\left(\frac{a}{b}\right)} = \frac{b}{a}$

So the cartesian equation of the curve is $y = \frac{x}{1-3x}$.

(j)
$$x = \frac{t}{2t-1}$$
, $y = \frac{t}{t+1}$
 $x = \frac{t}{2t-1}$
 $x \times \left(2t-1\right) = \frac{t}{2t-1} \times \left(2t-1\right)$ Multiply each side by $(2t-1)$
 $x(2t-1) = t$ Simplify $2tx - x = t$ Expand the brackets $2tx = t + x$ Add x to each side $2tx - t = x$ Subtract $2t$ from each side $t(2x-1) = x$ Factorise t $\frac{t(2x-1)}{(2x-1)} = \frac{x}{2x-1}$ Divide each side by $(2x-1)$
 $t = \frac{x}{2x-1}$ Simplify Substitute $t = \frac{x}{2x-1}$ into $y = \frac{t}{t+1}$

$$y = \frac{(\frac{x}{2x-1})}{(\frac{x}{2x-1}+1)}$$

$$y = \frac{\left(\frac{x}{2x-1}\right)}{\left(\frac{x}{2x-1} + \frac{2x-1}{2x-1}\right)}$$

$$y = \frac{(\frac{x}{2x-1})}{(\frac{x+2x-1}{2x-1})}$$

$$y = \frac{(\frac{x}{2x-1})}{(\frac{3x-1}{2x-1})}$$

$$y = \frac{x}{3x - 1}$$
 Note: This uses $\frac{(\frac{a}{b})}{(\frac{c}{b})} = \frac{a}{c}$

So the cartesian equation of the curve is $y = \frac{x}{3x-1}$.

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise A, Question 5

Question:

Show that the parametric equations:

(i)
$$x = 1 + 2t$$
, $y = 2 + 3t$

(ii)
$$x = \frac{1}{2t-3}$$
, $y = \frac{t}{2t-3}$, $t \neq \frac{3}{2}$

represent the same straight line.

Solution:

(i)
$$x = 1 + 2t$$
, $y = 2 + 3t$
 $x = 1 + 2t$
 $2t = x - 1$
 $t = \frac{x - 1}{2}$

Substitute
$$t = \frac{x-1}{2}$$
 into $y = 2 + 3t$

$$y = 2 + 3 \left(\frac{x - 1}{2}\right)$$
$$y = 2 + 3 \left(\frac{x}{2} - \frac{1}{2}\right)$$
$$y = 2 + \frac{3x}{2} - \frac{3}{2}$$

$$y = \frac{3x}{2} + \frac{1}{2}$$

(ii)
$$x = \frac{1}{2t-3}$$
, $y = \frac{t}{2t-3}$

$$\frac{y}{x} = \frac{\left(\frac{t}{2t-3}\right)}{\left(\frac{1}{2t-3}\right)} \quad \text{Note:} \quad \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{b}\right)} = \frac{a}{c}$$

$$\frac{y}{x} = t$$

Substitute
$$t = \frac{y}{x}$$
 into $x = \frac{1}{2t-3}$

$$x = \frac{1}{2(\frac{y}{x}) - 3}$$

$$x \left[2(\frac{y}{x}) - 3 \right] = 1$$

$$2y - 3x = 1$$

$$2y = 3x + 1$$

$$y = \frac{3}{2}x + \frac{1}{2}$$

The cartesian equations of (i) and (ii) are the same, so they represent the same straight line.

[©] Pearson Education Ltd 2009

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise B, Question 1

Question:

Find the coordinates of the point(s) where the following curves meet the *x*-axis:

(a)
$$x = 5 + t$$
, $y = 6 - t$

(b)
$$x = 2t + 1$$
, $y = 2t - 6$

(c)
$$x = t^2$$
, $y = (1 - t) (t + 3)$

(d)
$$x = \frac{1}{t}$$
, $y = \sqrt{(t-1)(2t-1)}$, $t \neq 0$

(e)
$$x = \frac{2t}{1+t}$$
, $y = t-9$, $t \neq -1$

Solution:

(a)
$$x = 5 + t$$
, $y = 6 - t$

When
$$y = 0$$

$$6 - t = 0$$

so
$$t = 6$$

Substitute t = 6 into x = 5 + t

$$x = 5 + 6$$

$$x = 11$$

So the curve meets the x-axis at (11, 0).

(b)
$$x = 2t + 1$$
, $y = 2t - 6$

When
$$y = 0$$

$$2t - 6 = 0$$

$$2t = 6$$

so
$$t = 3$$

Substitute t = 3 into x = 2t + 1

$$x = 2 (3) + 1$$

$$x = 6 + 1$$

$$x = 7$$

So the curve meets the x-axis at (7, 0).

(c)
$$x = t^2$$
, $y = (1 - t) (t + 3)$

When
$$y = 0$$

$$(1-t)(t+3) = 0$$

so $t = 1$ and $t = -3$

(1) Substitute t = 1 into $x = t^2$

$$x = 1^2$$
$$x = 1$$

(2) Substitute t = -3 into $x = t^2$

$$x = (-3)^2$$

$$x = 9$$

So the curve meets the x-axis at (1, 0) and (9, 0).

(d)
$$x = \frac{1}{t}$$
, $y = \sqrt{(t-1)(2t-1)}$

When
$$y = 0$$

 $\sqrt{(t-1)(2t-1)} = 0$
 $(t-1)(2t-1) = 0$

so
$$t = 1$$
 and $t = \frac{1}{2}$

(1) Substitute t = 1 into $x = \frac{1}{t}$

$$x = \frac{1}{(1)}$$

$$x = 1$$

(2) Substitute $t = \frac{1}{2}$ into $x = \frac{1}{t}$

$$x = \frac{1}{\left(\frac{1}{2}\right)}$$

$$x = 2$$

So the curve meets the x-axis at (1, 0) and (2, 0).

(e)
$$x = \frac{2t}{1+t}$$
, $y = t - 9$

When
$$y = 0$$

$$t - 9 = 0$$

so
$$t = 9$$

Substitute t = 9 into $x = \frac{2t}{1+t}$

$$x = \frac{2(9)}{1 + (9)}$$

$$x = \frac{18}{10}$$

$$x = \frac{9}{5}$$

So the curve meets the *x*-axis at $\left(\frac{9}{5}, 0\right)$.

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise B, Question 2

Question:

Find the coordinates of the point(s) where the following curves meet the y-axis:

(a)
$$x = 2t$$
, $y = t^2 - 5$

(b)
$$x = \sqrt{(3t-4)}, y = \frac{1}{t^2}, t \neq 0$$

(c)
$$x = t^2 + 2t - 3$$
, $y = t (t - 1)$

(d)
$$x = 27 - t^3$$
, $y = \frac{1}{t-1}$, $t \neq 1$

(e)
$$x = \frac{t-1}{t+1}$$
, $y = \frac{2t}{t^2+1}$, $t \neq -1$

Solution:

(a) When
$$x = 0$$

$$2t = 0$$

so
$$t = 0$$

Substitute t = 0 into $y = t^2 - 5$

$$y = (0)^2 - 5$$

$$y = -5$$

So the curve meets the y-axis at (0, -5).

(b) When
$$x = 0$$

$$\sqrt{3t-4}=0$$

$$3t - 4 = 0$$

$$3t = 4$$

so
$$t = \frac{4}{3}$$

Substitute
$$t = \frac{4}{3}$$
 into $y = \frac{1}{t^2}$

$$y = \frac{1}{\left(\frac{4}{3}\right)^2}$$

$$y = \frac{1}{\left(\frac{16}{9}\right)}$$

$$y = \frac{9}{16}$$
 Note: This uses $\frac{1}{\left(\frac{a}{b}\right)} = \frac{b}{a}$

So the curve meets the y-axis at $\left(0, \frac{9}{16}\right)$.

