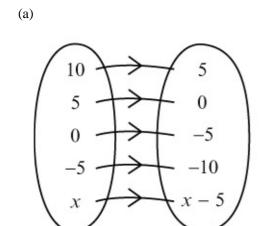
Edexcel AS and A Level Modular Mathematics

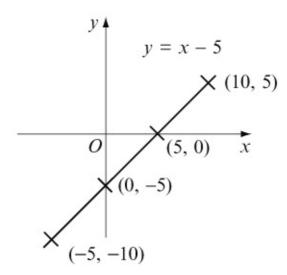
Exercise A, Question 1

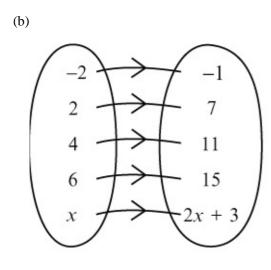
Question:

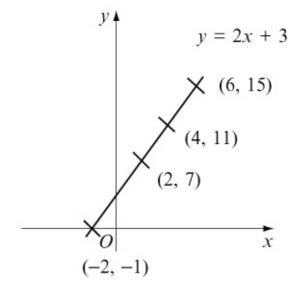
Draw mapping diagrams and graphs for the following operations:

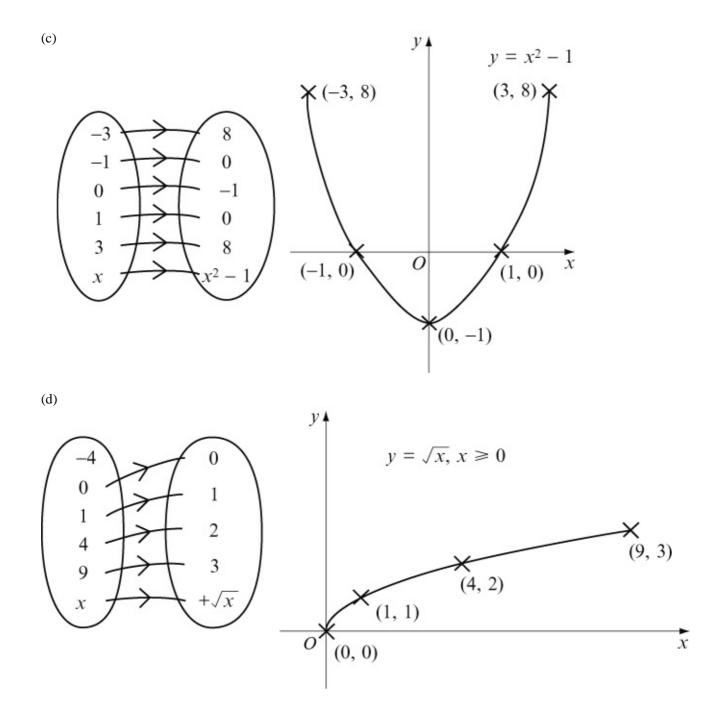
- (a) 'subtract 5' on the set $\{10, 5, 0, -5, x\}$
- (b) 'double and add 3' on the set $\{-2, 2, 4, 6, x\}$
- (c) 'square and then subtract 1' on the set $\{-3, -1, 0, 1, 3, x\}$
- (d) 'the positive square root' on the set $\{-4,0,1,4,9,x\}$











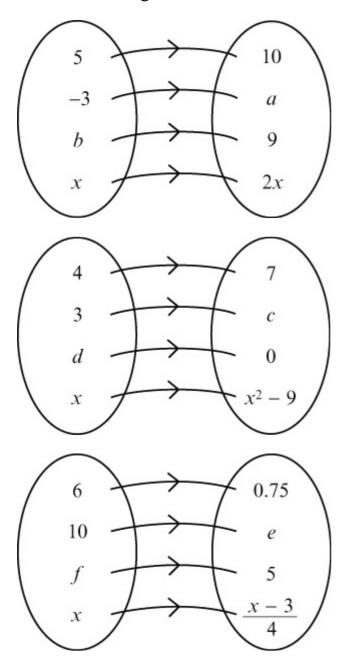
Note: You cannot take the square root of a negative number.

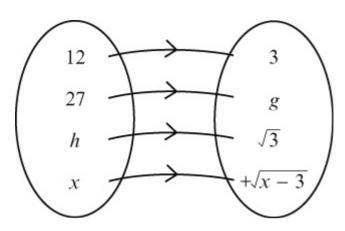
Edexcel AS and A Level Modular Mathematics

Exercise A, Question 2

Question:

Find the missing numbers a to h in the following mapping diagrams:





$$x \rightarrow 2x$$
 is 'doubling'
 $-3 \rightarrow a$ so $a = -6$
 $b \rightarrow 9$ so $b \times 2 = 9$ \Rightarrow $b = 4\frac{1}{2}$

$$x \to x^2 - 9$$
 is 'squaring then subtracting 9'
 $3 \to c$ so $c = 3^2 - 9 = 0$
 $d \to 0$ so $d^2 - 9 = 0$ \Rightarrow $d^2 = 9$ \Rightarrow $d = \pm 3$

$$x \to \frac{x-3}{4}$$
 is 'subtract 3, then divide by 4'
 $10 \to e$ so $e = (10-3) \div 4 = 1.75$
 $f \to 5$ so $\frac{f-3}{4} = 5 \Rightarrow f = 23$

$$x \to +\sqrt{x-3}$$
 is 'subtract 3, then take the positive square root' $27 \to g$ so $g = +\sqrt{27-3} = +\sqrt{24} = +2\sqrt{6}$ $h \to +\sqrt{3}$ so $\sqrt{h-3} = \sqrt{3} \Rightarrow h-3=3 \Rightarrow h=6$

So
$$a = -6$$
, $b = 4\frac{1}{2}$, $c = 0$, $d = \pm 3$, $e = 1.75$, $f = 23$, $g = 2\sqrt{6}$, $h = 6$

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 1

Question:

Find:

(a)
$$f(3)$$
 where $f(x) = 5x + 1$

(b) g (
$$-2$$
) where g (x) = $3x^2 - 2$

(c) h(0) where h :
$$x \rightarrow 3^x$$

(d) j (
$$-2$$
) where j : $x \rightarrow 2^{-x}$

Solution:

(a) f (x) =
$$5x + 1$$

Substitute
$$x = 3 \Rightarrow f(3) = 5 \times 3 + 1 = 16$$

(b) g (x) =
$$3x^2 - 2$$

Substitute
$$x = -2 \implies g(-2) = 3 \times (-2)^2 - 2 = 3 \times 4 - 2 = 10$$

(c) h (x) =
$$3^x$$

Substitute
$$x = 0 \implies h(0) = 3^0 = 1$$

(d)
$$j(x) = 2^{-x}$$

Substitute
$$x = -2 \implies j(-2) = 2^{-(-2)} = 2^2 = 4$$

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 2

Question:

Calculate the value(s) of a, b, c and d given that:

(a) p (a) = 16 where p (x) =
$$3x - 2$$

(b) q (b) = 17 where q (x) =
$$x^2 - 3$$

(c) r (c) = 34 where r (x) = 2 (
$$2^x$$
) + 2

(d) s (d) = 0 where s (x) =
$$x^2 + x - 6$$

(a) p (x) =
$$3x - 2$$

Substitute $x = a$ and p (a) = 16 then $16 = 3a - 2$

$$16 = 3a - 2$$

$$18 = 3a$$

$$a = 6$$

(b) q (
$$x$$
) = $x^2 - 3$

Substitute
$$x = b$$
 and $q(b) = 17$ then

$$17 = b^2 - 3$$

$$20 = b^2$$
_

$$b = \pm \sqrt{20}$$

$$b = \pm 2 \sqrt{5}$$

(c)
$$r(x) = 2 \times 2^x + 2$$

Substitute
$$x = c$$
 and $r(c) = 34$ then

$$34 = 2 \times 2^c + 2$$

$$32 = 2 \times 2^c$$

$$16 = 2^c$$

$$c = 4$$

(d) s (
$$x$$
) = $x^2 + x - 6$

Substitute
$$x = d$$
 and s (d) = 0 then

$$0 = d^2 + d - 6$$

$$0 = (d+3)(d-2)$$

$$d = 2, -3$$

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 3

Question:

For the following functions

- (i) sketch the graph of the function
- (ii) state the range
- (iii) describe if the function is one-to-one or many-to-one.

