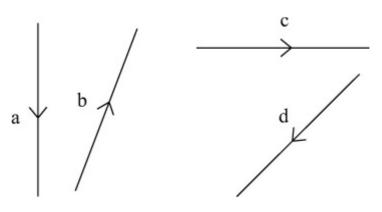
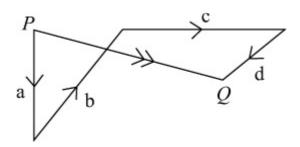
Vectors Exercise A, Question 1

Question:

The diagram shows the vectors **a**, **b**, **c** and **d**. Draw a diagram to illustrate the vector addition a + b + c + d.

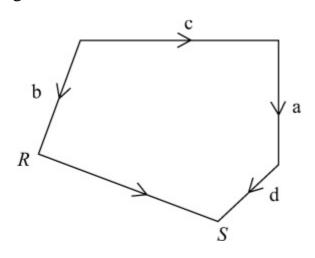


Solution:



 $\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} = \mathbf{P}\mathbf{Q}$

(Vector goes from the start of **a** to the finish of **d**). The vectors could be added in a different order, e.g. b + c + a + d:



Here b + c + a + d = RS

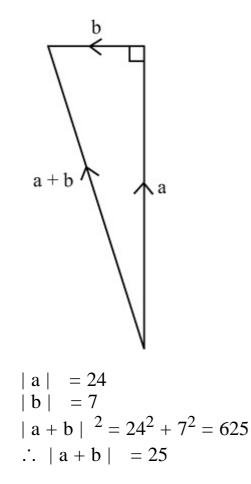
$$(RS = PQ)$$

Vectors Exercise A, Question 2

Question:

The vector **a** is directed due north and |a| = 24. The vector **b** is directed due west and |b| = 7. Find |a + b|.

Solution:

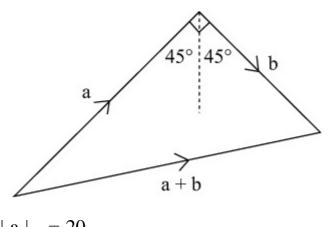


Vectors Exercise A, Question 3

Question:

The vector **a** is directed north-east and |a| = 20. The vector **b** is directed south-east and |b| = 13. Find |a + b|.

Solution:



$$|a| = 20$$

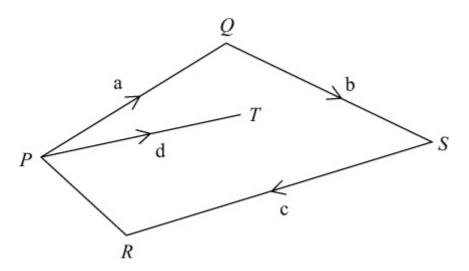
 $|b| = 13$
 $|a+b|^2 = 20^2 + 13^2 = 569$
 $|a+b| = \sqrt{569} = 23.9 (3 \text{ s.f.})$

Vectors Exercise A, Question 4

Question:

In the diagram, PQ = a, QS = b, SR = c and PT = d. Find in terms of **a**, **b**, **c** and **d**:

- (a) QT
- (b) PR
- (c) TS
- (d) TR



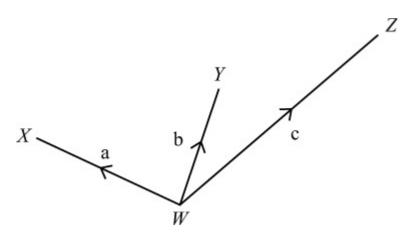
Solution:

- (a) QT = QP + PT = -a + d
- (b) PR = PQ + QS + SR = a + b + c
- (c) TS = TP + PQ + QS = -d + a + b = a + b d
- (d) TR = TP + PR = -d + (a + b + c) = a + b + c d

Vectors Exercise A, Question 5

Question:

In the diagram, WX = a, WY = b and WZ = c. It is given that XY = YZ. Prove that a + c = 2b. (2b is equivalent to b + b).



Solution:

XY = XW + WY = -a + b YZ = YW + WZ = -b + cSince XY = YZ, -a + b = -b + c b + b = a + ca + c = 2b

Vectors Exercise B, Question 1

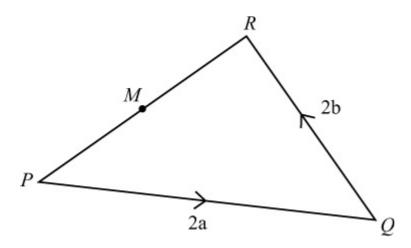
Question:

In the triangle PQR, PQ = 2a and QR = 2b. The mid-point of *PR* is *M*.

Find, in terms of **a** and **b**:

- (a) PR
- (b) PM
- (c) QM.

Solution:



(a) PR = PQ + QR = 2a + 2b

(b)
$$PM = \frac{1}{2}PR = \frac{1}{2}\left(2a + 2b\right) = a + b$$

(c)
$$QM = QP + PM = -2a + a + b = -a + b$$

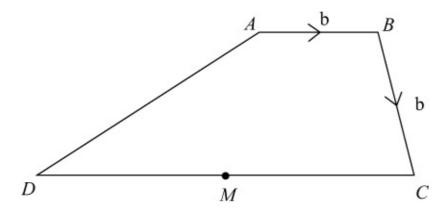
Vectors Exercise B, Question 2

Question:

ABCD is a trapezium with *AB* parallel to *DC* and DC = 3AB. *M* is the mid-point of *DC*, AB = a and BC = b. Find, in terms of **a** and **b**:

- (a) AM
- (b) BD
- (c) MB
- (d) DA.