(c) When
$$x = 0$$

 $t^2 + 2t - 3 = 0$
 $(t+3)(t-1) = 0$
so $t = -3$ and $t = 1$
(1) Substitute $t = -3$ into $y = t(t-1)$
 $y = (-3)[(-3) - 1]$
 $y = (-3) \times (-4)$
 $y = 12$
(2) Substitute $t = 1$ into $y = t(t-1)$
 $y = 1(1-1)$

y = 0So the curve meets the y-axis at (0, 0) and (0, 12).

(d) When
$$x = 0$$

 $27 - t^3 = 0$
 $t^3 = 27$
 $t = \sqrt[3]{27}$
so $t = 3$

 $y = 1 \times 0$

Substitute t = 3 into $y = \frac{1}{t-1}$

$$y = \frac{1}{(3)-1}$$
$$y = \frac{1}{2}$$

So the curve meets the y-axis at $\left(0, \frac{1}{2}\right)$.

(e) When
$$x = 0$$

$$\frac{t-1}{t+1} = 0$$

$$t-1 = 0 \qquad \left[\text{ Note: } \frac{a}{b} = 0 \Rightarrow a = 0 \right]$$
So $t = 1$

Substitute
$$t = 1$$
 into $y = \frac{2t}{t^2 + 1}$

$$y = \frac{2(1)}{(1)^2 + 1}$$
$$y = \frac{2}{2}$$
$$y = 1$$

So the curve meets the y-axis at (0, 1).

[©] Pearson Education Ltd 2009

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise B, Question 3

Question:

A curve has parametric equations $x = 4at^2$, y = a(2t - 1), where a is a constant. The curve passes through the point (4, 0). Find the value of a.

Solution:

When
$$y = 0$$

 $a(2t - 1) = 0$
 $2t - 1 = 0$
 $2t = 1$
 $t = \frac{1}{2}$

When
$$t = \frac{1}{2}, x = 4$$

So substitute $t = \frac{1}{2}$ and x = 4 into $x = 4at^2$

$$4a \left(\frac{1}{2} \right)^2 = 4$$

$$4a \times \frac{1}{4} = 4$$

$$a = 4$$

So the value of a is 4.

[©] Pearson Education Ltd 2009

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise B, Question 4

Question:

A curve has parametric equations x = b (2t - 3), $y = b (1 - t^2)$, where b is a constant. The curve passes through the point (0, -5). Find the value of b.

Solution:

When
$$x = 0$$

 $b (2t - 3) = 0$
 $2t - 3 = 0$
 $2t = 3$
 $t = \frac{3}{2}$

When
$$t = \frac{3}{2}, y = -5$$

So substitute $t = \frac{3}{2}$ and y = -5 into y = b ($1 - t^2$)

$$b\left[1-\left(\frac{3}{2}\right)^2\right]=-5$$

$$b\left(1-\frac{9}{4}\right)=-5$$

$$b\left(\frac{-5}{4}\right) = -5$$

$$b = \frac{-5}{\left(\frac{-5}{4}\right)}$$

$$b = 4$$

So the value of b is 4.

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise B, Question 5

Question:

A curve has parametric equations x = p(2t - 1), $y = p(t^3 + 8)$, where p is a constant. The curve meets the x-axis at (2, 0) and the y-axis at A.

- (a) Find the value of p.
- (b) Find the coordinates of A.

Solution:

(a) When
$$y = 0$$

 $p(t^3 + 8) = 0$
 $t^3 + 8 = 0$
 $t^3 = -8$
 $t = \sqrt[3]{-8}$
 $t = -2$
When $t = -2$, $x = 2$
So substitute $t = -2$ and $x = 2$ into $x = p(2t - 1)$
 $p[2(-2) - 1] = 2$
 $p(-4 - 1) = 2$
 $p(-5) = 2$
 $p = -\frac{2}{5}$

(b) When
$$x = 0$$

 $p(2t - 1) = 0$
 $2t - 1 = 0$
 $2t = 1$
 $t = \frac{1}{2}$

When the curve meets the y-axis $t = \frac{1}{2}$

So substitute $t = \frac{1}{2}$ into $y = p (t^3 + 8)$

$$y = p \left[\left(\frac{1}{2} \right)^3 + 8 \right]$$

but
$$p = -\frac{2}{5}$$

So $y = -\frac{2}{5} \left[\left(\frac{1}{2} \right)^3 + 8 \right] = -\frac{2}{5} \left(\frac{1}{8} + 8 \right) = -\frac{2}{5} \times \frac{65}{8} = -\frac{13}{4}$
So the coordinates of A are $\left(0, -\frac{13}{4} \right)$.

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise B, Question 6

Question:

A curve is given parametrically by the equations $x = 3qt^2$, y = 4 ($t^3 + 1$), where q is a constant. The curve meets the x-axis at X and the y-axis at Y. Given that OX = 2OY, where O is the origin, find the value of q.

Solution:

(1) When
$$y = 0$$

 $4 (t^3 + 1) = 0$
 $t^3 + 1 = 0$
 $t^3 = -1$
 $t = \sqrt[3]{-1}$
 $t = -1$
Substitute $t = -1$ into $x = 3qt^2$
 $x = 3q (-1)^2$
 $x = 3q$
So the coordinates of X are $(3q, 0)$.
(2) When $x = 0$
 $3qt^2 = 0$
 $t^2 = 0$
 $t = 0$
Substitute $t = 0$ into $y = 4 (t^3 + 1)$
 $y = 4 [(0)^3 + 1]$
 $y = 4$
So the coordinates of Y are $(0, 4)$.
(3) Now $OX = 3q$ and $OY = 4$
As $OX = 2OY$
 $(3q) = 2 (4)$
 $3q = 8$
 $q = \frac{8}{3}$

So the value of q is $\frac{8}{3}$.

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise B, Question 7

Question:

Find the coordinates of the point of intersection of the line with parametric equations x = 3t + 2, y = 1 - t and the line y + x = 2.

Solution:

(1) Substitute
$$x = 3t + 2$$
 and $y = 1 - t$ into $y + x = 2$
 $(1 - t) + (3t + 2) = 2$
 $1 - t + 3t + 2 = 2$
 $2t + 3 = 2$
 $2t = -1$
 $t = -\frac{1}{2}$

(2) Substitute
$$t = -\frac{1}{2}$$
 into $x = 3t + 2$

$$x = 3 \left(-\frac{1}{2} \right) + 2 = -\frac{3}{2} + 2 = \frac{1}{2}$$

(3) Substitute
$$t = -\frac{1}{2}$$
 into $y = 1 - t$

$$y = 1 - \left(-\frac{1}{2} \right) = 1 + \frac{1}{2} = \frac{3}{2}$$

So the coordinates of the point of intersection are $\left(\begin{array}{c} \frac{1}{2} \end{array}, \begin{array}{c} \frac{3}{2} \end{array}\right)$.

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise B, Question 8

Question:

Find the coordinates of the points of intersection of the curve with parametric equations $x = 2t^2 - 1$, y = 3 (t + 1) and the line 3x - 4y = 3.

Solution:

(1) Substitute
$$x = 2t^2 - 1$$
 and $y = 3$ ($t + 1$) into $3x - 4y = 3$ 3 ($2t^2 - 1$) $- 4$ [3 ($t + 1$)] $= 3$ 3 ($2t^2 - 1$) $- 12$ ($t + 1$) $= 3$ 6 $t^2 - 3 - 12t - 12 = 3$ 6 $t^2 - 12t - 15 = 3$ 6 $t^2 - 12t - 18 = 0$ (\div 6) $t^2 - 2t - 3 = 0$ ($t - 3$) ($t + 1$) $= 0$ so $t = 3$ and $t = -1$ (2) Substitute $t = 3$ into $x = 2t^2 - 1$ and $y = 3$ ($t + 1$) $x = 2$ (3) $x = 2$ (3

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise B, Question 9

Question:

Find the values of t at the points of intersection of the line 4x - 2y - 15 = 0 with the parabola $x = t^2$, y = 2t and give the coordinates of these points.