(a) m (x) =
$$3x + 2$$

(b) n (x) =
$$x^2 + 5$$

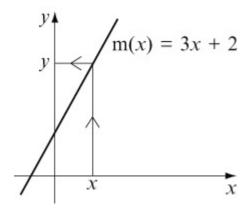
(c)
$$p(x) = \sin(x)$$

(d) q (
$$x$$
) = x^3

Solution:

(a) m (x) =
$$3x + 2$$

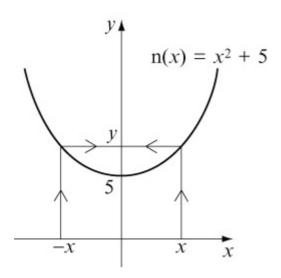
(i)



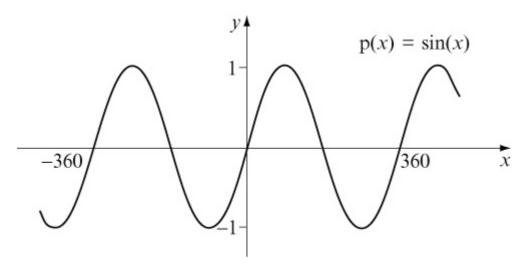
- (ii) Range of m (x) is $-\infty < m(x) < \infty$ or m (x) $\in \mathbb{R}$ (all of the real numbers)
- (iii) Function is one-to-one

(b) n (
$$x$$
) = $x^2 + 5$

(i)



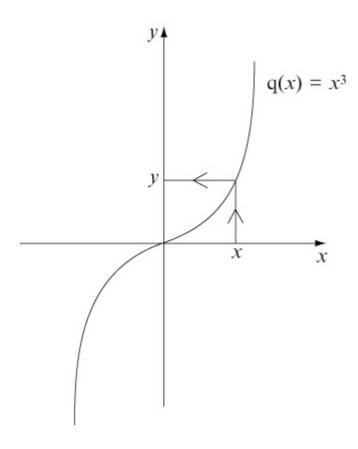
- (ii) Range of n (x) is n (x) \geq 5
- (iii) Function is many-to-one
- (c) p (x) = $\sin (x)$ (i)



- (ii) Range of p (x) is $-1 \le p(x) \le 1$
- (iii) Function is many-to-one

(d) q (
$$x$$
) = x^3

(i)



(ii) Range of q (x) is $-\infty <$ q (x) $<\infty$ or q (x) $\in \mathbb{R}$ (iii) Function is one-to-one

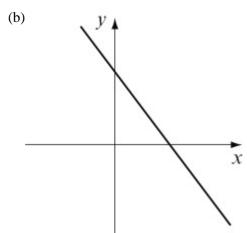
Edexcel AS and A Level Modular Mathematics

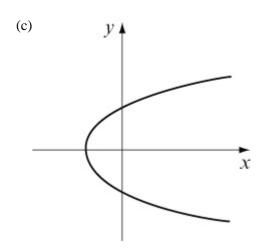
Exercise B, Question 4

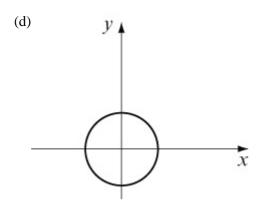
Question:

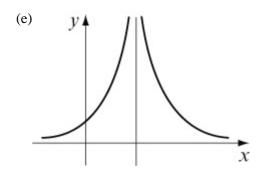
State whether or not the following graphs represent functions. Give reasons for your answers and describe the type of function.

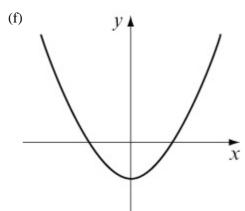


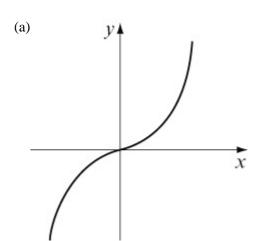




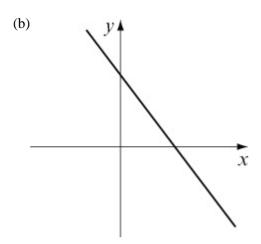




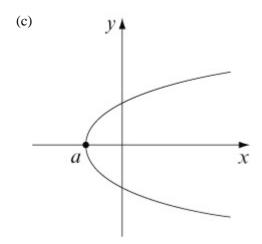




One-to-one function

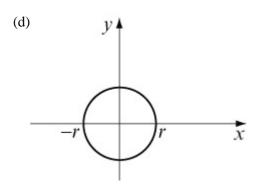


One-to-one function



Not a function.

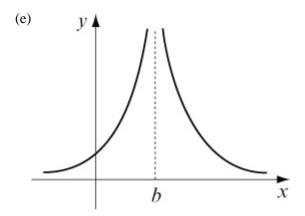
The values left of x = a do not get mapped anywhere. The values right of x = a get mapped to two values of y.



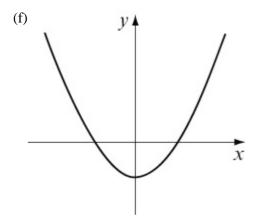
Not a function. Similar to part (c).

Values of x between -r and +r get mapped to two values of y.

Values outside this don't get mapped anywhere.



Not a function. The value x = b doesn't get mapped anywhere.



Many-to-one function. Two values of x get mapped to the same value of y.

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 1

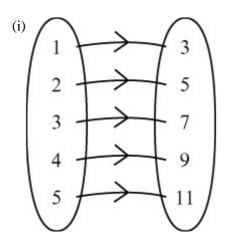
Question:

The functions below are defined for the discrete domains.

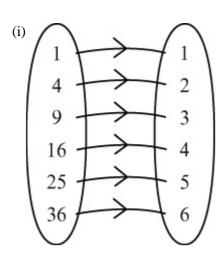
- (i) Represent each function on a mapping diagram, writing down the elements in the range.
- (ii) State if the function is one-to-one or many-to-one.
- (a) f (x) = 2x + 1 for the domain { x = 1, 2, 3, 4, 5 { .
- (b) g (x) = $+\sqrt{x}$ for the domain { x = 1, 4, 9, 16, 25, 36 { .
- (c) h (x) = x^2 for the domain { x = -2, -1, 0, 1, 2 { .
- (d) $j(x) = \frac{2}{x}$ for the domain $\{x = 1, 2, 3, 4, 5\}$.

Solution:

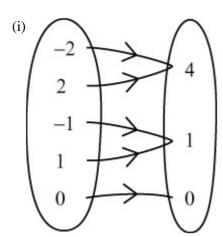
(a) f (x) = 2x + 1 'Double and add 1'



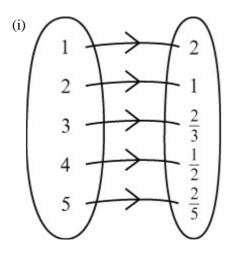
- (ii) One-to-one function
- (b) g (x) = $+\sqrt{x}$ 'The positive square root'



- (ii) One-to-one function
- (c) h (x) = x^2 'Square the numbers in the domain'



- (ii) Many-to-one function
- (d) $j(x) = \frac{2}{x}$ '2 divided by numbers in the domain'



(ii) One-to-one function

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 2

Question:

The functions below are defined for continuous domains.

- (i) Represent each function on a graph.
- (ii) State the range of the function.
- (iii) State if the function is one-to-one or many-to-one.

(a) m (x) =
$$3x + 2$$
 for the domain { $x > 0$ { .

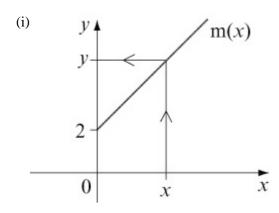
(b) n (x) =
$$x^2 + 5$$
 for the domain { $x \ge 2$ { .

(c) p (x) =
$$2 \sin x$$
 for the domain $\{0 \le x \le 180 \}$.

(d) q (x) =
$$+\sqrt{x+2}$$
 for the domain $\{x \geq -2\}$.

Solution:

(a) m (x) =
$$3x + 2$$
 for $x > 0$



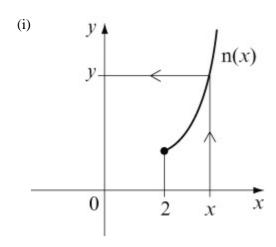
3x + 2 is a linear function of gradient 3 passing through 2 on the y axis.

(ii) x = 0 does not exist in the domain

So range is m
$$(x) > 3 \times 0 + 2 \implies m(x) > 2$$

(iii) m(x) is a one-to-one function

(b) n (x) =
$$x^2 + 5$$
 for $x \ge 2$



 $x^2 + 5$ is a parabola with minimum point at (0, 5).

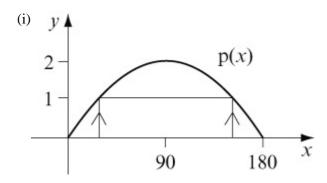
The domain however is only values bigger than or equal to 2.

(ii) x = 2 exists in the domain

So range is $n(x) \ge 2^2 + 5 \Rightarrow n(x) \ge 9$

(iii) n(x) is a one-to-one function

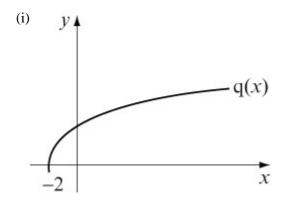
(c) p (x) =
$$2 \sin x$$
 for $0 \le x \le 180$



 $2\sin x$ has the same shape as $\sin x$ except that it has been stretched by a factor of 2 parallel to the y axis.