Solution:



Since DC = 3AB, DC = 3a

Since *M* is the mid-point of *DC*, $DM = MC = \frac{3}{2}a$

(a) $AM = AB + BC + CM = a + b - \frac{3}{2}a = -\frac{1}{2}a + b$

(b)
$$BD = BC + CD = b - 3a$$

(c) MB = MC + CB = $\frac{3}{2}a - b$

(d)
$$DA = DC + CB + BA = 3a - b - a = 2a - b$$

Vectors Exercise B, Question 3

Question:

In each part, find whether the given vector is parallel to a - 3b:

- (a) 2a 6b
 (b) 4a 12b
 (c) a + 3b
 (d) 3b a
- (e) 9b 3a
- (f) $\frac{1}{2}a \frac{2}{3}b$

Solution:

- (a) 2a 6b = 2 (a 3b)Yes, parallel to a - 3b.
- (b) 4a 12b = 4 (a 3b)Yes, parallel to a - 3b.
- (c) a + 3b is not parallel to a 3b
- (d) 3b a = -1 (a 3b)Yes, parallel to a - 3b.
- (e) 9b 3a = -3 (a 3b)Yes, parallel to a - 3b.
- (f) $\frac{1}{2}a \frac{2}{3}b = \frac{1}{2}\left(a \frac{4}{3}b\right)$ No, not parallel to a - 3b.

Vectors Exercise B, Question 4

Question:

The non-zero vectors **a** and **b** are not parallel. In each part, find the value of λ and the value of μ :

(a) $a + 3b = 2 \lambda a - \mu b$ (b) $(\lambda + 2) a + (\mu - 1) b = 0$ (c) $4 \lambda a - 5b - a + \mu b = 0$ (d) $(1 + \lambda) a + 2 \lambda b = \mu a + 4 \mu b$ (e) $(3 \lambda + 5) a + b = 2 \mu a + (\lambda - 3) b$

Solution:

(a)
$$a + 3b = 2 \lambda a - \mu b$$

 $1 = 2 \lambda$ and $3 = -\mu$
 $\lambda = \frac{1}{2}$ and $\mu = -3$

- (b) $(\lambda + 2) a + (\mu 1) b = 0$ $\lambda + 2 = 0$ and $\mu - 1 = 0$ $\lambda = -2$ and $\mu = 1$
- (c) $4 \lambda a 5b a + \mu b = 0$ $4 \lambda - 1 = 0$ and $-5 + \mu = 0$ $\lambda = \frac{1}{4}$ and $\mu = 5$
- (d) $(1 + \lambda) a + 2\lambda b = \mu a + 4\mu b$ $1 + \lambda = \mu$ and $2\lambda = 4\mu$ Since $2\lambda = 4\mu$, $\lambda = 2\mu$ $1 + 2\mu = \mu$ $\mu = -1$ and $\lambda = -2$

(e)
$$(3 \lambda + 5) a + b = 2 \mu a + (\lambda - 3) b$$

 $3 \lambda + 5 = 2 \mu$ and $1 = \lambda - 3$
 $\lambda = 4$ and $2 \mu = 12 + 5$

$$\lambda = 4$$
 and $\mu = 8 \frac{1}{2}$

Vectors Exercise B, Question 5

Question:

In the diagram, OA = a, OB = b and *C* divides *AB* in the ratio 5:1.

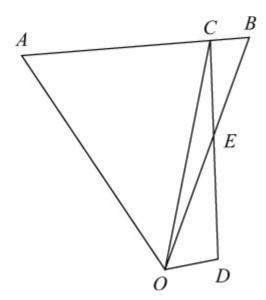
(a) Write down, in terms of **a** and **b**, expressions for AB, AC and OC. Given that $OE = \lambda b$, where λ is a scalar:

(b) Write down, in terms of **a**, **b** and λ , an expression for CE. Given that OD = μ (b - a), where μ is a scalar:

(c) Write down, in terms of **a**, **b**, λ and μ , an expression for ED. Given also that *E* is the mid-point of *CD*:

(d) Deduce the values of λ and $\mu.$

Ð



Solution:

(a)
$$AB = AO + OB = -a + b$$

 $AC = \frac{5}{6}AB = \frac{5}{6}\left(-a + b\right)$
 $OC = OA + AC = a + \frac{5}{6}\left(-a + b\right) = \frac{1}{6}a + \frac{5}{6}b$

(b) OE =
$$\lambda$$
 b:

$$CE = CO + OE = -\left(\frac{1}{6}a + \frac{5}{6}b\right) + \lambda b = -\frac{1}{6}a + \left(\lambda - \frac{5}{6}\right)b$$

(c)
$$OD = \mu (b - a)$$
:
ED = EO + OD = $-\lambda b + \mu (b - a) = -\mu a + (\mu - \lambda) b$

(d) If *E* is the mid-point of CD, CE = ED:

$$-\frac{1}{6}a + \left(\lambda - \frac{5}{6} \right)b = -\mu a + \left(\mu - \lambda \right)b$$

Since **a** and **b** are not parallel

$$-\frac{1}{6} = -\mu \implies \mu = \frac{1}{6}$$

and
$$\left(\lambda - \frac{5}{6}\right) = \left(\mu - \lambda\right)$$
$$\implies 2\lambda = \mu + \frac{5}{6}$$

$$\Rightarrow 2\lambda = 1$$
$$\Rightarrow \lambda = \frac{1}{2}$$

Vectors Exercise B, Question 6

Question:

In the diagram OA = a, OB = b, 3OC = 2OA and 4OD = 7OB. The line *DC* meets the line *AB* at *E*.