Solution:

(1) Substitute
$$x = t^2$$
 and $y = 2t$ into $4x - 2y - 15 = 0$

$$4(t^2) - 2(2t) - 15 = 0$$

$$4t^2 - 4t - 15 = 0$$

$$(2t+3)(2t-5)=0$$

So
$$2t + 3 = 0$$
 \Rightarrow $2t = -3$ \Rightarrow $t = \frac{-3}{2}$ and

$$2t - 5 = 0 \quad \Rightarrow \quad 2t = 5 \quad \Rightarrow \quad t = \frac{5}{2}$$

(2) Substitute
$$t = -\frac{3}{2}$$
 into $x = t^2$ and $y = 2t$

$$x = \left(-\frac{3}{2} \right)^2 = \frac{9}{4}$$

$$y = 2 \left(-\frac{3}{2} \right) = -3$$

(3) Substitute
$$t = \frac{5}{2}$$
 into $x = t^2$ and $y = 2t$

$$x = \left(\begin{array}{c} \frac{5}{2} \end{array}\right)^2 = \frac{25}{4}$$

$$y = 2 \left(\frac{5}{2} \right) = 5$$

So the coordinates of the points of intersection are $\left(\frac{9}{4}, -3\right)$ and $\left(\frac{9}{4}, -3\right)$

$$\frac{25}{4}$$
, 5 .

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise B, Question 10

Question:

Find the points of intersection of the parabola $x = t^2$, y = 2t with the circle $x^2 + y^2 - 9x + 4 = 0$.

Solution:

(1) Substitute
$$x = t^2$$
 and $y = 2t$ into $x^2 + y^2 - 9x + 4 = 0$
 $(t^2)^2 + (2t)^2 - 9(t^2) + 4 = 0$
 $t^4 + 4t^2 - 9t^2 + 4 = 0$
 $(t^2 - 4)(t^2 - 1) = 0$
So $t^2 - 4 = 0 \implies t^2 = 4 \implies t = \sqrt{4} \implies t = \pm 2$ and $t^2 - 1 = 0 \implies t^2 = 1 \implies t = \sqrt{1} \implies t = \pm 1$

(2) Substitute
$$t = 2$$
 into $x = t^2$ and $y = 2t$

$$x = (2)^{2} = 4$$

 $y = 2(2) = 4$

(3) Substitute
$$t = -2$$
 into $x = t^2$ and $y = 2t$

$$x = (-2)^2 = 4$$

 $y = 2(-2) = -4$

(4) Substitute
$$t = 1$$
 into $x = t^2$ and $y = 2t$

$$x = (1)^{2} = 1$$

 $y = 2(1) = 2$

(5) Substitute
$$t = -1$$
 into $x = t^2$ and $y = 2t$

$$x = (-1)^2 = 1$$

 $y = 2(-1) = -2$

So the coordinates of the points of intersection are (4,4), (4,-4), (1,2) and (1,-2).

Edexcel AS and A Level Modular Mathematics

 $\begin{array}{l} Coordinate\ geometry\ in\ the\ (x,y)\ plane\\ Exercise\ C,\ Question\ 1 \end{array}$

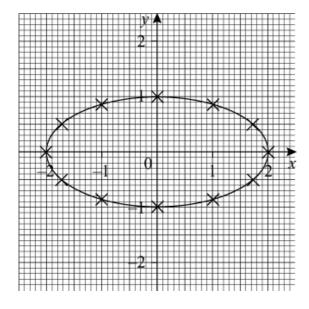
Question:

A curve is given by the parametric equations $x = 2 \sin t$, $y = \cos t$. Complete the table and draw a graph of the curve for $0 \le t \le 2\pi$.

t	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
$x = 2\sin t$		55	1.73		1.73	33 93	20	-1		-2			0
$y = \cos t$		0.87					-1		-0.5		0.5		

Solution:

t	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
$x = 2\sin t$	0	1	1.73	2	1.73	1	0	-1	-1.73	-2	-1.73	-1	0
$y = \cos t$	1	0.87	0.5	0	-0.5	-0.87	-1	-0.87	-0.5	0	0.5	0.87	1



Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x,y) plane Exercise C, Question 2

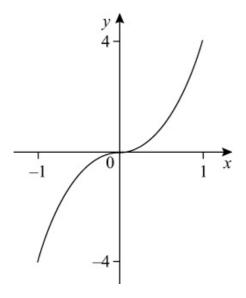
Question:

A curve is given by the parametric equations $x = \sin t$, $y = \tan t$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$. Draw a graph of the curve.

Solution:

t	$\frac{-4\pi}{10}$	$\frac{-3\pi}{10}$	$\frac{-2\pi}{10}$	$\frac{-\pi}{10}$	0	$\frac{\pi}{10}$	$\frac{2\pi}{10}$	$\frac{3\pi}{10}$	$\frac{4\pi}{10}$
$x = \sin t$	-0.95	-0.81	-0.59	-0.31	0	0.31	0.59	0.81	0.95
$y = \tan t$	-3.08	-1.38	-0.73	-0.32	0	0.32	0.73	1.38	3.08

Answers are given to 2 d.p.



© Pearson Education Ltd 2009

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise C, Question 3

Question:

Find the cartesian equation of the curves given by the following parametric equations:

(a)
$$x = \sin t$$
, $y = \cos t$

(b)
$$x = \sin t - 3, y = \cos t$$

(c)
$$x = \cos t - 2$$
, $y = \sin t + 3$

(d)
$$x = 2 \cos t$$
, $y = 3 \sin t$

(e)
$$x = 2 \sin t - 1$$
, $y = 5 \cos t + 4$

(f)
$$x = \cos t$$
, $y = \sin 2t$

(g)
$$x = \cos t$$
, $y = 2 \cos 2t$

(h)
$$x = \sin t$$
, $y = \tan t$

(i)
$$x = \cos t + 2$$
, $y = 4 \sec t$

(j)
$$x = 3 \cot t$$
, $y = \csc t$

Solution:

(a)
$$x = \sin t$$
, $y = \cos t$

$$x^{2} = \sin^{2} t$$
, $y^{2} = \cos^{2} t$
As $\sin^{2} t + \cos^{2} t = 1$

$$x^{2} + y^{2} = 1$$

(b)
$$x = \sin t - 3$$
, $y = \cos t$
 $\sin t = x + 3$
 $\sin^2 t = (x + 3)^2$
 $\cos t = y$
 $\cos^2 t = y^2$
As $\sin^2 t + \cos^2 t = 1$
 $(x + 3)^2 + y^2 = 1$

(c)
$$x = \cos t - 2$$
, $y = \sin t + 3$
 $\cos t = x + 2$
 $\sin t = y - 3$
As $\sin^2 t + \cos^2 t = 1$
 $(y - 3)^2 + (x + 2)^2 = 1$ or $(x + 2)^2 + (y - 3)^2 = 1$

(d)
$$x = 2 \cos t$$
, $y = 3 \sin t$

$$\sin t = \frac{y}{3}$$

$$\cos t = \frac{x}{2}$$
As $\sin^2 t + \cos^2 t = 1$

$$\left(\frac{y}{3}\right)^2 + \left(\frac{x}{2}\right)^2 = 1 \quad \text{or} \quad \left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$$

(e)
$$x = 2 \sin t - 1$$
, $y = 5 \cos t + 4$
 $2 \sin t - 1 = x$
 $2 \sin t = x + 1$
 $\sin t = \frac{x+1}{2}$
and
 $5 \cos t + 4 = y$
 $5 \cos t = y - 4$
 $\cos t = \frac{y-4}{5}$
As $\sin^2 t + \cos^2 t = 1$
 $\left(\frac{x+1}{2}\right)^2 + \left(\frac{y-4}{5}\right)^2 = 1$

(f)
$$x = \cos t$$
, $y = \sin 2t$
As $\sin 2t = 2 \sin t \cos t$
 $y = 2 \sin t \cos t = (2 \sin t)$ x
Now $\sin^2 t + \cos^2 t = 1$
So $\sin^2 t + x^2 = 1$
 $\Rightarrow \sin^2 t = 1 - x^2$
 $\Rightarrow \sin t = \sqrt{1 - x^2}$
So $y = (2\sqrt{1 - x^2})$ x or $y = 2x\sqrt{1 - x^2}$