- (ii) Range of p(x) is $0 \le p(x) \le 2$
- (iii) The function is many-to-one

(d) q (x) =
$$+\sqrt{x+2}$$
 for $x \ge -2$



 $\sqrt{x+2}$ is the \sqrt{x} graph translated 2 units to the left. (ii) The range of q(x) is q (x) ≥ 0 (iii) The function is one-to-one

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 3

Question:

The mappings f(x) and g(x) are defined by

$$f(x) = \begin{cases} 4 - x & x < 4 \\ x^2 + 9x & \ge 4 \end{cases}$$

$$g(x) = \begin{cases} 4 - x & x < 4 \\ x^2 + 9x > 4 \end{cases}$$

$$g(x) = \begin{cases} 4 - x & x < 4 \\ x^2 + 9x > 4 \end{cases}$$

Explain why f(x) is a function and g(x) is not. Sketch the function f(x) and find

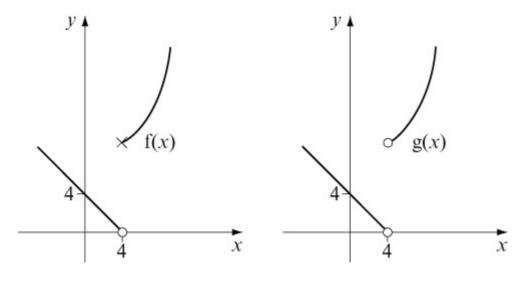
- (a) f(3)
- (b) f(10)
- (c) the value(s) of a such that f(a) = 90.

Solution:

4 - x is a linear function of gradient -1 passing through 4 on the y axis.

$$x^2 + 9$$
 is a \cup -shaped quadratic

At
$$x = 4$$
 $4 - x = 0$ and $x^2 + 9 = 25$

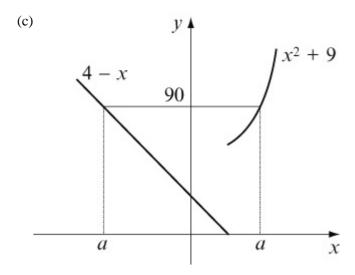


g(x) is not a function because the element 4 of the domain does not get mapped anywhere.

In f(x) it gets mapped to 25.

(a) f (3) =
$$4 - 3 = 1$$
 (Use $4 - x$ as $3 < 4$)

(b) f (10) =
$$10^2 + 9 = 109$$
 (Use $x^2 + 9$ as $10 > 4$)



The negative value of a is where $4 - a = 90 \implies a = -86$

The positive value of a is where

$$a^2 + 9 = 90$$

$$a^2 = 81$$

$$a = \pm 9$$

$$a = 9$$

The values of a are -86 and 9.

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 4

Question:

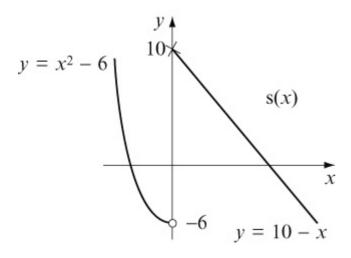
The function s(x) is defined by

$$s(x) = \begin{cases} x^2 - 6 & x < 0 \\ 10 - x & x \ge 0 \end{cases}$$

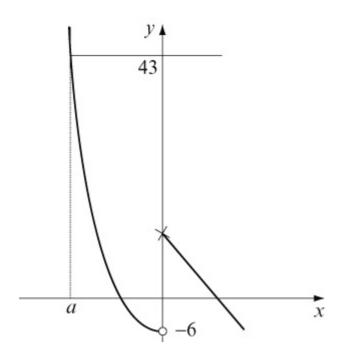
- (a) Sketch s(x).
- (b) Find the value(s) of a such that s (a) = 43.
- (c) Find the values of the domain that get mapped to themselves in the range.

Solution:

(a) $x^2 - 6$ is a \cup -shaped quadratic with a minimum value of (0, -6). 10 - x is a linear function with gradient -1 passing through 10 on the y axis.



(b) There is only one value of a such that s(a) = 43 (see graph).



s (a) = 43

$$a^2 - 6 = 43$$

 $a^2 = 49$
 $a = \pm 7$
Value is negative so $a = -7$

(c) If value gets mapped to itself then s (b) = b

For
$$10 - x$$
 part

$$10 - b = b$$

$$\Rightarrow$$
 10 = 2b

$$\Rightarrow b = 5$$

Check. s (5) = 10 - 5 = 5

For $x^2 - 6$ part

$$b^2 - 6 = b$$

$$\Rightarrow b^2 - b - 6 = 0$$

$$\Rightarrow$$
 $(b-3)(b+2)=0$

$$\Rightarrow$$
 $b = 3, -2$

b must be negative

$$\Rightarrow$$
 $b = -2$

 $s(-2) = (-2)^2 - 6 = 4 - 6 = -2\checkmark$ Values that get mapped to themselves are -2 and 5.

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 5

Question:

The function g(x) is defined by g(x) = cx + d where c and d are constants to be found. Given g(3) = 10 and g(8) = 12 find the values of c and d.

$$g(x) = cx + d$$

 $g(3) = 10 \Rightarrow c \times 3 + d = 10$
 $g(8) = 12 \Rightarrow c \times 8 + d = 12$
 $3c + d = 10$ ①
 $8c + d = 12$ ②
② - ①: $5c = 2$ (÷ 5)
 $\Rightarrow c = 0.4$
Substitute $c = 0.4$ into ①:
 $3 \times 0.4 + d = 10$
 $1.2 + d = 10$
 $d = 8.8$
Hence $g(x) = 0.4x + 8.8$

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 6

Question:

The function f(x) is defined by $f(x) = ax^3 + bx - 5$ where a and b are constants to be found. Given that f(1) = -4 and f(2) = 9, find the values of the constants a and b.

Solution:

f (x) =
$$ax^3 + bx - 5$$

f (1) = $-4 \Rightarrow a \times 1^3 + b \times 1 - 5 = -4$
 $\Rightarrow a + b - 5 = -4$
 $\Rightarrow a + b = 1$ ①
f (2) = $9 \Rightarrow a \times 2^3 + b \times 2 - 5 = 9$
 $\Rightarrow 8a + 2b - 5 = 9$
 $\Rightarrow 8a + 2b = 14$
 $\Rightarrow 4a + b = 7$ ②
② - ①: $3a = 6$
 $\Rightarrow a = 2$
Substitute $a = 2$ in ①:
 $2 + b = 1$

© Pearson Education Ltd 2008

b = -1

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 7

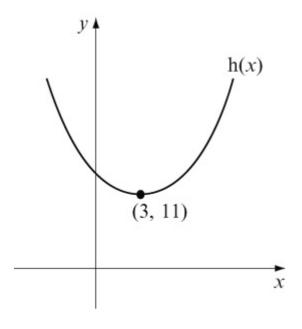
Question:

The function h(x) is defined by $h(x) = x^2 - 6x + 20$ { $x \ge a$ { . Given that h(x) is a one-to-one function find the smallest possible value of the constant a.

Solution:

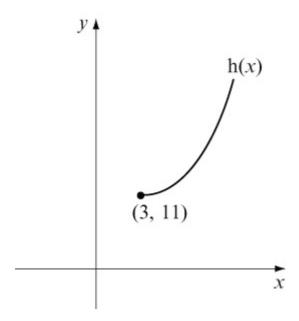
h (x) =
$$x^2 - 6x + 20 = (x - 3)^2 - 9 + 20 = (x - 3)^2 + 11$$

This is a \cup -shaped quadratic with minimum point at (3, 11).



This is a many-to-one function.

For h(x) to be one-to-one, $x \ge 3$



Hence smallest value of a is 3.

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 1

Question:

Given the functions f(x) = 4x + 1, $g(x) = x^2 - 4$ and $h(x) = \frac{1}{x}$, find expressions for the functions:

- (a) fg(x)
- (b) gf(x)
- (c) gh(x)
- (d) fh(x)
- (e) $f^2(x)$

Solution:

(a) fg (x) = f (
$$x^2 - 4$$
) = 4 ($x^2 - 4$) + 1 = $4x^2 - 15$

(b) gf (x) = g (4x + 1) = (4x + 1)
$$^2 - 4 = 16x^2 + 8x - 3$$

(c) gh (x) = g
$$\left(\frac{1}{x}\right)$$
 = $\left(\frac{1}{x}\right)^2 - 4 = \frac{1}{x^2} - 4$

(d) fh (x) = f
$$(\frac{1}{x})$$
 = 4 × $(\frac{1}{x})$ + 1 = $\frac{4}{x}$ + 1

(e)
$$f^2(x) = ff(x) = f(4x+1) = 4(4x+1) + 1 = 16x + 5$$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 2

Question:

For the following functions f(x) and g(x), find the composite functions fg(x) and gf(x). In each case find a suitable domain and the corresponding range when

(a) f (x) =
$$x - 1$$
, g (x) = x^2

(b) f (x) =
$$x - 3$$
, g (x) = $+ \sqrt{x}$

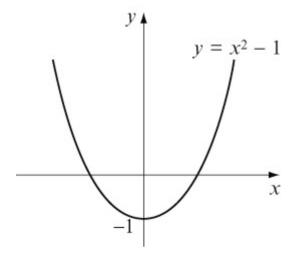
(c) f (x) =
$$2^x$$
, g (x) = $x + 3$

Solution:

(a)
$$f(x) = x - 1$$
, $g(x) = x^2$
 $fg(x) = f(x^2) = x^2 - 1$

Domain $x \in \mathbb{R}$

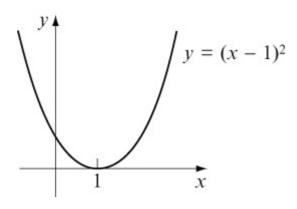
Range fg $(x) \ge -1$



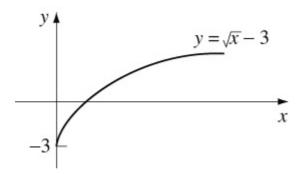
$$gf(x) = g(x-1) = (x-1)^2$$

Domain $x \in \mathbb{R}$

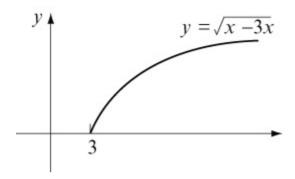
Range gf $(x) \ge 0$



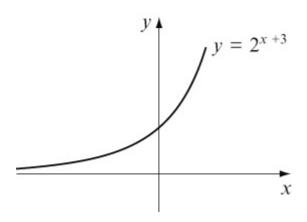
(b)
$$f(x) = x - 3$$
, $g(x) = + \sqrt{x}$
 $fg(x) = f(+ \sqrt{x}) = \sqrt{x - 3}$
Domain $x \ge 0$
(It will not be defined for negative numbers)
Range $fg(x) \ge -3$



gf
$$(x)$$
 = g $(x-3)$ = $\sqrt{x-3}$
Domain $x \ge 3$
Range gf $(x) \ge 0$



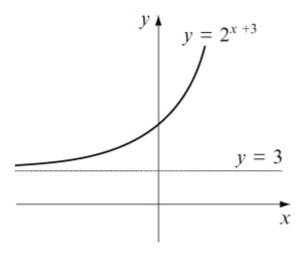
(c)
$$f(x) = 2^x$$
, $g(x) = x + 3$
 $fg(x) = f(x + 3) = 2^{x + 3}$
Domain $x \in \mathbb{R}$
Range $fg(x) > 0$



gf
$$(x) = g(2^x) = 2^x + 3$$

Domain $x \in \mathbb{R}$

Range gf (x) > 3



© Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 3

Question:

If f (x) = 3x - 2 and g (x) = x^2 , find the number(s) a such that fg (a) = gf (a).

f (x) =
$$3x - 2$$
, g (x) = x^2
fg (x) = f (x^2) = $3x^2 - 2$
gf (x) = g ($3x - 2$) = ($3x - 2$) ²
If fg (a) = gf (a)
 $3a^2 - 2 = (3a - 2)^2$
 $3a^2 - 2 = 9a^2 - 12a + 4$
 $0 = 6a^2 - 12a + 6$
 $0 = a^2 - 2a + 1$
 $0 = (a - 1)^2$
Hence $a = 1$

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 4

Question:

Given that s (x) = $\frac{1}{x-2}$ and t (x) = 3x + 4 find the number m such that ts (m) = 16.

Solution:

$$s(x) = \frac{1}{x-2}, t(x) = 3x + 4$$

$$ts(x) = t\left(\frac{1}{x-2}\right) = 3 \times \left(\frac{1}{x-2}\right) + 4 = \frac{3}{x-2} + 4$$
If ts $(m) = 16$

$$\frac{3}{m-2} + 4 = 16 \quad (-4)$$

$$\frac{3}{m-2} = 12 \quad [\times (m-2)]$$

$$3 = 12 (m-2) \quad (\div 12)$$

$$\frac{3}{12} = m - 2$$

$$0.25 = m - 2$$

$$m = 2.25$$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 5

Question:

The functions l(x), m(x), n(x) and p(x) are defined by l(x) = 2x + 1, $m(x) = x^2 - 1$, $n(x) = \frac{1}{x+5}$ and $p(x) = x^3$. Find in terms of l, m, n and p the functions:

- (a) 4x + 3
- (b) $4x^2 + 4x$
- (c) $\frac{1}{x^2 + 4}$
- (d) $\frac{2}{x+5} + 1$
- (e) $(x^2 1)^3$
- (f) $2x^2 1$
- (g) x^{27}

(a)
$$4x + 3 = 2(2x + 1) + 1 = 21(x) + 1 = 11(x)$$
 [or $1^2(x)$]

(b)
$$4x^2 + 4x = (2x + 1)^2 - 1 = [1(x)]^2 - 1 = ml(x)$$

(c)
$$\frac{1}{x^2 + 4} = \frac{1}{(x^2 - 1) + 5} = \frac{1}{m(x) + 5} = nm(x)$$

(d)
$$\frac{2}{x+5} + 1 = 2 \times \frac{1}{x+5} + 1 = 2 \text{ n (} x \text{)} + 1 = \ln (x \text{)}$$

(e)
$$(x^2 - 1)^3 = [m(x)]^3 = pm(x)$$

(f)
$$2x^2 - 1 = 2(x^2 - 1) + 1 = 2 m(x) + 1 = lm(x)$$

$$(g)x^{27} = [(x^3)^3]^3 = {[p(x)]^3 {3 = [pp(x)]^3 = ppp(x)}$$

= $p^3(x)$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 6

Question:

If m (x) =
$$2x + 3$$
 and n (x) = $\frac{x-3}{2}$, prove that mn (x) = x.

Solution:

$$m(x) = 2x + 3, n(x) = \frac{x-3}{2}$$

$$mn(x) = m\left(\frac{x-3}{2}\right) = 2\left(\frac{x-3}{2}\right) + 3 = x - 3 + 3 = x$$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 7

Question:

If s (x) =
$$\frac{3}{x+1}$$
 and t (x) = $\frac{3-x}{x}$, prove that st (x) = x.

Solution:

$$s(x) = \frac{3}{x+1}, t(x) = \frac{3-x}{x}$$

$$st(x) = s\left(\frac{3-x}{x}\right)$$

$$= \frac{3}{\frac{3-x}{x}+1} \times x$$

$$= \frac{3x}{3-x+x}$$

$$= \frac{\cancel{5}x}{\cancel{5}}$$

$$= x$$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 8

Question:

If f (x) =
$$\frac{1}{x+1}$$
, prove that f² (x) = $\frac{x+1}{x+2}$. Hence find an expression for f³ (x).

Solution:

$$f(x) = \frac{1}{x+1}$$

$$ff(x) = f\left(\frac{1}{x+1}\right)$$

$$= \frac{1}{\frac{1}{x+1}+1} \times (x+1)$$

$$= \frac{x+1}{1+x+1}$$

$$= \frac{x+1}{x+2}$$

$$f^{3}(x) = f[f^{2}(x)] = f\left(\frac{x+1}{x+2}\right)$$

$$= \frac{1}{\frac{x+1}{x+2}+1} \times (x+2)$$

$$= \frac{x+2}{x+1+x+2}$$

$$= \frac{x+2}{2x+3}$$

Edexcel AS and A Level Modular Mathematics

Exercise E, Question 1

Question:

For the following functions f(x), sketch the graphs of f(x) and $f^{-1}(x)$ on the same set of axes. Determine also the equation of $f^{-1}(x)$.

(a) f (x) =
$$2x + 3$$
 { $x \in \mathbb{R}$ {

(b)
$$f(x) = \frac{x}{2} \left\{ x \in \mathbb{R} \right\}$$

(c)
$$f(x) = \frac{1}{x} \left\{ x \in \mathbb{R}, x \neq 0 \right\}$$

(d) f (x) =
$$4 - x$$
 { $x \in \mathbb{R}$ {

(e) f (x) =
$$x^2 + 2$$
 { $x \in \mathbb{R}$, $x \ge 0$ {

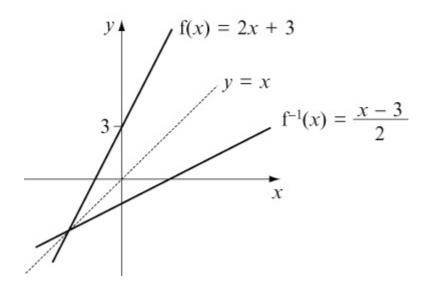
(f)
$$f(x) = x^3 \{ x \in \mathbb{R} \}$$

Solution:

(a) If
$$y = 2x + 3$$

 $y - 3 = 2x$
 $\frac{y - 3}{2} = x$

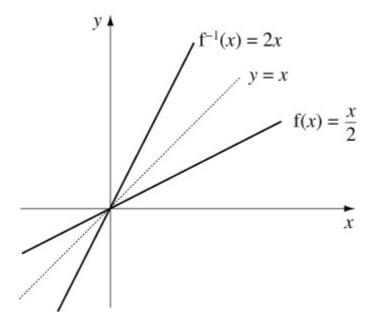
Hence
$$f^{-1}(x) = \frac{x-3}{2}$$



(b) If
$$y = \frac{x}{2}$$

$$2y = x$$

Hence $f^{-1}(x) = 2x$



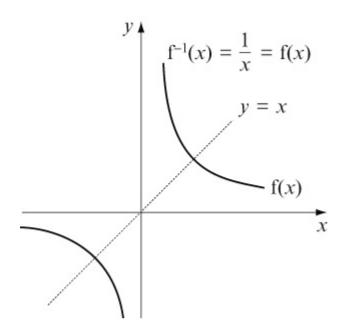
(c) If
$$y = \frac{1}{x}$$

$$yx = 1$$

$$x = \frac{1}{y}$$

Hence
$$f^{-1}(x) = \frac{1}{x}$$

Note that the inverse to the function is identical to the function.