(a) Write down, in terms of a and b, expressions for

(i) AB
(ii) DC

Given that DE = λ DC and EB = μ AB where λ and μ are constants:

(b) Use \triangle EBD to form an equation relating to **a**, **b**, λ and μ . Hence:

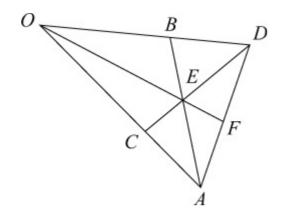
(c) Show that $\lambda = \frac{9}{13}$.

(d) Find the exact value of μ .

(e) Express OE in terms of **a** and **b**. The line OE produced meets the line *AD* at *F*.

Given that OF = *k*OE where *k* is a constant and that AF = $\frac{1}{10} \left(7b - 4a \right)$:

(f) Find the value of k.



Solution:

(a) OC =
$$\frac{2}{3}$$
OA = $\frac{2}{3}$ a, OD = $\frac{7}{4}$ OB = $\frac{7}{4}$ b
(i) AB = AO + OB = $-a + b$

(ii) DC = DO + OC =
$$\frac{2}{3}a - \frac{7}{4}b$$

(b)
$$DE = \lambda DC$$
 and $EB = \mu AB$.
From $\triangle EBD$, $DE = DB + BE$
Since $OD = \frac{7}{4}b$, $BD = OD - OB = \frac{7}{4}b - b = \frac{3}{4}b$
 $\therefore DB = -\frac{3}{4}b$
So $\lambda DC = DB - \mu AB$
 $\lambda \left(\frac{2}{3}a - \frac{7}{4}b\right) = -\frac{3}{4}b - \mu \left(-a + b\right)$
 $\left(\frac{2}{3}\lambda - \mu\right)a + \left(\frac{3}{4} + \mu - \frac{7}{4}\lambda\right)b = 0$
(c) So $\frac{2}{3}\lambda - \mu = 0 \Rightarrow \mu = \frac{2}{3}\lambda$
and $\frac{3}{4} + \mu - \frac{7}{4}\lambda = 0$
 $\Rightarrow \frac{3}{4} + \frac{2}{3}\lambda - \frac{7}{4}\lambda = 0$
 $\Rightarrow \frac{13}{12}\lambda = \frac{3}{4}$
 $\Rightarrow \lambda = \frac{3}{4} \times \frac{12}{13} = \frac{9}{13}$
(d) $\mu = \frac{2}{3}\lambda = \frac{2}{3} \times \frac{9}{13} = \frac{6}{13}$
(e) $OE = OB + BE = OB - \mu AB = b - \frac{6}{13}\left(-a + b\right) = \frac{6}{13}a + \frac{7}{13}b$
(f) $OF = kOE$ and $AF = \frac{7}{10}b - \frac{4}{10}a$.
 $OF = \frac{6k}{13}a + \frac{7k}{13}b$
From $\triangle OFA$, $OF = OA + AF$
 $\frac{6k}{13}a + \frac{7k}{13}b = a + \left(\frac{7}{10}b - \frac{4}{10}a\right) = \frac{6}{10}a + \frac{7}{10}b$
So $\frac{6k}{13} = \frac{6}{10}$ (and $\frac{7k}{13} = \frac{7}{10}$)

$$\Rightarrow \quad k = \frac{13}{10}$$

Vectors Exercise B, Question 7

Question:

In \triangle OAB, *P* is the mid-point of *AB* and *Q* is the point on *OP* such that OQ = 3

 $\frac{3}{4}$ OP. Given that OA = a and OB = b, find, in terms of **a** and **b**:

- (a) AB
- (b) OP
- (c) OQ

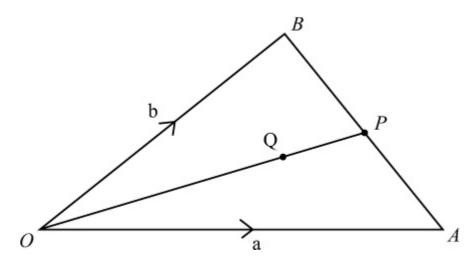
(d) AQ The point *R* on *OB* is such that OR = kOB, where 0 < k < 1.

(e) Find, in terms of **a**, **b** and *k*, the vector AR. Given that *AQR* is a straight line:

(f) Find the ratio in which Q divides AR and the value of k.