(g)
$$x = \cos t$$
, $y = 2 \cos 2t$
As $\cos 2t = 2 \cos^2 t - 1$

$$y = 2 (2 \cos^2 t - 1)$$

But $x = \cos t$
So $y = 2 (2x^2 - 1)$
 $y = 4x^2 - 2$

(h)
$$x = \sin t$$
, $y = \tan t$
As $\tan t = \frac{\sin t}{\cos t}$
 $y = \frac{\sin t}{\cos t}$
But $x = \sin t$
So $y = \frac{x}{\cos t}$
Now $\cos t = \sqrt{1 - \sin^2 t} = \sqrt{1 - x^2}$ (from $\sin^2 t + \cos^2 t = 1$)
So $y = \frac{x}{\sqrt{1 - x^2}}$

(i)
$$x = \cos t + 2$$
, $y = 4$ $\sec t$
As $\sec t = \frac{1}{\cos t}$
 $y = 4 \times \frac{1}{\cos t} = \frac{4}{\cos t}$
Now $x = \cos t + 2 \implies \cos t = x - 2$
So $y = \frac{4}{x - 2}$

(j)
$$x = 3 \cot t$$
, $y = \operatorname{cosec} t$
 $\operatorname{As} \sin^2 t + \cos^2 t = 1$
 $\frac{\sin^2 t}{\sin^2 t} + \frac{\cos^2 t}{\sin^2 t} = \frac{1}{\sin^2 t} \qquad \left(\div \sin^2 t \right)$
 $1 + \left(\frac{\cos t}{\sin t} \right)^2 = \left(\frac{1}{\sin t} \right)^2$
 $1 + \cot^2 t = \operatorname{cosec}^2 t$
 $\operatorname{Now} x = 3 \cot t \implies \cot t = \frac{x}{3}$
and $y = \operatorname{cosec} t$
 $\operatorname{So} 1 + \left(\frac{x}{3} \right)^2 = (y)^2 \qquad (\text{using } 1 + \cos^2 t = \operatorname{cosec}^2 t)$

or
$$y^2 = 1 + \left(\frac{x}{3}\right)^2$$

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise C, Question 4

Question:

A circle has parametric equations $x = \sin t - 5$, $y = \cos t + 2$.

- (a) Find the cartesian equation of the circle.
- (b) Write down the radius and the coordinates of the centre of the circle.

Solution:

(a)
$$x = \sin t - 5$$
, $y = \cos t + 2$
 $\sin t = x + 5$ and $\cos t = y - 2$
As $\sin^2 t + \cos^2 t = 1$
 $(x + 5)^2 + (y - 2)^2 = 1$

(b) This is a circle with centre (-5, 2) and radius 1.

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise C, Question 5

Question:

A circle has parametric equations $x = 4 \sin t + 3$, $y = 4 \cos t - 1$. Find the radius and the coordinates of the centre of the circle.

Solution:

$$x = 4 \sin t + 3$$

$$4 \sin t = x - 3$$

$$\sin t = \frac{x - 3}{4}$$
and
$$y = 4 \cos t - 1$$

$$y = 4 \cos t - 1$$

$$4 \cos t = y + 1$$

$$\cos t = \frac{y+1}{4}$$

As
$$\sin^2 t + \cos^2 t = 1$$

$$\left(\frac{x-3}{4}\right)^2 + \left(\frac{y+1}{4}\right)^2 = 1$$

$$\frac{(x-3)^2}{4^2} + \frac{(y+1)^2}{4^2} = 1$$

$$\frac{(x-3)^2}{16} + \frac{(y+1)^2}{16} = 1$$

 $(x-3)^2 + (y+1)^2 = 16$ Multiply throughout by 16 So the centre of the circle is (3, -1) and the radius is 4.

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise D, Question 1

Question:

The following curves are given parametrically. In each case, find an expression for $y \frac{dx}{dt}$ in terms of t.

(a)
$$x = t + 3$$
, $y = 4t - 3$

(b)
$$x = t^3 + 3t$$
, $y = t^2$

(c)
$$x = (2t - 3)^2$$
, $y = 1 - t^2$

(d)
$$x = 6 - \frac{1}{t}$$
, $y = 4t^3$, $t > 0$

(e)
$$x = \sqrt{t}, y = 6t^3, t \ge 0$$

(f)
$$x = \frac{4}{t^2}$$
, $y = 5t^2$, $t < 0$

(g)
$$x = 5t^{\frac{1}{2}}$$
, $y = 4t^{-\frac{3}{2}}$, $t > 0$

(h)
$$x = t^{\frac{1}{3}} - 1$$
, $y = \sqrt{t}$, $t \ge 0$

(i)
$$x = 16 - t^4$$
, $y = 3 - \frac{2}{t}$, $t < 0$

(j)
$$x = 6t^{\frac{2}{3}}$$
, $y = t^2$

(a)
$$x = t + 3$$
, $y = 4t - 3$
 $\frac{dx}{dt} = 1$

So
$$y \frac{dx}{dt} = \left(4t - 3\right) \times 1 = 4t - 3$$

(b)
$$x = t^3 + 3t$$
, $y = t^2$

$$\frac{dx}{dt} = 3t^2 + 3$$
So $y \frac{dx}{dt} = t^2 \left(3t^2 + 3 \right) = 3t^2 \left(t^2 + 1 \right)$ Factorise 3

(c)
$$x = (2t - 3)^{-2}$$
, $y = 1 - t^{2}$
 $x = 4t^{2} - 12t + 9$
 $\frac{dx}{dt} = 8t - 12$
So $y \frac{dx}{dt} = (1 - t^{2})(8t - 12) = 4(1 - t^{2})(2t - 3)$
Factorise 4

(d)
$$x = 6 - \frac{1}{t}$$
, $y = 4t^3$

$$x = 6 - t^{-1}$$

$$\frac{dx}{dt} = t^{-2}$$
So $y \frac{dx}{dt} = 4t^3 \times t^{-2} = 4t$

(e)
$$x = \sqrt{t}$$
, $y = 6t^3$
 $x = t^{\frac{1}{2}}$
 $\frac{dx}{dt} = \frac{1}{2}t^{-\frac{1}{2}}$
So $y \frac{dx}{dt} = 6t^3 \times \frac{1}{2}t^{-\frac{1}{2}} = 3t^{3-\frac{1}{2}} = 3t^{\frac{5}{2}}$

(f)
$$x = \frac{4}{t^2}$$
, $y = 5t^2$
 $x = 4t^{-2}$
 $\frac{dx}{dt} = -8t^{-3}$
So $y \frac{dx}{dt} = 5t^2 \times -8t^{-3} = -40t^{2-3} = -40t^{-1} = -\frac{40}{t}$

(g)
$$x = 5t^{\frac{1}{2}}, y = 4t^{-\frac{3}{2}}$$

$$\frac{dx}{dt} = 5 \times \frac{1}{2}t^{-\frac{1}{2}} = \frac{5}{2}t^{-\frac{1}{2}}$$
So $y \frac{dx}{dt} = 4t^{-\frac{3}{2}} \times \frac{5}{2}t^{-\frac{1}{2}} = 10t^{-\frac{3}{2}} = \frac{1}{2} = 10t^{-2}$

(h)
$$x = t^{\frac{1}{3}} - 1$$
, $y = \sqrt{t}$

$$\frac{dx}{dt} = \frac{1}{3}t^{\frac{1}{3}} - 1 = \frac{1}{3}t^{-\frac{2}{3}}$$
So $y \frac{dx}{dt} = \sqrt{t} \times \frac{1}{3}t^{-\frac{2}{3}} = t^{\frac{1}{2}} \times \frac{1}{3}t^{-\frac{2}{3}} = \frac{1}{3}t^{\frac{1}{2}} - \frac{2}{3} = \frac{1}{3}t^{-\frac{1}{6}}$

(i)
$$x = 16 - t^4$$
, $y = 3 - \frac{2}{t}$

$$\frac{dx}{dt} = -4t^3$$
So $y \frac{dx}{dt} = \left(3 - \frac{2}{t}\right) \left(-4t^3\right)$

$$= 3 \times \left(-4t^3\right) + \frac{2}{t} \times 4t^3$$

$$= -12t^3 + 8t^2 \quad [\text{or } 8t^2 - 12t^3 \text{ or } 4t^2 \quad (2 - 3t)]$$

(j)
$$x = 6t^{\frac{2}{3}}, y = t^2$$

$$\frac{dx}{dt} = 6 \times \frac{2}{3}t^{\frac{2}{3}} - 1 = 4t^{-\frac{1}{3}}$$
So $y \frac{dx}{dt} = t^2 \times 4t^{-\frac{1}{3}} = 4t^{2-\frac{1}{3}} = 4t^{\frac{5}{3}}$

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise D, Question 2

Question:

A curve has parametric equations x = 2t - 5, y = 3t + 8. Work out $\int_{0}^{4} y \frac{dx}{dt} dt$.