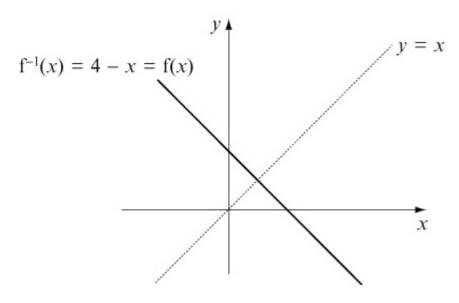


(d) If
$$y = 4 - x$$

 $x + y = 4$
 $x = 4 - y$

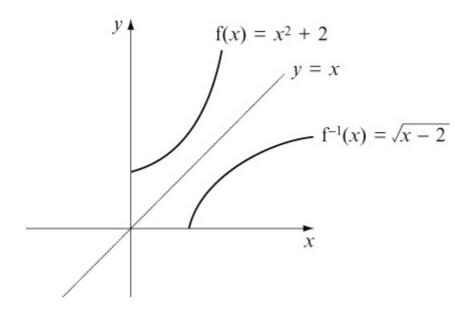
Hence
$$f^{-1}(x) = 4 - x$$

Hence $f^{-1}(x) = 4 - x$ Note that the inverse to the function is identical to the function.



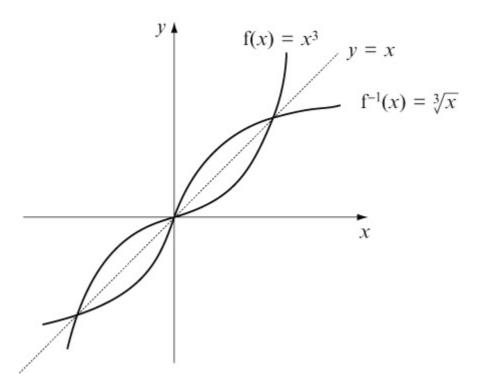
(e) If
$$y = x^2 + 2$$

 $y - 2 = x^2$
 $\sqrt{y - 2} = x$
Hence $f^{-1}(x) = \sqrt{x - 2}$



(f) If
$$y = x^3$$

$$\sqrt[3]{y} = x$$
Hence $f^{-1}(x) = \sqrt[3]{x}$



© Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise E, Question 2

Question:

Determine which of the functions in Question 1 are self inverses. (That is to say the function and its inverse are identical.)

Solution:

Look back at Question 1.

$$1(c) f(x) = \frac{1}{x} and$$

$$1(d) f(x) = 4 - x$$

are both identical to their inverses.

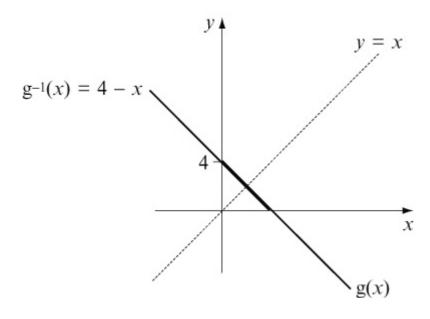
Edexcel AS and A Level Modular Mathematics

Exercise E, Question 3

Question:

Explain why the function g (x) = 4 - x { $x \in \mathbb{R}$, x > 0 { is not identical to its inverse.

Solution:



g (x) =
$$4 - x$$

has domain $x > 0$
and range g (x) < 4
Hence $g^{-1}(x) = 4 - x$
has domain $x < 4$
and range $g^{-1}(x) > 0$

Although g(x) and $g^{-1}(x)$ have identical equations they act on different numbers and so are not identical. See graph.

Edexcel AS and A Level Modular Mathematics

Exercise E, Question 4

Question:

For the following functions g(x), sketch the graphs of g(x) and $g^{-1}(x)$ on the same set of axes. Determine the equation of $g^{-1}(x)$, taking care with its domain.

(a) g (x) =
$$\frac{1}{x}$$
 $\left\{ x \in \mathbb{R}, x \geq 3 \right\}$

(b) g (x) =
$$2x - 1$$
 { $x \in \mathbb{R}$, $x \ge 0$ {

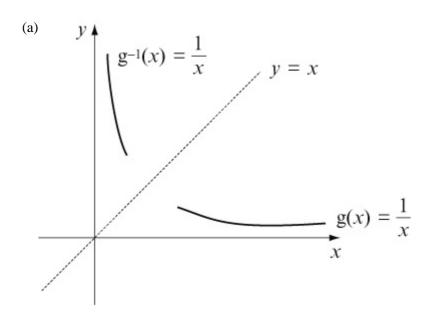
(c) g (x) =
$$\frac{3}{x-2}$$
 { $x \in \mathbb{R}, x > 2$ }

(d) g (x) =
$$\sqrt{x-3}$$
 { $x \in \mathbb{R}, x \ge 7$ {

(e) g (x) =
$$x^2 + 2$$
 { $x \in \mathbb{R}$, $x > 4$ {

(f) g (x) =
$$x^3 - 8$$
 { $x \in \mathbb{R}$, $x \le 2$ {

Solution:

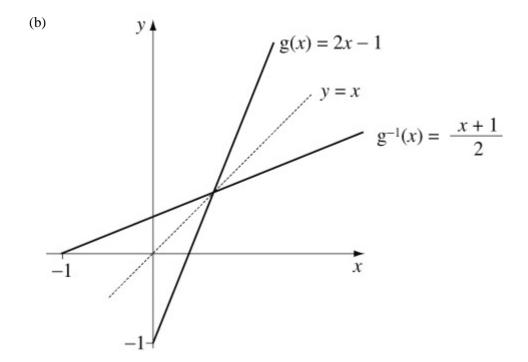


$$g(x) = \frac{1}{x} \left\{ x \in \mathbb{R}, x \geq 3 \right\}$$

has range g (x) $\in \mathbb{R}$, $0 < g(x) \le \frac{1}{3}$

Changing the subject of the formula gives

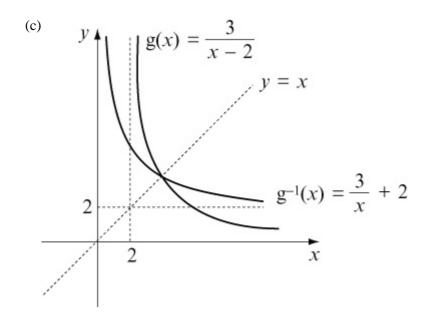
$$g^{-1}(x) = \frac{1}{x} \left\{ x \in \mathbb{R}, 0 < x \le \frac{1}{3} \right\}$$



$$g(x) = 2x - 1 \quad \{ x \in \mathbb{R}, x \ge 0 \}$$

has range $g(x) \in \mathbb{R}, g(x) \ge -1$
Changing the subject of the formula gives

$$g^{-1}(x) = \frac{x+1}{2} \left\{ x \in \mathbb{R}, x \geq -1 \right\}$$



$$g(x) = \frac{3}{x-2} \left\{ x \in \mathbb{R}, x > 2 \right\}$$

has range $g(x) \in \mathbb{R}, g(x) > 0$

Changing the subject of the formula gives

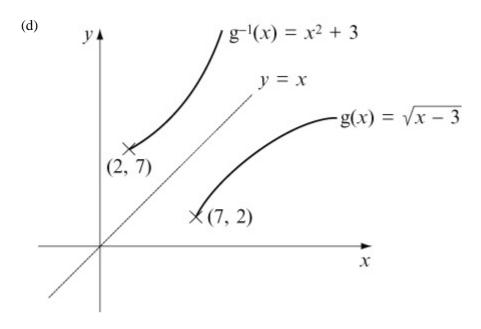
$$y = \frac{3}{x-2}$$

$$y(x-2) = 3$$

$$x-2 = \frac{3}{y}$$

$$x = \frac{3}{y} + 2 \qquad \left(\text{ or } \frac{3+2y}{y}\right)$$
Hence $g^{-1}(x) = \frac{3}{x} + 2 \qquad \left(\text{ or } \frac{3+2x}{x}\right)$

$$\left\{x \in \mathbb{R}, x > 0\right\}$$



$$g(x) = \sqrt{x-3} \{x \in \mathbb{R}, x \geq 7 \}$$

has range $g(x) \in \mathbb{R}, g(x) \ge 2$

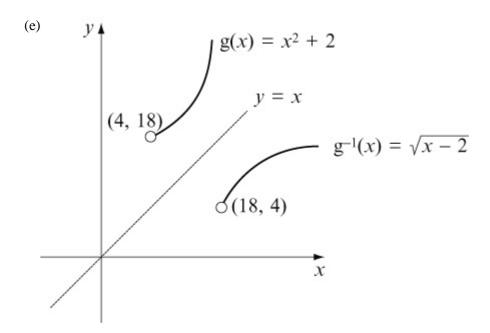
Changing the subject of the formula gives

$$y = \sqrt{x-3}$$

$$y^2 = x - 3$$

$$x = y^2 + 3$$

Hence $g^{-1}(x) = x^2 + 3$ with domain $x \in \mathbb{R}, x \ge 2$

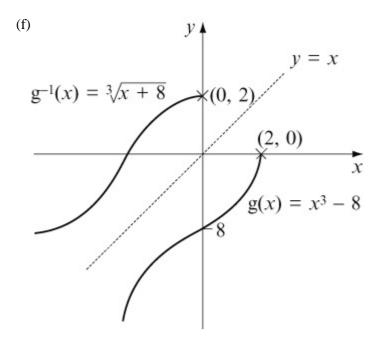


$$g(x) = x^2 + 2 \{ x \in \mathbb{R}, x > 4 \}$$

has range g (x) $\in \mathbb{R}$, g (x) > 18

Changing the subject of the formula gives

$$g^{-1}(x) = \sqrt{x-2}$$
 with domain $x \in \mathbb{R}$, $x > 18$



$$g(x) = x^3 - 8 \quad \{ x \in \mathbb{R}, x \le 2 \}$$
has range
$$g(x) \in \mathbb{R}, g(x) \le 0$$