Ð

Solution:



BP = PA and OQ = $\frac{3}{4}$ OP

(a)
$$AB = AO + OB = -a + b$$

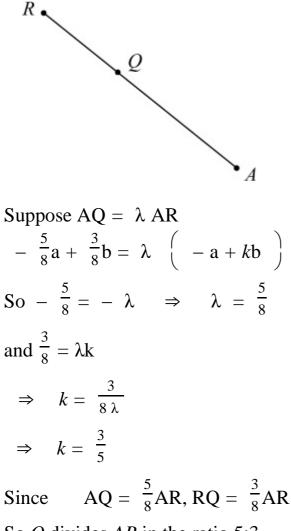
(b) OP = OA + AP = OA +
$$\frac{1}{2}AB = a + \frac{1}{2}(-a+b) = \frac{1}{2}a + \frac{1}{2}b$$

(c)
$$OQ = \frac{3}{4}OP = \frac{3}{4}\left(\frac{1}{2}a + \frac{1}{2}b\right) = \frac{3}{8}a + \frac{3}{8}b$$

(d) AQ = AO + OQ =
$$-a + \left(\frac{3}{8}a + \frac{3}{8}b\right) = -\frac{5}{8}a + \frac{3}{8}b$$

(e) Given OR = kOB (0 < k < 1) In \triangle OAR, AR = AO + OR = -a + kb

(f) Since AQR is a straight line, AR and AQ are parallel vectors.



So Q divides AR in the ratio 5:3.

Vectors Exercise B, Question 8

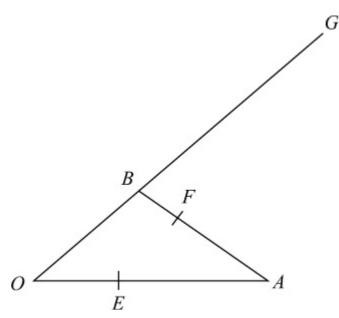
Question:

In the figure OE : EA = 1 : 2, AF : FB = 3 : 1 and OG : OB = 3 : 1. The vector OA = a and the vector OB = b. Find, in terms of **a**, **b** or **a** and **b**, expressions for:

- (a) OE
- (b) OF
- (c) EF
- (d) BG
- (e) FB
- (f) FG

(g) Use your results in (c) and (f) to show that the points E, F and G are collinear and find the ratio EF : FG.

(h) Find EB and AG and hence prove that *EB* is parallel to *AG*.



Solution:

(a)
$$OE = \frac{1}{3}OA = \frac{1}{3}a$$

(b) OF = OA + AF = OA +
$$\frac{3}{4}$$
AB
= a + $\frac{3}{4} \left(b - a \right)$
= a + $\frac{3}{4}b - \frac{3}{4}a$
= $\frac{1}{4}a + \frac{3}{4}b$

(c) EF = EA + AF =
$$\frac{2}{3}OA + \frac{3}{4}AB$$

= $\frac{2}{3}a + \frac{3}{4}(b-a)$
= $\frac{2}{3}a + \frac{3}{4}b - \frac{3}{4}a$
= $-\frac{1}{12}a + \frac{3}{4}b$

(d)
$$BG = 2OB = 2b$$

(e)
$$FB = \frac{1}{4}AB = \frac{1}{4}\left(b-a\right) = -\frac{1}{4}a + \frac{1}{4}b$$

(f)
$$FG = FB + BG = -\frac{1}{4}a + \frac{1}{4}b + 2b = -\frac{1}{4}a + \frac{9}{4}b$$

(g) FG =
$$-\frac{1}{4}a + \frac{9}{4}b = 3\left(-\frac{1}{12}a + \frac{3}{4}b\right) = 3EF$$

So EF and FG are parallel vectors. So E, F and G are collinear. EF : FG = 1 : 3

(h) EB = EO + OB =
$$-\frac{1}{3}a + b$$

AG = AO + OG = $-a + 3b = 3\left(-\frac{1}{3}a + b\right) = 3EB$
So *EB* is parallel to *AG*.

Vectors Exercise C, Question 1

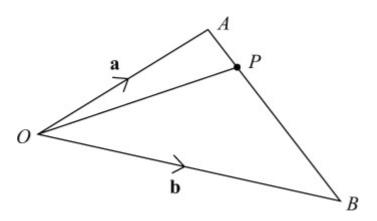
Question:

The points *A* and *B* have position vectors **a** and **b** respectively (referred to the origin *O*).

The point *P* divides *AB* in the ratio 1:5.

Find, in terms of **a** and **b**, the position vector of *P*.

Solution:



$$AP : PB = 1 : 5$$

$$So AP = \frac{1}{6}AB = \frac{1}{6}\left(b - a\right)$$

$$OP = OA + AP = a + \frac{1}{6}\left(b - a\right)$$

$$= a + \frac{1}{6}b - \frac{1}{6}a$$

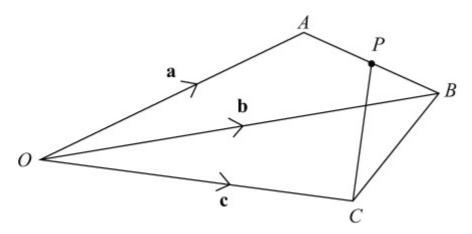
$$= \frac{5}{6}a + \frac{1}{6}b$$

Vectors Exercise C, Question 2

Question:

The points A, B and C have position vectors \mathbf{a} , \mathbf{b} and \mathbf{c} respectively (referred to the origin O). The point P is the mid-point of AB. Find, in terms of \mathbf{a} , \mathbf{b} and \mathbf{c} , the vector PC.