Solution:

$$x = 2t - 5, y = 3t + 8$$

$$\frac{dx}{dt} = 2$$
So $y \frac{dx}{dt} = \left(3t + 8\right) \times 2 = 6t + 16$

$$\int_{0}^{4} y \frac{dx}{dt} dt = \int_{0}^{4} 6t + 16 dt$$

$$= \left[3t^{2} + 16t\right]_{0}^{4}$$

$$= \left[3(4)^{2} + 16(4)\right] - \left[3(0)^{2} + 16(0)\right]$$

$$= (3 \times 16 + 16 \times 4) - 0$$

$$= 48 + 64$$

$$= 112$$

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise D, Question 3

Question:

A curve has parametric equations $x = t^2 - 3t + 1$, $y = 4t^2$. Work out $\int_{-1}^{5} y \frac{dx}{dt} dt$.

Solution:

$$x = t^{2} - 3t + 1, y = 4t^{2}$$

$$\frac{dx}{dt} = 2t - 3$$
So $y \frac{dx}{dt} = 4t^{2} \left(2t - 3 \right) = 8t^{3} - 12t^{2}$

$$\int_{-1}^{5} y \frac{dx}{dt} dt = \int_{-1}^{5} 8t^{3} - 12t^{2} dt$$

$$= \left[2t^{4} - 4t^{3} \right]_{-1}^{5}$$

$$= \left[2(5)^{4} - 4(5)^{3} \right] - \left[2(-1)^{4} - 4(-1)^{3} \right]$$

$$= 750 - 6$$

$$= 744$$

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise D, Question 4

Question:

A curve has parametric equations $x = 3t^2$, $y = \frac{1}{t} + t^3$, t > 0. Work out $\int_{0.5}^{3} y \frac{dx}{dt} dt$.

Solution:

$$x = 3t^{2}, y = \frac{1}{t} + t^{3}$$

$$\frac{dx}{dt} = 6t$$

$$So y \frac{dx}{dt} = \left(\frac{1}{t} + t^{3}\right) \times 6t = \frac{1}{t} \times 6t + t^{3} \times 6t = 6 + 6t^{4}$$

$$\int_{0.5}^{3} y \frac{dx}{dt} dt = \int_{0.5}^{3} 6 + 6t^{4} dt$$

$$= \left[6t + \frac{6}{5}t^{5}\right]_{0.5}^{3}$$

$$= \left[6\left(3\right) + \frac{6}{5}\left(3\right)^{5}\right] - \left[6\left(0.5\right) + \frac{6}{5}\left(0.5\right)$$

$$= 309.6 - 3.0375$$

$$= 306.5625 \quad (or 306 \frac{9}{16})$$

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise D, Question 5

Question:

A curve has parametric equations $x = t^3 - 4t$, $y = t^2 - 1$. Work out $\int_{-2}^{2} y \frac{dx}{dt} dt$.

Solution:

$$x = t^{3} - 4t, y = t^{2} - 1$$

$$\frac{dx}{dt} = 3t^{2} - 4$$
So $y \frac{dx}{dt} = \left(t^{2} - 1\right) \times \left(3t^{2} - 4\right) = 3t^{4} - 4t^{2} - 3t^{2} + 4 = 3t^{4} - 7t^{2} + 4$

$$\int_{-2}^{2} 3t^{4} - 7t^{2} + 4 dt = \left[\frac{3}{5}t^{5} - \frac{7}{3}t^{3} + 4t\right]_{-2}^{2}$$

$$= \left[\frac{3}{5}(2)^{5} - \frac{7}{3}(2)^{3} + 4(2)\right] - \left[\frac{3}{5}(-2)^{5} - \frac{7}{3}(-2)^{3} + (-2)^{3}\right]$$

$$= 8\frac{8}{15} - \left(-8\frac{8}{15}\right)$$

$$= 17\frac{1}{15}$$

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise D, Question 6

Question:

A curve has parametric equations $x = 9t^{\frac{4}{3}}$, $y = t^{-\frac{1}{3}}$, t > 0.

- (a) Show that $y \frac{dx}{dt} = a$, where a is a constant to be found.
- (b) Work out $\int_{3}^{5} y \frac{dx}{dt} dt$.

Solution:

(a)
$$x = 9t^{\frac{4}{3}}, y = t^{-\frac{1}{3}}$$

$$\frac{dx}{dt} = 9 \times \frac{4}{3}t^{\frac{4}{3}} - 1 = 9 \times \frac{4}{3}t^{\frac{1}{3}} = 12t^{\frac{1}{3}}$$
So $y^{\frac{dx}{dt}} = t^{-\frac{1}{3}} \times 12t^{\frac{1}{3}} = 12t^{-\frac{1}{3}} + \frac{1}{3} = 12t^{0} = 12$
So $a = 12$

(b)
$$\int_{3}^{5} y \frac{dx}{dt} dt = \int_{3}^{5} 12 dt = \left[12t \right]_{3}^{5} = 12 \left(5 \right) - 12 \left(3 \right) = 24$$

SolutionbankEdexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise D, Question 7

Question:

A curve has parametric equations $x = \sqrt{t}$, $y = 4\sqrt{t^3}$, t > 0.

- (a) Show that $y \frac{dx}{dt} = pt$, where p is a constant to be found.
- (b) Work out $\int_{1}^{6} y \frac{dx}{dt} dt$.

(a)
$$x = \sqrt{t}, y = 4\sqrt{t^3}$$

 $x = t^{\frac{1}{2}}$
 $\frac{dx}{dt} = \frac{1}{2}t^{\frac{1}{2}} - 1 = \frac{1}{2}t^{-\frac{1}{2}}$
 $y \frac{dx}{dt} = 4\sqrt{t^3} \times \frac{1}{2}t^{-\frac{1}{2}}$
 $= 4t^{\frac{3}{2}} \times \frac{1}{2}t^{-\frac{1}{2}}$
 $= 2t^{\frac{3}{2}} - \frac{1}{2}$
 $= 2t^1$
 $= 2t$
So $p = 2$

(b)
$$\int_{1}^{6} y \frac{dx}{dt} dt = \int_{1}^{6} 2t dt = [t^{2}]_{1}^{6} = (6)^{2} - (1)^{2} = 35$$

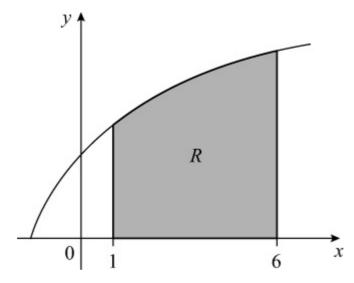
Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise D, Question 8

Question:

The diagram shows a sketch of the curve with parametric equations $x = t^2 - 3$, y = 3t, t > 0. The shaded region R is bounded by the curve, the x-axis and the lines x = 1 and x = 6.

- (a) Find the value of t when
- (i) x = 1
- (ii) x = 6
- (b) Find the area of *R*.