Changing the subject of the formula gives

$$y = x^3 - 8$$

$$y + 8 = x^3$$

$$\sqrt[3]{y + 8} = x$$

Hence $g^{-1}(x) = \sqrt[3]{x+8}$ with domain $x \in \mathbb{R}, x \le 0$

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

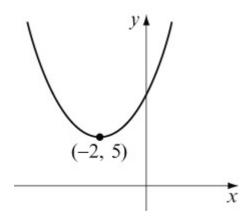
Exercise E, Question 5

Question:

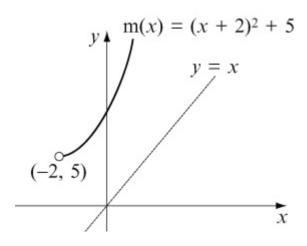
The function m(x) is defined by m (x) = $x^2 + 4x + 9$ { $x \in \mathbb{R}$, x > a { for some constant a. If m⁻¹ (x) exists, state the least value of a and hence determine the equation of m⁻¹ (x). State its domain.

Solution:

m (x) =
$$x^2 + 4x + 9$$
 { $x \in \mathbb{R}$, $x > a$ { .
Let $y = x^2 + 4x + 9$
 $y = (x + 2)^2 - 4 + 9$
 $y = (x + 2)^2 + 5$
This has a minimum value of $(-2, 5)$.



For m(x) to have an inverse it must be one-to-one. Hence the least value of a is -2.



m(x) would have a range of $m(x) \in \mathbb{R}$, m(x) > 5Changing the subject of the formula gives

$$y = (x + 2)^{2} + 5$$

$$y - 5 = (x + 2)^{2}$$

$$\sqrt{y - 5} = x + 2$$

$$y - 5 - 2 = x$$

Hence m⁻¹ (x) = $\sqrt{x-5}$ – 2 with domain $x \in \mathbb{R}, x > 5$

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise E, Question 6

Question:

Determine $t^{-1}(x)$ if the function t(x) is defined by $t(x) = x^2 - 6x + 5$ $\{x \in \mathbb{R}, x \ge 5\}$.

Solution:

t (x) =
$$x^2 - 6x + 5$$
 { $x \in \mathbb{R}$, $x \ge 5$ {
Let $y = x^2 - 6x + 5$ (complete the square)
 $y = (x - 3)^2 - 9 + 5$
 $y = (x - 3)^2 - 4$

This has a minimum point at (3, -4).

Note. Since $x \ge 5$ is the domain, t(x) is a one-to-one function.

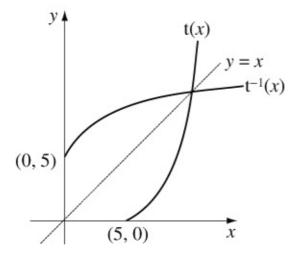
Change the subject of the formula to find $t^{-1}(x)$:

$$y = (x-3)^{2} - 4$$

$$y + 4 = (x-3)^{2}$$

$$y + 4 = x - 3$$

$$y + 4 + 3 = x$$



t (x) =
$$x^2 - 6x + 5$$
 { $x \in \mathbb{R}$, $x \ge 5$ {
has range t (x) $\in \mathbb{R}$, t (x) ≥ 0
So t⁻¹(x) = $\sqrt{x+4} + 3$ and has domain $x \in \mathbb{R}$, $x \ge 0$

Edexcel AS and A Level Modular Mathematics

Exercise E, Question 7

Question:

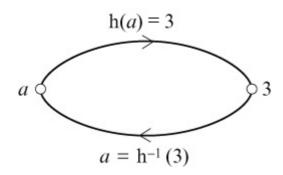
The function h(x) is defined by h (x) = $\frac{2x+1}{x-2}$ $\left\{ x \in \mathbb{R}, x \neq 2 \right\}$.

- (a) What happens to the function as x approaches 2?
- (b) Find $h^{-1}(3)$.
- (c) Find $h^{-1}(x)$, stating clearly its domain.
- (d) Find the elements of the domain that get mapped to themselves by the function.

Solution:

(a) As
$$x \to 2$$
 h (x) $\to \frac{5}{0}$ and hence h (x) $\to \infty$

(b) To find h^{-1} (3) we can find what element of the domain gets mapped to 3.



So h (a) = 3

$$\frac{2a+1}{a-2} = 3$$

 $2a+1=3a-6$
 $7=a$
So h⁻¹ (3) = 7

(c) Let
$$y = \frac{2x+1}{x-2}$$
 and find x as a function of y.

$$y (x-2) = 2x + 1$$

 $yx - 2y = 2x + 1$
 $yx - 2x = 2y + 1$
 $x (y-2) = 2y + 1$
 $x = \frac{2y+1}{y-2}$

So h⁻¹ (x) =
$$\frac{2x+1}{x-2}$$
 { $x \in \mathbb{R}, x \neq 2$ }

Hence the inverse function has exactly the same equation as the function. **But** the elements don't get mapped to themselves, see part (b).

(d) For elements to get mapped to themselves

h (b) = b

$$\frac{2b+1}{b-2} = b$$

$$2b+1 = b (b-2)$$

$$2b+1 = b^2 - 2b$$

$$0 = b^2 - 4b - 1$$

$$b = \frac{4 \pm \sqrt{16+4}}{2} = \frac{4 \pm \sqrt{20}}{2} = \frac{4 \pm 2\sqrt{5}}{2} = 2 \pm \sqrt{5}$$

The elements $2 + \sqrt{5}$ and $2 - \sqrt{5}$ get mapped to themselves by the function.

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise E, Question 8

Question:

The function f (x) is defined by f (x) $= 2x^2 - 3$ { $x \in \mathbb{R}$, x < 0 { . Determine

- (a) $f^{-1}(x)$ clearly stating its domain
- (b) the values of a for which f (a) = $f^{-1}(a)$.

Solution:

(a) Let
$$y = 2x^2 - 3$$

 $y + 3 = 2x^2$
 $\frac{y+3}{2} = x^2$
 $\sqrt{\frac{y+3}{2}} = x$

The domain of $f^{-1}(x)$ is the range of f(x).

$$f(x) = 2x^2 - 3 \{ x \in \mathbb{R}, x < 0 \}$$

has range f (x) > -3

Hence $f^{-1}(x)$ <u>must</u> be the **negative** square root

$$f^{-1}(x) = -\sqrt{\frac{x+3}{2}}$$
 has domain $x \in \mathbb{R}, x > -3$

$$f(x) = 2x^{2} - 3 \qquad y = x$$

$$-3 \qquad \qquad x$$

$$-3 \qquad \qquad f^{-1}(x) = -\sqrt{\frac{x+3}{2}}$$

(b) If $f(a) = f^{-1}(a)$ then a is negative (see graph). Solve f(a) = a

$$2a^{2} - 3 = a$$

$$2a^{2} - a - 3 = 0$$

$$(2a - 3) (a + 1) = 0$$

$$a = \frac{3}{2}, -1$$

Therefore a = -1

[©] Pearson Education Ltd 2008

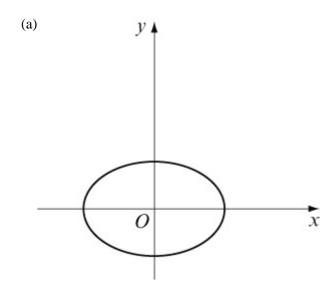
SolutionbankEdexcel AS and A Level Modular Mathematics

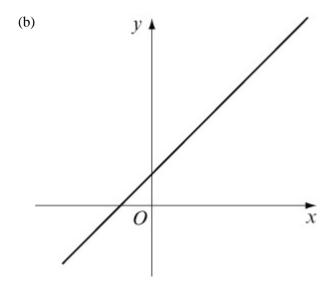
Exercise F, Question 1

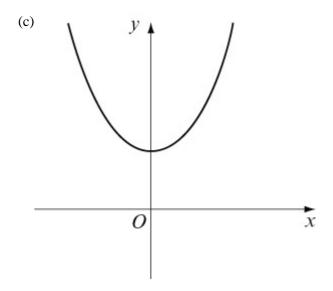
Question:

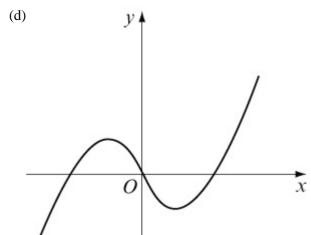
Categorise the following as

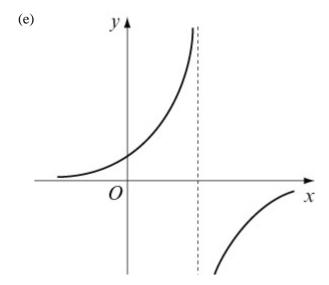
- (i) not a function
- (ii) a one-to-one function
- (iii) a many-to-one function.