Solution:



$$PC = PO + OC = -OP + OC$$

But $OP = OA + AP = OA + \frac{1}{2}AB = a + \frac{1}{2}(b - a) = \frac{1}{2}a + \frac{1}{2}b$
So $PC = -(\frac{1}{2}a + \frac{1}{2}b) + c = -\frac{1}{2}a - \frac{1}{2}b + c$

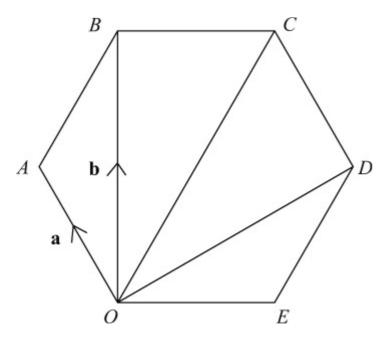
Vectors Exercise C, Question 3

Question:

OABCDE is a regular hexagon. The points A and B have position vectors \mathbf{a} and \mathbf{b} respectively, referred to the origin O.

Find, in terms of **a** and **b**, the position vectors of *C*, *D* and *E*.

Solution:



 $\begin{array}{l} OC = 2AB = 2 \ (b - a) = -2a + 2b \\ OD = OC + CD = OC + AO = \ (-2a + 2b) - a = -3a + 2b \\ OE = OD + DE = OD + BA = \ (-3a + 2b) + \ (a - b) = -2a + b \end{array}$

Vectors Exercise D, Question 1

Question:

Given that a = 9i + 7j, b = 11i - 3j and c = -8i - j, find:

- (a) a + b + c
- (b) 2a b + c

(c) 2b + 2c - 3a (Use column matrix notation in your working.)

Solution:

(a)
$$a + b + c = \begin{pmatrix} 9 \\ 7 \end{pmatrix} + \begin{pmatrix} 11 \\ -3 \end{pmatrix} + \begin{pmatrix} -8 \\ -1 \end{pmatrix} = \begin{pmatrix} 12 \\ 3 \end{pmatrix}$$

(b) $2a - b + c = 2 \begin{pmatrix} 9 \\ 7 \end{pmatrix} + \begin{pmatrix} -11 \\ 3 \end{pmatrix} + \begin{pmatrix} -8 \\ -1 \end{pmatrix}$
 $= \begin{pmatrix} 18 \\ 14 \end{pmatrix} + \begin{pmatrix} -11 \\ 3 \end{pmatrix} + \begin{pmatrix} -8 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 16 \end{pmatrix}$
(c) $2b + 2c - 3a = 2 \begin{pmatrix} 11 \\ -3 \end{pmatrix} + 2 \begin{pmatrix} -8 \\ -1 \end{pmatrix} - 3 \begin{pmatrix} 9 \\ 7 \end{pmatrix}$
 $= \begin{pmatrix} 22 \\ -6 \end{pmatrix} + \begin{pmatrix} -16 \\ -2 \end{pmatrix} + \begin{pmatrix} -27 \\ -21 \end{pmatrix} = \begin{pmatrix} -21 \\ -29 \end{pmatrix}$

Vectors Exercise D, Question 2

Question:

The points A, B and C have coordinates (3, -1), (4, 5) and (-2, 6) respectively, and O is the origin. Find, in terms of **i** and **j**:

(a) the position vectors of A, B and C

(b) AB

(c) AC Find, in surd form:

- (d) | OC |
- (e) | AB |

(f) | AC | **Solution:**

(a)
$$a = 3i - j$$
, $b = 4i + 5j$, $c = -2i + 6j$
(b) $AB = b - a = (4i + 5j) - (3i - j)$
 $= 4i + 5j - 3i + j$
 $= i + 6j$
(c) $AC = c - a = (-2i + 6j) - (3i - j)$
 $= -2i + 6j - 3i + j$
 $= -5i + 7j$
(d) $|OC| = |-2i + 6j| = \sqrt{(-2)^2 + 6^2} = \sqrt{40} = \sqrt{4}\sqrt{10} = 2\sqrt{10}$
(e) $|AB| = |i + 6j| = \sqrt{1^2 + 6^2} = \sqrt{37}$
(f) $|AC| = |-5i + 7j| = \sqrt{(-5)^2 + 7^2} = \sqrt{74}$

Vectors Exercise D, Question 3

Question:

Given that a = 4i + 3j, b = 5i - 12j, c = -7i + 24j and d = i - 3j, find a unit vector in the direction of **a**, **b**, **c** and **d**.

Solution:

$$|a| = \sqrt{4^{2} + 3^{2}} = \sqrt{25} = 5$$

Unit vector $= \frac{a}{|a|} = \frac{1}{5} \begin{pmatrix} 4 \\ 3 \end{pmatrix}$

$$|b| = \sqrt{5^{2} + (-12)^{2}} = \sqrt{169} = 13$$

Unit vector $= \frac{b}{|b|} = \frac{1}{13} \begin{pmatrix} 5 \\ -12 \end{pmatrix}$

$$|c| = \sqrt{(-7)^{2} + 24^{2}} = \sqrt{625} = 25$$

Unit vector $= \frac{c}{|c|} = \frac{1}{25} \begin{pmatrix} -7 \\ 24 \end{pmatrix}$

$$|d| = \sqrt{1^{2} + (-3)^{2}} = \sqrt{10}$$

Unit vector $= \frac{d}{|d|} = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ -3 \end{pmatrix}$

Vectors Exercise D, Question 4

Question:

Given that a = 5i + j and $b = \lambda i + 3j$, and that |3a + b| = 10, find the possible values of λ .