Solution:

(a) Substitute x = 1 into $x = t^2 - 3$

$$t^2 - 3 = 1$$

$$t^2 = 4$$

$$t = 2 \qquad (as \ t > 0)$$

Substitute x = 6 into $x = t^2 - 3$

$$t^2 - 3 = 6$$

$$t^2 = 9$$

$$t = 3$$
 (as $t > 0$)

(b)
$$\int_{1}^{6} y dx = \int_{2}^{3} y \frac{dx}{dt} dt$$

$$\frac{dx}{dt} = 2t$$
So $y \frac{dx}{dt} = 3t \times 2t = 6t^2$

$$\int_{2}^{3} y \frac{dx}{dt} dt = \int_{2}^{3} 6t^2 dt$$

$$= [2t^3]_{2}^{3}$$

$$= 2(3)^{3} - 2(2)^{3}$$

$$= 54 - 16$$

$$= 38$$

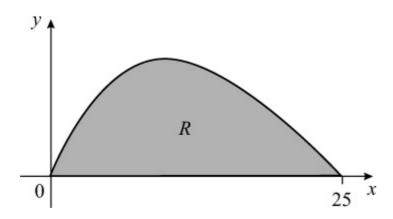
[©] Pearson Education Ltd 2009

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise D, Question 9

Question:

The diagram shows a sketch of the curve with parametric equations $x = 4t^2$, y = t (5 – 2t), $t \ge 0$. The shaded region R is bounded by the curve and the x-axis. Find the area of R.



So $y \frac{dx}{dt} = t \left(5 - 2t \right) \times 8t = 8t^2 \left(5 - 2t \right) = 40t^2 - 16t^3$

Solution:

 $\frac{\mathrm{d}x}{\mathrm{d}t} = 8t$

When
$$x = 0$$

 $4t^2 = 0$
 $t^2 = 0$
 $t = 0$
When $x = 25$
 $4t^2 = 25$
 $t^2 = \frac{25}{4}$
 $t = \sqrt{\frac{25}{4}}$
 $t = \frac{5}{2}$ (as $t \ge 0$)
So $\int_0^{25} y dx = \int_0^{\frac{5}{2}} y \frac{dx}{dt} dt$

$$\int_{0}^{\frac{5}{2}y} \frac{dx}{dt} dt = \int_{0}^{\frac{5}{2}} 40t^{2} - 16t^{3} dt$$

$$= \left[\frac{40}{3}t^{3} - 4t^{4} \right]_{0}^{\frac{5}{2}}$$

$$= \left[\frac{40}{3} \left(\frac{5}{2} \right)^{3} - 4 \left(\frac{5}{2} \right)^{4} \right] - \left[\frac{40}{3} (0)^{3} - 4 (0)^{4} \right]$$

$$= 52 \frac{1}{12} - 0$$

$$= 52 \frac{1}{12}$$

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise D, Question 10

Question:

The region R is bounded by the curve with parametric equations $x = t^3$, $y = \frac{1}{3t^2}$, the x-axis and the lines x = -1 and x = -8.

- (a) Find the value of t when
 - (i) x = -1
 - (ii) x = -8
- (b) Find the area of R.

- (a) (i) Substitute x = -1 into $x = t^3$ $t^3 = -1$ $t = \sqrt[3]{-1}$ t = -1
 - (ii) Substitute x = -8 into $x = t^3$ $t^3 = -8$ $t = \sqrt[3]{-8}$ t = -2
- (b) $R = \int_{-8}^{-1} y dx = \int_{-2}^{-1} y \frac{dx}{dt} dt$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 3t^2$$

So
$$y \frac{dx}{dt} = \frac{1}{3t^2} \times 3t^2 = 1$$

$$\int_{-2}^{-1} y \, \frac{dx}{dt} dt = \int_{-2}^{-1} 1 dt = \left[t \right]_{-2}^{-1} = \left(-1 \right) - \left(-2 \right)$$

$$= -1 + 2 = 1$$

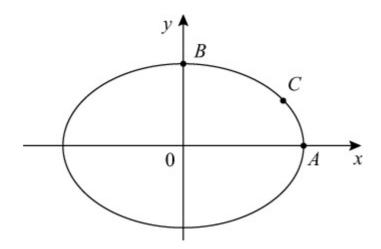
Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise E, Question 1

Question:

The diagram shows a sketch of the curve with parametric equations $x = 4 \cos t$, $y = 3 \sin t$, $0 \le t < 2\pi$.

- (a) Find the coordinates of the points A and B.
- (b) The point C has parameter $t = \frac{\pi}{6}$. Find the exact coordinates of C.
- (c) Find the cartesian equation of the curve.



Solution:

(a) (1) At
$$A$$
, $y = 0 \Rightarrow 3 \sin t = 0 \Rightarrow \sin t = 0$

So
$$t = 0$$
 and $t = \pi$

Substitute
$$t = 0$$
 and $t = \pi$ into $x = 4 \cos t$

$$t = 0 \Rightarrow x = 4 \cos(0) = 4 \times 1 = 4$$

$$t = \pi$$
 \Rightarrow $x = 4 \cos \pi = 4 \times (-1) = -4$

So the coordinates of A are (4, 0).

(2) At
$$B$$
, $x = 0 \Rightarrow 4 \cos t = 0 \Rightarrow \cos t = 0$

So
$$t = \frac{\pi}{2}$$
 and $t = \frac{3\pi}{2}$

Substitute
$$t = \frac{\pi}{2}$$
 and $t = \frac{3\pi}{2}$ into $y = 3 \sin t$

$$t = \frac{\pi}{2} \implies y = 3 \sin\left(\frac{\pi}{2}\right) = 3 \times 1 = 3$$

$$t = \frac{3\pi}{2} \implies y = 3 \sin\left(\frac{3\pi}{2}\right) = 3 \times -1 = -3$$

So the coordinates of B are (0, 3)

(b) Substitute $t = \frac{\pi}{6}$ into $x = 4 \cos t$ and $y = 3 \sin t$ $x = 4 \cos \left(\frac{\pi}{6}\right) = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3}$

$$y = 3 \sin \left(\frac{\pi}{6}\right) = 3 \times \frac{1}{2} = \frac{3}{2}$$

So the coordinates of C are $\left(2\sqrt{3}, \frac{3}{2}\right)$

(c) $x = 4 \cos t$, $y = 3 \sin t$

$$\cos t = \frac{x}{4}$$
 and $\sin t = \frac{y}{3}$

$$As \sin^2 t + \cos^2 t = 1$$

$$\left(\begin{array}{c} \frac{y}{3} \end{array}\right)^2 + \left(\begin{array}{c} \frac{x}{4} \end{array}\right)^2 = 1$$
 or $\left(\begin{array}{c} \frac{x}{4} \end{array}\right)^2 + \left(\begin{array}{c} \frac{y}{3} \end{array}\right)^2 = 1$

Edexcel AS and A Level Modular Mathematics

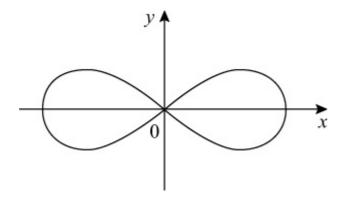
Coordinate geometry in the (x, y) plane Exercise E, Question 2

Question:

The diagram shows a sketch of the curve with parametric equations $x = \cos t$, $y = \frac{1}{2} \sin 2t$.

 $0 \le t < 2\pi$. The curve is symmetrical about both axes.

- (a) Copy the diagram and label the points having parameters $t=0, t=\frac{\pi}{2}, t=\pi$ and $t=\frac{3\pi}{2}$.
- (b) Show that the cartesian equation of the curve is $y^2 = x^2$ (1 x^2).