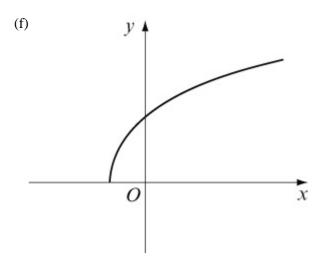






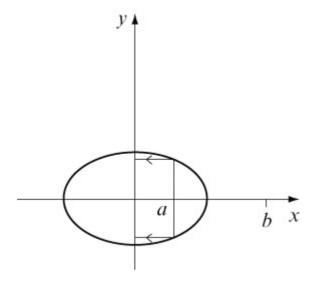






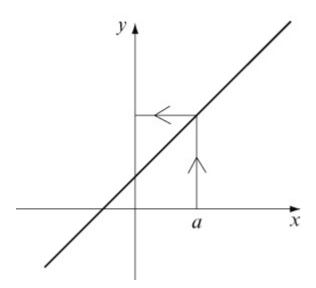
Solution:

(a) not a function

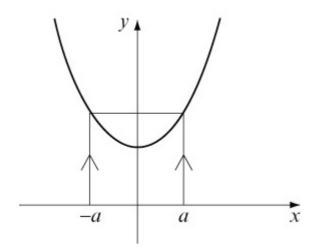


x value a gets mapped to two values of y.x value b gets mapped to no values

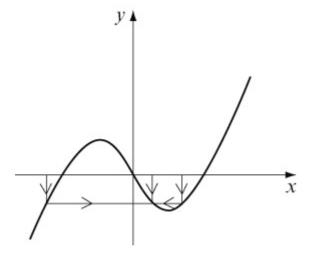
(b) one-to-one function



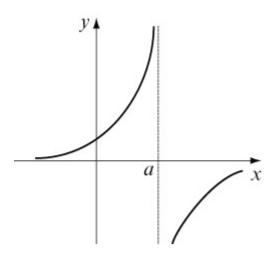
(c) many-to-one function



(d) many-to-one function

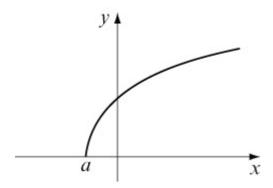


(e) not a function



x value a doesn't get mapped to any value of y. It could be redefined as a function if the domain is said to exclude point a.

(f) not a function



x values less than a don't get mapped anywhere. Again we could define the domain to be $x \ge a$ and then it would be a function.

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 2

Question:

The following functions f(x), g(x) and h(x) are defined by

$$f(x) = 4(x-2) \{x \in \mathbb{R}, x \geq 0\}$$

$$g(x) = x^3 + 1 \qquad \{ x \in \mathbb{R} \{$$

$$h(x) = 3^x \qquad \{ x \in \mathbb{R} \{$$

- (a) Find f(7), g(3) and h(-2).
- (b) Find the range of f(x) and the range of g(x).
- (c) Find $g^{-1}(x)$.
- (d) Find the composite function fg(x).
- (e) Solve gh (a) = 244.

Solution:

(a)
$$f(7) = 4(7-2) = 4 \times 5 = 20$$

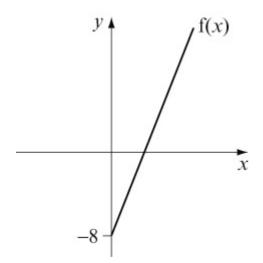
$$g(3) = 3^3 + 1 = 27 + 1 = 28$$

h (-2) =
$$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$$

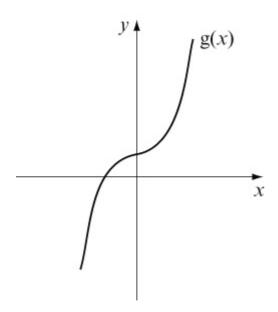
(b) f (x) = 4 (x - 2) =
$$4x - 8$$

This is a straight line with gradient 4 and intercept -8.

The domain tells us that $x \geq 0$.



The range of f(x) is $f(x) \in \mathbb{R}$, $f(x) \ge -8$ $g(x) = x^3 + 1$



The range of g(x) is $g(x) \in \mathbb{R}$

(c) Let $y = x^3 + 1$ (change the subject of the formula)

$$y - 1 = x^3$$

$$\sqrt[3]{y - 1} = x$$

$$3\sqrt{y-1}=x$$

Hence $g^{-1}(x) = 3\sqrt{x-1}$ { $x \in \mathbb{R}$ {

(d) fg (x) = f (
$$x^3 + 1$$
) = 4 ($x^3 + 1 - 2$) = 4 ($x^3 - 1$)

(e) Find gh(x) first.

gh
$$(x)$$
 = g (3^x) = $(3^x)^3 + 1 = 3^{3x} + 1$

If gh (a) = 244

$$3^{3a} + 1 = 244$$

$$3^{3a} = 243$$

$$3^{3a}=3^5$$

$$3a = 5$$

$$a = \frac{5}{3}$$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 3

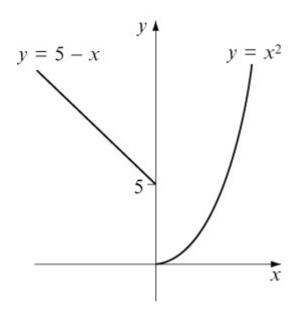
Question:

The function n(x) is defined by

$$\mathbf{n}(x) = \begin{cases} 5 - x & x \leq 0 \\ x^2 & x > 0 \end{cases}$$

- (a) Find n (-3) and n(3).
- (b) Find the value(s) of a such that n(a) = 50.

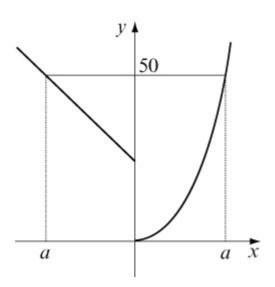
Solution:



y = 5 - x is a straight line with gradient -1 passing through 5 on the y axis. $y = x^2$ is a \cup -shaped quadratic passing through (0, 0).

(a) n (
$$-3$$
) = 5 - (-3) = 5 + 3 = 8
n (3) = $3^2 = 9$

(b) There are two values of a.



The negative value of a is where

$$5 - a = 50$$

$$a = 5 - 50$$

$$a = -45$$

The positive value of a is where

$$a^2 = 50$$

$$a = \sqrt{50}$$

$$a = \sqrt{50}$$

$$a = 5 \sqrt{2}$$

The values of a such that n (a) = 50 are -45 and $+5\sqrt{2}$.

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 4

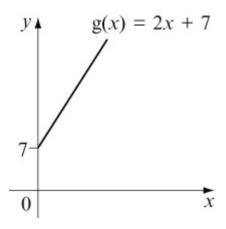
Question:

The function g(x) is defined as g(x) = 2x + 7 { $x \in \mathbb{R}$, $x \ge 0$ { .

- (a) Sketch g(x) and find the range.
- (b) Determine $g^{-1}(x)$, stating its domain.
- (c) Sketch $g^{-1}(x)$ on the same axes as g(x), stating the relationship between the two graphs.

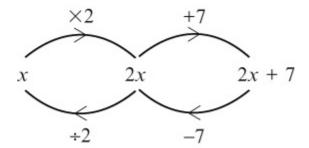
Solution:

(a) y = 2x + 7 is a straight line of gradient 2 passing through 7 on the y axis. The domain is given as $x \ge 0$.

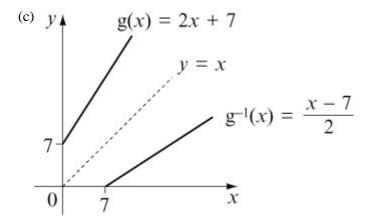


Hence the range is g $(x) \ge 7$

(b) The domain of the inverse function is $x \ge 7$. To find the equation of the inverse function use a flow chart.



$$g^{-1}(x) = \frac{x-7}{2}$$
 and has domain $x \ge 7$



 $g^{-1}(x)$ is the reflection of g(x) in the line y = x.

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 5

Question:

The functions f and g are defined by

$$f: x \to 4x - 1 \quad \{ x \in \mathbb{R} \}$$

$$g: x \to \frac{3}{2x-1} \left\{ x \in \mathbb{R}, x \neq \frac{1}{2} \right\}$$

Find in its simplest form:

- (a) the inverse function f^{-1}
- (b) the composite function gf, stating its domain
- (c) the values of x for which 2f(x) = g(x), giving your answers to 3 decimal places.