Solution:

$$3a + b = 3 \begin{pmatrix} 5 \\ 1 \end{pmatrix} + \begin{pmatrix} \lambda \\ 3 \end{pmatrix} = \begin{pmatrix} 15 \\ 3 \end{pmatrix} + \begin{pmatrix} \lambda \\ 3 \end{pmatrix} = \begin{pmatrix} 15 + \lambda \\ 6 \end{pmatrix}$$
$$\frac{|3a + b| = 10, so}{(15 + \lambda)^2 + 6^2} = 10$$
$$(15 + \lambda)^2 + 6^2 = 100$$
$$225 + 30 \lambda + \lambda^2 + 36 = 100$$
$$\lambda^2 + 30 \lambda + 161 = 0$$
$$(\lambda + 7) (\lambda + 23) = 0$$
$$\lambda = -7, \lambda = -23$$

Vectors Exercise E, Question 1

Question:

Find the distance from the origin to the point P(2, 8, -4).

Solution:

Distance =
$$\sqrt{2^2 + 8^2} + (-4)^2 = \sqrt{4 + 64 + 16} = \sqrt{84} \approx 9.17$$
 (3 s.f.)

Vectors Exercise E, Question 2

Question:

Find the distance from the origin to the point P(7, 7, 7).

Solution:

Distance =
$$\sqrt{7^2 + 7^2 + 7^2} = \sqrt{49 + 49 + 49} = \sqrt{147} = 7\sqrt{3} \approx 12.1 \text{ (3 s.f.)}$$

Vectors Exercise E, Question 3

Question:

Find the distance between *A* and *B* when they have the following coordinates:

(a) A (3, 0, 5) and B (1, -1, 8)
(b) A (8, 11, 8) and B (-3, 1, 6)
(c) A (3, 5, -2) and B (3, 10, 3)

(d) A(-1, -2, 5) and B(4, -1, 3)

Solution:

(a)
$$AB = \sqrt{(3-1)^2 + [0-(-1)]^2 + (5-8)^2}$$

 $= \sqrt{\frac{2^2 + 1^2 + (-3)^2}{14 \approx 3.74}}$
(b) $AB = \sqrt{[8-(-3)]^2 + (11-1)^2 + (8-6)^2}$
 $= \sqrt{\frac{11^2 + 10^2 + 2^2}{1225 = 15}}$
(c) $AB = \sqrt{(3-3)^2 + (5-10)^2 + (-5)^2}$
 $= \sqrt{\frac{0^2 + (-5)^2 + (-5)^2}{12 \approx 7.07}}$
(d) $AB = \sqrt{[(-1)-4]^2 + [(-2)-(-1)]^2 + (5-3)^2}$
 $= \sqrt{\frac{(-5)^2 + (-1)^2 + 2^2}{30 \approx 5.48}}$

Vectors Exercise E, Question 4

Question:

The coordinates of *A* and *B* are (7, -1, 2) and (k, 0, 4) respectively. Given that the distance from *A* to *B* is 3 units, find the possible values of *k*.

Solution:

$$AB = \sqrt{(7-k)^2 + (-1-0)^2 + (2-4)^2} = 3$$

$$\sqrt{(49 - 14k + k^2) + 1 + 4} = 3$$

$$49 - 14k + k^2 + 1 + 4 = 9$$

$$k^2 - 14k + 45 = 0$$

$$(k-5)(k-9) = 0$$

$$k = 5 \text{ or } k = 9$$

Vectors Exercise E, Question 5

Question:

The coordinates of A and B are (5, 3, -8) and (1, k, -3)

respectively. Given that the distance from *A* to *B* is $3\sqrt{10}$ units, find the possible values of *k*.

Solution:

$$AB = \sqrt{(5-1)^2 + (3-k)^2 + [-8 - (-3)]^2} = 3\sqrt{10}$$

$$\sqrt{16 + (9 - 6k + k^2) + 25} = 3\sqrt{10}$$

$$16 + 9 - 6k + k^2 + 25 = 9 \times 10$$

$$k^2 - 6k - 40 = 0$$

$$(k+4) (k-10) = 0$$

$$k = -4 \text{ or } k = 10$$

Vectors Exercise F, Question 1

Question:

Find the modulus of:

- (a) 3i + 5j + k
- (b) 4i 2k
- (c) i + j k
- (d) 5i 9j 8k
- (e) i + 5j 7k

Solution:

(a)
$$|3i + 5j + k| = \sqrt{3^2 + 5^2 + 1^2} = \sqrt{9 + 25 + 1} = \sqrt{35}$$

(b) $|4i - 2k| = \sqrt{4^2 + 0^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20} = \sqrt{4}\sqrt{5} = 2\sqrt{5}$
(c) $|i + j - k| = \sqrt{1^2 + 1^2 + (-1)^2} = \sqrt{1 + 1 + 1} = \sqrt{3}$
(d) $|5i - 9j - 8k| = \sqrt{5^2 + (-9)^2 + (-8)^2} = \sqrt{25 + 81 + 64} = \sqrt{170}$
(e) $|i + 5j - 7k| = \sqrt{1^2 + 5^2 + (-7)^2} = \sqrt{25}\sqrt{3} = 5\sqrt{3}$

Vectors Exercise F, Question 2

Question:

Given that
$$a = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix}$$
, $b = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$ and $c = \begin{pmatrix} 7 \\ -4 \\ 2 \end{pmatrix}$, find in column

matrix form:

- (a) a + b
- (b) b c
- (c) a + b + c
- (d) 3a c
- (e) a 2b + c
- (f) |a 2b + c|

Solution:

(a)
$$a + b = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \\ -1 \end{pmatrix}$$