Solution:

(a) (1) Substitute
$$t = 0$$
 into $x = \cos t$ and $y = \frac{1}{2} \sin 2t$

$$x = \cos 0 = 1$$

$$y = \frac{1}{2} \sin \left(2 \times 0 \right) = \frac{1}{2} \sin 0 = \frac{1}{2} \times 0 = 0$$

So when t = 0, (x, y) = (1, 0)

(2) Substitute
$$t = \frac{\pi}{2}$$
 into $x = \cos t$ and $y = \frac{1}{2} \sin 2t$

$$x = \cos \frac{\pi}{2} = 0$$

$$y = \frac{1}{2} \sin \left(2 \times \frac{\pi}{2} \right) = \frac{1}{2} \sin \pi = \frac{1}{2} \times 0 = 0$$

So when
$$t = \frac{\pi}{2}$$
, $(x, y) = (0, 0)$

(3) Substitute
$$t = \pi$$
 into $x = \cos t$ and $y = \frac{1}{2} \sin 2t$

$$x = \cos \pi = -1$$

$$y = \frac{1}{2} \sin \left(2\pi\right) = \frac{1}{2} \times 0 = 0$$

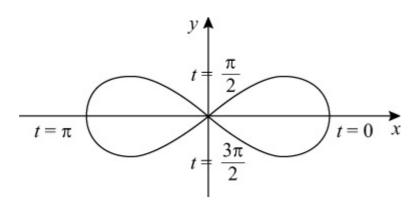
So when $t = \pi$, (x, y) = (-1, 0)

(4) Substitute
$$t = \frac{3\pi}{2}$$
 into $x = \cos t$ and $y = \frac{1}{2} \sin 2t$

$$x = \cos \frac{3\pi}{2} = 0$$

$$y = \frac{1}{2} \sin \left(2 \times \frac{3\pi}{2}\right) = \frac{1}{2} \sin \left(3\pi\right) = \frac{1}{2} \times 0 = 0$$

So when $t = \frac{3\pi}{2}$, (x, y) = (0, 0)



(b)
$$y = \frac{1}{2} \sin 2t = \frac{1}{2} \times 2 \sin t \cos t = \sin t \cos t$$

As
$$x = \cos t$$

$$y = \sin t \times x$$

$$y = x \sin t$$

Now
$$\sin^2 t + \cos^2 t = 1$$

$$So \sin^2 t + x^2 = 1$$

$$\Rightarrow \sin^2 t = 1 - x^2$$

$$\Rightarrow \sin^2 t = 1 - x^2$$

$$\Rightarrow \sin t = \sqrt{1 - x^2}$$

So
$$y = x\sqrt{1 - x^2}$$
 or $y^2 = x^2 (1 - x^2)$

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise E, Question 3

Question:

A curve has parametric equations $x = \sin t$, $y = \cos 2t$, $0 \le t < 2\pi$.

- (a) Find the cartesian equation of the curve. The curve cuts the x-axis at (a, 0) and (b, 0).
- (b) Find the value of a and b.

Solution:

(a)
$$x = \sin t$$
, $y = \cos 2t$
As $\cos 2t = 1 - 2 \sin^2 t$
 $y = 1 - 2x^2$

(b) Substitute
$$y = 0$$
 into $y = 1 - 2x^2$

$$0 = 1 - 2x^2$$

$$2x^2 = 1$$

$$x^2 = \frac{1}{2}$$

$$x = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{1}}{\sqrt{2}} = \pm \frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

So the curve meets the x-axis at $\left(\frac{\sqrt{2}}{2}, 0\right)$ and $\left(-\frac{\sqrt{2}}{2}, 0\right)$

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise E, Question 4

Question:

A curve has parametric equations $x = \frac{1}{1+t}$, $y = \frac{1}{(1+t)(1-t)}$, $t \neq \pm 1$.

Express t in terms of x. Hence show that the cartesian equation of the curve is $y = \frac{x^2}{2x-1}$.

$$(1) x = \frac{1}{1+t}$$

$$x \times \left(1+t\right) = \frac{1}{(1+t)} \times \left(1+t\right)$$
 Multiply each side by $(1+t)$

$$x(1+t) = 1$$
 Simplify

$$\frac{x(1+t)}{x} = \frac{1}{x}$$
 Divide each side by x

$$1 + t = \frac{1}{x}$$
 Simplify

So
$$t = \frac{1}{x} - 1$$

Substitute
$$t = \frac{1}{x} - 1$$
 into $y = \frac{1}{(1+t)(1-t)}$

$$y = \frac{1}{(1 + \frac{1}{x} - 1) [1 - (\frac{1}{x} - 1)]}$$

$$= \frac{1}{\frac{1}{r} \left(1 - \frac{1}{r} + 1\right)}$$

$$= \frac{1}{\frac{1}{x}\left(2 - \frac{1}{x}\right)}$$

$$= \frac{1}{\frac{1}{x} \left(\frac{2x}{x} - \frac{1}{x} \right)}$$

$$= \frac{1}{\frac{1}{x} \left(\frac{2x-1}{x} \right)}$$

$$= \frac{1}{\left(\frac{2x-1}{x^2}\right)}$$

$$= \frac{x^2}{2x-1} \qquad \left(\text{Remember } \frac{1}{\left(\frac{a}{b}\right)} = \frac{b}{a} \right)$$

So the cartesian equation of the curve is $y = \frac{x^2}{2x-1}$.

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise E, Question 5

Question:

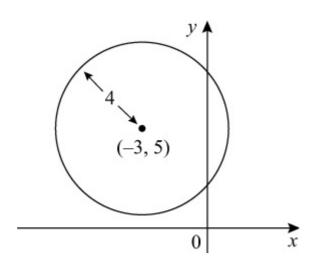
A circle has parametric equations $x = 4 \sin t - 3$, $y = 4 \cos t + 5$.

- (a) Find the cartesian equation of the circle.
- (b) Draw a sketch of the circle.
- (c) Find the exact coordinates of the points of intersection of the circle with the y-axis.

Solution:

(a)
$$x = 4 \sin t - 3$$
, $y = 4 \cos t + 5$
 $4 \sin t = x + 3$
 $\sin t = \frac{x+3}{4}$
and
 $4 \cos t = y - 5$
 $\cos t = \frac{y-5}{4}$
As $\sin^2 t + \cos^2 t = 1$
 $\left(\frac{x+3}{4}\right)^2 + \left(\frac{y-5}{4}\right)^2 = 1$
 $\frac{(x+3)^2}{4^2} + \frac{(y-5)^2}{4^2} = 1$
 $\frac{(x+3)^2}{4^2} \times 4^2 + \frac{(y-5)^2}{4^2} \times 4^2 = 1 \times 4^2$
 $(x+3)^2 + (y-5)^2 = 4^2$ or $(x+3)^2 + (y-5)^2 = 16$

(b) The circle $(x + 3)^2 + (y - 5)^2 = 4^2$ has centre (-3, 5) and radius 4.



(c) Substitute
$$x = 0$$
 into $(x + 3)^2 + (y - 5)^2 = 4^2$
 $(0 + 3)^2 + (y - 5)^2 = 4^2$
 $3^2 + (y - 5)^2 = 4^2$
 $9 + (y - 5)^2 = 16$
 $(y - 5)^2 = 7$
 $y - 5 = \pm \sqrt{7}$
 $y = 5 \pm \sqrt{7}$

So the circle meets the y-axis at $(0, 5 + \sqrt{7})$ and $(0, 5 - \sqrt{7})$.