[E]

Solution:

(a)
$$f: x \to 4x - 1$$

Let y = 4x - 1 and change the subject of the formula.

$$\Rightarrow$$
 $y + 1 = 4x$

$$\Rightarrow x = \frac{y+1}{4}$$

Hence $f^{-1}: x \to \frac{x+1}{4}$

(b) gf (x) = g (4x - 1) =
$$\frac{3}{2(4x-1)-1} = \frac{3}{8x-3}$$

Hence gf:
$$x \to \frac{3}{8x-3}$$

The domain would include all the real numbers apart from $x = \frac{3}{8}$ (i.e. where 8x - 3 = 0).

(c) If
$$2f(x) = g(x)$$

$$2 \times (4x - 1) = \frac{3}{2x - 1}$$

$$8x - 2 = \frac{3}{2x - 1}$$

$$(8x - 2) (2x - 1) = 3$$

$$16x^{2} - 12x + 2 = 3$$

$$16x^{2} - 12x - 1 = 0$$
Use $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ with $a = 16, b = -12$ and $c = -1$.

Then $x = \frac{12 \pm \sqrt{144 + 64}}{32} = \frac{12 \pm \sqrt{208}}{32} = 0.826$, -0.076

Values of x are -0.076 and 0.826

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 6

Question:

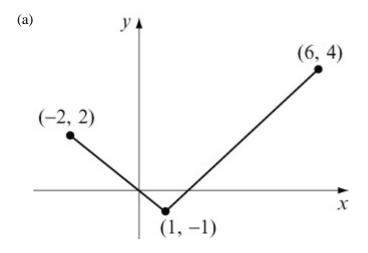
The function f(x) is defined by

$$f(x) = \begin{cases} -x & x \leq 1 \\ x - 2x > 1 \end{cases}$$

- (a) Sketch the graph of f(x) for $-2 \le x \le 6$.
- (b) Find the values of x for which f (x) = $-\frac{1}{2}$.

[E]

Solution:



For $x \leq 1$, f (x) = -x

This is a straight line of gradient -1.

At point x = 1, its y coordinate is -1.

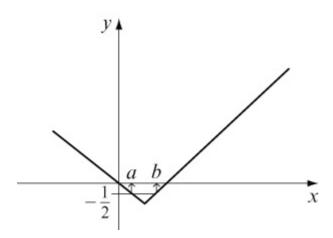
For x > 1, f (x) = x - 2

This is a straight line of gradient +1.

At point x = 1, its y coordinate is also -1.

The graph is said to be **continuous**.

(b) There are two values at which f (x) = $-\frac{1}{2}$ (see graph).



Point *a* is where

$$-x = -\frac{1}{2} \quad \Rightarrow \quad x = \frac{1}{2}$$

Point *b* is where

$$x - 2 = -\frac{1}{2} \quad \Rightarrow \quad x = 1 \frac{1}{2}$$

The values of x for which f (x) = $-\frac{1}{2}$ are $\frac{1}{2}$ and $1\frac{1}{2}$.

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 7

Question:

The function f is defined by

$$f: x \to \frac{2x+3}{x-1} \left\{ x \in \mathbb{R}, x > 1 \right\}$$

- (a) Find $f^{-1}(x)$.
- (b) Find (i) the range of $f^{-1}(x)$
- (ii) the domain of $f^{-1}(x)$.

[E]

Solution:

(a) To find $f^{-1}(x)$ change the subject of the formula.

Let
$$y = \frac{2x+3}{x-1}$$

$$y(x-1) = 2x + 3$$

$$yx - y = 2x + 3$$

$$yx - 2x = y + 3$$

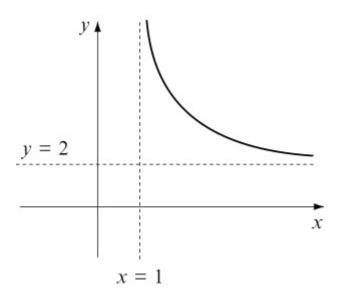
$$x(y-2) = y+3$$

$$x = \frac{y+3}{y-2}$$

Therefore $f^{-1}: x \to \frac{x+3}{x-2}$

(b) f(x) has domain $\{x \in \mathbb{R}, x > 1 \}$ and range $\{f(x) \in \mathbb{R}, f(x) > 2 \}$

As
$$x \to \infty$$
, $y \to \frac{2x}{x} = 2$



So f⁻¹ (x) has domain {
$$x \in \mathbb{R}$$
, $x > 2$ { and range { f⁻¹ (x) $\in \mathbb{R}$, f⁻¹ (x) > 1 }

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 8

Question:

The functions f and g are defined by

$$f: x \to \frac{x}{x-2} \left\{ x \in \mathbb{R}, \ x \neq 2 \right\}$$

$$g: x \to \frac{3}{x} \left\{ x \in \mathbb{R}, \ x \neq 0 \right\}$$

- (a) Find an expression for $f^{-1}(x)$.
- (b) Write down the range of $f^{-1}(x)$.
- (c) Calculate gf(1.5).
- (d) Use algebra to find the values of x for which g(x) = f(x) + 4.

[E]

Solution:

(a) To find $f^{-1}(x)$ change the subject of the formula.

Let
$$y = \frac{x}{x-2}$$

$$y(x-2) = x$$

$$yx - 2y = x$$
 (rearrange)

$$yx - x = 2y$$

$$x(y-1) = 2y$$

$$x = \frac{2y}{y-1}$$

It must always be rewritten as a function in x:

$$f^{-1}\left(x\right) = \frac{2x}{x-1}$$

- (b) The range of $f^{-1}(x)$ is the domain of f(x).
- Hence range is $\{f^{-1}(x) \in \mathbb{R}, f^{-1}(x) \neq 2\}$.

(c) gf (1.5) = g
$$\left(\frac{1.5}{1.5-2}\right)$$
 = g $\left(\frac{1.5}{-0.5}\right)$ = g (-3) = $\frac{3}{-3}$ = -1

(d) If g (x) = f (x) + 4

$$\frac{3}{x} = \frac{x}{x-2} + 4 \qquad \left[\times x \left(x - 2 \right) \right]$$

$$3 (x-2) = x \times x + 4x (x-2)$$

$$3x - 6 = x^2 + 4x^2 - 8x$$

$$0 = 5x^2 - 11x + 6$$

$$0 = (5x - 6) (x - 1)$$

$$\Rightarrow x = \frac{6}{5}, 1$$

The values of x for which g (x) = f(x) + 4 are $\frac{6}{5}$ and 1.

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 9

Question:

The functions f and g are given by

$$f: x \to \frac{x}{x^2 - 1} - \frac{1}{x + 1} \left\{ x \in \mathbb{R}, x > 1 \right\}$$

$$g: x \to \frac{2}{x} \left\{ x \in \mathbb{R}, x > 0 \right\}$$

(a) Show that f (x) =
$$\frac{1}{(x-1)(x+1)}$$
.

- (b) Find the range of f(x).
- (c) Solve gf (x) = 70.

[E]

Solution:

(a)
$$f(x) = \frac{x}{x^2 - 1} - \frac{1}{x + 1}$$

$$= \frac{x}{(x + 1)(x - 1)} - \frac{1}{(x + 1)}$$

$$= \frac{x}{(x + 1)(x - 1)} - \frac{x - 1}{(x + 1)(x - 1)}$$

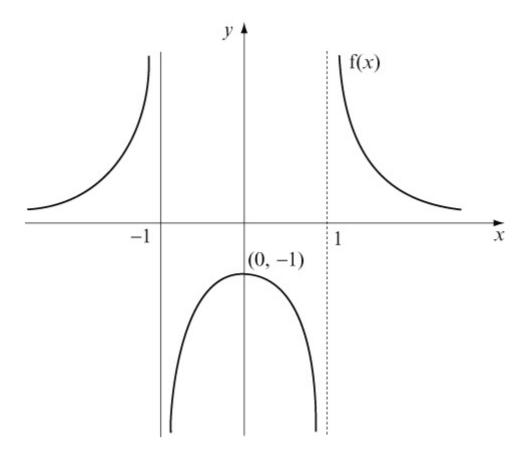
$$= \frac{x - (x - 1)}{(x + 1)(x - 1)}$$

$$= \frac{1}{(x + 1)(x - 1)}$$

(b) The range of f(x) is the set of values that y take.

By using a graphical calculator we can see that $y = f\left(x\right)$

 $x \in \mathbb{R}, \ x \neq -1, \ x \neq 1$ is a symmetrical graph about the y axis.



For x > 1, f (x) > 0

(c) gf (x) = g
$$\left[\frac{1}{(x-1)(x+1)} \right] = \frac{2}{\frac{1}{(x-1)(x+1)}} = 2 \times \frac{(x-1)(x+1)}{1} = 2 \left(x-1 \right) \left(x+1 \right)$$
If gf (x) = 70

If gf
$$(x) = 70$$

 $2(x-1)(x+1) = 70$
 $(x-1)(x+1) = 35$
 $x^2 - 1 = 35$
 $x^2 = 36$
 $x = \pm 6$