(b) $b - c = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} - \begin{pmatrix} 7 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} -5 \\ 5 \\ -5 \end{pmatrix}$
(c) $a + b + c = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} + \begin{pmatrix} 7 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 14 \\ -3 \\ 1 \end{pmatrix}$
(d) $3a - c = 3 \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} - \begin{pmatrix} 7 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 15 \\ 0 \\ 6 \end{pmatrix} - \begin{pmatrix} 7 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 4 \end{pmatrix}$

(e)
$$\mathbf{a} - 2\mathbf{b} + \mathbf{c} = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} - 2 \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} + \begin{pmatrix} 7 \\ -4 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} - \begin{pmatrix} 4 \\ 2 \\ -6 \end{pmatrix} + \begin{pmatrix} 7 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ -6 \\ 10 \end{pmatrix}$$

(f)
$$|a - 2b + c| = \sqrt{8^2 + (-6)^2 + 10^2}$$

= $\sqrt{64 + 36 + 100}$
= $\sqrt{200} = \sqrt{100}\sqrt{2} = 10\sqrt{2}$

Vectors Exercise F, Question 3

Question:

The position vector of the point *A* is 2i - 7j + 3k and AB = 5i + 4j - k. Find the position of the point *B*.

Solution:

AB = b - a, so b = AB + a $b = \begin{pmatrix} 5 \\ 4 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ -7 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ -3 \\ 2 \end{pmatrix}$

Position vector of *B* is 7i - 3j + 2k

Vectors Exercise F, Question 4

Question:

Given that a = ti + 2j + 3k, and that |a| = 7, find the possible values of *t*.

Solution:

$$\frac{|\mathbf{a}| = \sqrt{t^2 + 2^2 + 3^2} = 7}{\sqrt{t^2 + 4 + 9} = 7}$$

$$t^2 + 4 + 9 = 49$$

$$t^2 = 36$$

$$t = 6 \text{ or } t = -6$$

Vectors Exercise F, Question 5

Question:

Given that a = 5ti + 2tj + tk, and that $|a| = 3\sqrt{10}$, find the possible values of *t*.

Solution:

$$\frac{|\mathbf{a}| = \sqrt{(5t)^2 + (2t)^2 + t^2} = 3\sqrt{10}}{\sqrt{25t^2 + 4t^2 + t^2} = 3\sqrt{10}}$$

$$\sqrt{25t^2 + 4t^2 + t^2} = 3\sqrt{10}$$

$$\sqrt{30t^2 = 3\sqrt{10}}$$

$$30t^2 = 9 \times 10$$

$$t^2 = 3$$

$$t = \sqrt{3} \text{ or } t = -\sqrt{3}$$

Vectors Exercise F, Question 6

Question:

The points *A* and *B* have position vectors $\begin{pmatrix} 2 \\ 9 \\ t \end{pmatrix}$ and $\begin{pmatrix} 2t \\ 5 \\ 3t \end{pmatrix}$ respectively.

(a) Find AB.

(b) Find, in terms of t, |AB|.

(c) Find the value of t that makes |AB| a minimum.

(d) Find the minimum value of |AB|.

Solution:

(a)
$$AB = b - a = \begin{pmatrix} 2t \\ 5 \\ 3t \end{pmatrix} - \begin{pmatrix} 2 \\ 9 \\ t \end{pmatrix} = \begin{pmatrix} 2t - 2 \\ -4 \\ 2t \end{pmatrix}$$

(b) $|AB| = \sqrt{(2t-2)^2 + (-4)^2 + (2t)^2}$
 $= \sqrt{4t^2 - 8t + 4} + 16 + 4t^2$
 $= \sqrt{8t^2 - 8t + 20}$
(c) Let $|AB|^2 = p$, then $p = 8t^2 - 8t + 20$
 $\frac{dp}{dt} = 16t - 8$
For a minimum, $\frac{dp}{dt} = 0$, so $16t - 8 = 0$, i.e. $t = \frac{1}{2}$
 $\frac{d^2p}{dt^2} = 16$, positive, \therefore minimum

(d) When
$$t = \frac{1}{2}$$
,
| AB | = $\sqrt{8t^2 - 8t + 20} = \sqrt{2 - 4 + 20} = \sqrt{18} = \sqrt{9}\sqrt{2} = 3\sqrt{2}$

Vectors Exercise F, Question 7

Question:

The points *A* and *B* have position vectors $\begin{pmatrix} 2t+1 \\ t+1 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} t+1 \\ 5 \\ 2 \end{pmatrix}$ respectively.

(a) Find AB.

(b) Find, in terms of t, |AB|.

(c) Find the value of t that makes |AB| a minimum.

(d) Find the minimum value of |AB|.

Solution:

(a)
$$AB = b - a = \begin{pmatrix} t+1 \\ 5 \\ 2 \end{pmatrix} - \begin{pmatrix} 2t+1 \\ t+1 \\ 3 \end{pmatrix} = \begin{pmatrix} -t \\ 4-t \\ -1 \end{pmatrix}$$

(b) $|AB| = \sqrt{(-t)^2 + (4-t)^2 + (-1)^2}$
 $= \sqrt{t^2 + 16 - 8t + t^2 + 1}$
 $= \sqrt{2t^2 - 8t + 17}$

(c) Let $|AB||^2 = P$, then $P = 2t^2 - 8t + 17$ $\frac{dP}{dt} = 4t - 8$

For a minimum, $\frac{dP}{dt} = 0$, so 4t - 8 = 0, i.e. t = 2

$$\frac{\mathrm{d}^2 P}{\mathrm{d}t^2} = 4, \text{ positive, } \therefore \text{ minimum}$$

(d) When
$$t = 2$$
,
| AB | = $\sqrt{2t^2 - 8t + 17} = \sqrt{8 - 16 + 17} = \sqrt{9} = 3$

Vectors Exercise G, Question 1

Question:

The vectors **a** and **b** each have magnitude 3 units, and the angle between **a** and **b** is 60 $^{\circ}$. Find **a.b**.