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise E, Question 6

Question:

Find the cartesian equation of the line with parametric equations $x = \frac{2-3t}{1+t}$, y =

$$\frac{3+2t}{1+t}$$
, $t \neq -1$.

$$x = \frac{2-3t}{1+t}$$

$$x \left(1+t\right) = \frac{2-3t}{(1+t)} \times \left(1+t\right)$$

$$x \left(1+t\right) = 2-3t$$

$$x+xt=2-3t$$

$$x+xt+3t=2$$

$$xt+3t=2-x$$

$$t\left(x+3\right) = 2-x$$

$$t\frac{(x+3)}{(x+3)} = \frac{2-x}{x+3}$$

$$t = \frac{2-x}{x+3}$$

Substitute
$$t = \frac{2-x}{x+3}$$
 into $y = \frac{3+2t}{1+t}$

$$y = \frac{3+2(\frac{2-x}{x+3})}{1+(\frac{2-x}{x+3})}$$

$$= \frac{3+2(\frac{2-x}{x+3})}{1+(\frac{2-x}{x+3})} \times \frac{(x+3)}{(x+3)}$$

$$= \frac{3 \times (x+3) + 2(\frac{2-x}{x+3}) \times (x+3)}{1 \times (x+3) + (\frac{2-x}{x+3}) \times (x+3)}$$

$$= \frac{3(x+3) + 2(2-x)}{(x+3) + (2-x)}$$

$$= \frac{3x + 9 + 4 - 2x}{x + 3 + 2 - x}$$

$$= \frac{x+13}{5}$$
So $y = \frac{x}{5} + \frac{13}{5}$

Edexcel AS and A Level Modular Mathematics

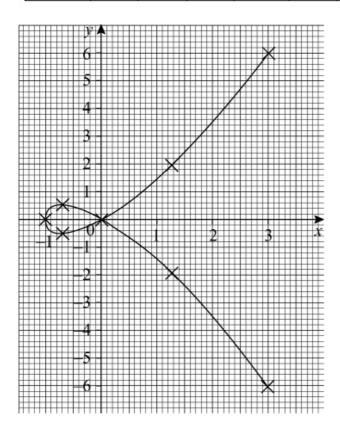
Coordinate geometry in the (x, y) plane Exercise E, Question 7

Question:

A curve has parametric equations $x = t^2 - 1$, $y = t - t^3$, where t is a parameter.

- (a) Draw a graph of the curve for $-2 \le t \le 2$.
- (b) Find the area of the finite region enclosed by the loop of the curve.

t	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
$x = t^2 - 1$	3	1.25	0	-0.75	-1	-0.75	0	1.25	3
$y = t - t^3$	6	1.875	0	-0.375	0	0.375	0	-1.875	-6



(b)
$$A = 2 \int_{-1}^{0} y dx = 2 \int_{0}^{1} y \frac{dx}{dt} dt$$
, When $x = -1$, $t^2 - 1 = -1$, So $t = 0$
When $x = 0$, $t^2 - 1 = 0$, So $t = 1$

$$\frac{dx}{dt} = 2t$$
So $y \frac{dx}{dt} = \left(t - t^3 \right) \times 2t = 2t^2 - 2t^4$
Therefore $A = 2 \int_0^1 2t^2 - 2t^4 dt$

$$= 2 \left[\frac{2}{3}t^3 - \frac{2}{5}t^5 \right]_0^1$$

$$= 2 \left(\left[\frac{2}{3}(1)^3 - \frac{2}{5}(1)^5 \right] - \left[\frac{2}{3}(0)^3 - \frac{2}{5}(0)^5 \right] \right)$$

$$= 2 \left[\left(\frac{2}{3} - \frac{2}{5} \right) - 0 \right]$$

$$= 2 \times \frac{4}{15}$$

$$= \frac{8}{15}$$

So the area of the loop is $\frac{8}{15}$.

[©] Pearson Education Ltd 2009

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise E, Question 8

Question:

A curve has parametric equations $x = t^2 - 2$, y = 2t, where $-2 \le t \le 2$.

- (a) Draw a graph of the curve.
- (b) Indicate on your graph where
 - (i) t = 0
 - (ii) t > 0
 - (iii) t < 0
- (c) Calculate the area of the finite region enclosed by the curve and the y-axis.

Solution:

- t > 0 t > 0 t < 0
- (b) (i) When t = 0, y = 2 (0) = 0.

This is where the curve meets the *x*-axis.

(ii) When t > 0, y > 0.

This is where the curve is above the *x*-axis.

(iii) When t < 0, y < 0.

This is where the curve is below the *x*-axis.

(c)
$$A = 2 \int_{-2}^{0} y dx = 2 \int_{0}^{\sqrt{2}} y \frac{dx}{dt} dt$$
, When $x = -2$, $t^2 - 2 = -2$, so $t = 0$
When $x = 0$, $t^2 - 2 = 0$, so $t = \sqrt{2}$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2t$$

So
$$y \frac{dx}{dt} = 2t \times 2t = 4t^2$$

Therefore $A = 2 \int_0^{\sqrt{2}} 4t^2 dt$
 $= 2 \left[\frac{4}{3}t^3 \right]_0^{\sqrt{2}}$
 $= 2 \left[\frac{4}{3}(\sqrt{2})^3 - \frac{4}{3}(0)^3 \right]$
 $= 2 \times \frac{4}{3}(\sqrt{2})^3$
 $= \frac{8}{3}(\sqrt{2})^3$
 $= \frac{16}{3}\sqrt{2}$, As $(\sqrt{2})^3 = (\sqrt{2} \times \sqrt{2}) \times \sqrt{2} = 2\sqrt{2}$

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise E, Question 9

Question:

Find the area of the finite region bounded by the curve with parametric equations $x = t^3$, $y = \frac{4}{t}$, $t \neq 0$, the x-axis and the lines x = 1 and x = 8.

Solution:

(1) When
$$x = 1$$
, $t^3 = 1$, so $t = \sqrt[3]{1} = 1$
When $x = 8$, $t^3 = 8$, so $t = \sqrt[3]{8} = 2$
(2) $A = \int_{1}^{8} y dx = \int_{1}^{2} y \frac{dx}{dt} dt$

$$(3) \frac{\mathrm{d}x}{\mathrm{d}t} = 3t^2$$

So
$$y \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{4}{t} \times 3t^2 = 12t$$

Therefore
$$A = \int_{1}^{2} 12t dt$$

= $\begin{bmatrix} 6t^2 \end{bmatrix}_{1}^{2}$
= $6(2)^2 - 6(1)^2$
= $24 - 6$
= 18

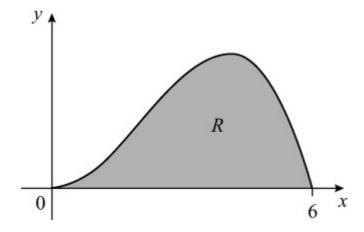
Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise E, Question 10

Question:

The diagram shows a sketch of the curve with parametric equations $x = 3\sqrt{t}$, y = t (4 - t), where $0 \le t \le 4$. The region R is bounded by the curve and the x-axis.

- (a) Show that $y \frac{dx}{dt} = 6t^{\frac{1}{2}} \frac{3}{2}t^{\frac{3}{2}}$.
- (b) Find the area of R.



(a)
$$x = 3\sqrt{t} = 3t^{\frac{1}{2}}$$

$$\frac{dx}{dt} = \frac{1}{2} \times 3t^{\frac{1}{2} - 1} = \frac{3}{2}t^{-\frac{1}{2}}$$

$$y^{\frac{dx}{dt}} = t \left(4 - t\right) \times \frac{3}{2}t^{-\frac{1}{2}}$$

$$= \left(4t - t^2\right) \times \frac{3}{2}t^{-\frac{1}{2}}$$

$$= 4t \times \frac{3}{2}t^{-\frac{1}{2}} - t^2 \times \frac{3}{2}t^{-\frac{1}{2}}$$

$$= 6t^{1 - \frac{1}{2}} - \frac{3}{2}t^{2 - \frac{1}{2}}$$

$$= 6t^{\frac{1}{2}} - \frac{3}{2}t^{\frac{3}{2}}$$

(b)
$$A = \int_{0}^{4} y \frac{dx}{dt} dt$$

$$= \int_{0}^{4} 6t^{\frac{1}{2}} - \frac{3}{2}t^{\frac{3}{2}} dt$$

$$= \left[\frac{6t^{\frac{3}{2}}}{(\frac{3}{2})} - \frac{\frac{3}{2}t^{\frac{5}{2}}}{(\frac{5}{2})} \right]_{0}^{4}$$

$$= \left[4t^{\frac{3}{2}} - \frac{3}{5}t^{\frac{5}{2}} \right]_{0}^{4}$$

$$= \left[4(4)^{\frac{3}{2}} - \frac{3}{5}(4)^{\frac{5}{2}} \right] - \left[4(0)^{\frac{3}{2}} - \frac{3}{5}(0)^{\frac{5}{2}} \right]$$

$$= \left(4 \times 8 - \frac{3}{5} \times 32 \right) - 0$$

$$= 32 - 19^{\frac{1}{5}}$$

$$= 12^{\frac{4}{5}}$$