Solution:

a. b = |a| |b| $\cos\theta = 3 \times 3 \times \cos 60^{\circ} = 3 \times 3 \times \frac{1}{2} = \frac{9}{2}$

Vectors Exercise G, Question 2

Question:

In each part, find **a.b**:

- (a) a = 5i + 2j + 3k, b = 2i j 2k(b) a = 10i - 7j + 4k, b = 3i - 5j - 12k(c) a = i + j - k, b = -i - j + 4k(d) a = 2i - k, b = 6i - 5j - 8k(e) a = 3j + 9k, b = i + 12j - 4k
- (**c**) **u** = 5**j** + **j k**, **c** = **i** +

Solution:

(a) a . b =
$$\begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix}$$
 . $\begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$ = 10 - 2 - 6 = 2
(b) a . b = $\begin{pmatrix} 10 \\ -7 \\ 4 \end{pmatrix}$. $\begin{pmatrix} 3 \\ -5 \\ -12 \end{pmatrix}$ = 30 + 35 - 48 = 17
(c) a . b = $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$. $\begin{pmatrix} -1 \\ -1 \\ 4 \end{pmatrix}$ = -1 - 1 - 4 = -6
(d) a . b = $\begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$. $\begin{pmatrix} 6 \\ -5 \\ -8 \end{pmatrix}$ = 12 + 0 + 8 = 20

(e) a. b =
$$\begin{pmatrix} 0 \\ 3 \\ 9 \end{pmatrix}$$
. $\begin{pmatrix} 1 \\ 12 \\ -4 \end{pmatrix}$ = 0 + 36 - 36 = 0

Vectors Exercise G, Question 3

Question:

In each part, find the angle between **a** and **b**, giving your answer in degrees to 1 decimal place:

3

(a) a = 3i + 7j, b = 5i + j(b) a = 2i - 5j, b = 6i + 3j(c) a = i - 7j + 8k, b = 12i + 2j + k(d) a = -i - j + 5k, b = 11i - 3j + 4k(e) a = 6i - 7j + 12k, b = -2i + j + k(f) a = 4i + 5k, b = 6i - 2j(g) a = -5i + 2j - 3k, b = 2i - 2j + 11k(h) a = i + j + k, b = i - j + k

Solution:

 $\cos\theta = \frac{-3}{\sqrt{29}\sqrt{45}}$

(a) a. b =
$$\begin{pmatrix} 3 \\ 7 \end{pmatrix}$$
. $\begin{pmatrix} 5 \\ 1 \end{pmatrix}$ = 15 + 7 = 22
| a | = $\sqrt{3^2 + 7^2} = \sqrt{58}$
| b | = $\sqrt{5^2 + 1^2} = \sqrt{26}$
 $\sqrt{58}\sqrt{26}\cos\theta = 22$
 $\cos\theta = \frac{22}{\sqrt{58}\sqrt{26}}$
 $\theta = 55.5^{\circ}$ (1 d.p.)
(b) a. b = $\begin{pmatrix} 2 \\ -5 \end{pmatrix}$. $\begin{pmatrix} 6 \\ 3 \end{pmatrix}$ = 12 - 15 = -
| a | = $\sqrt{2^2 + (-5)^2} = \sqrt{29}$
| b | = $\sqrt{6^2 + 3^2} = \sqrt{45}$

$$\theta = 94.8 \circ (1 \text{ d.p.})$$
(c) a . b = $\begin{pmatrix} 1 \\ -7 \\ 8 \end{pmatrix}$. $\begin{pmatrix} 12 \\ 2 \\ 1 \end{pmatrix}$ = 12 - 14 + 8 = 6
| a | = $\sqrt{\frac{1^2 + (-7)^2 + 8^2}{12^2 + 2^2 + 1^2}} = \sqrt{\frac{114}{149}}$
| b | = $\sqrt{\frac{12^2 + 2^2 + 1^2}{12^2 + 2^2 + 1^2}} = \sqrt{\frac{114}{149}}$
 $\theta = 87.4 \circ (1 \text{ d.p.})$
(d) a . b = $\begin{pmatrix} -1 \\ -1 \\ 5 \end{pmatrix}$. $\begin{pmatrix} 11 \\ -3 \\ 4 \end{pmatrix}$ = -11 + 3 + 20 = 12
| a | = $\sqrt{\frac{(-1)^2 + (-1)^2 + 5^2}{114}} = \sqrt{\frac{27}{146}}$
 $\sqrt{27}\sqrt{\frac{16}{146}\cos\theta} = 12$
 $\cos\theta = \frac{12}{\sqrt{27}\sqrt{\frac{146}{146}}}$
 $\theta = 79.0 \circ (1 \text{ d.p.})$
(e) a . b = $\begin{pmatrix} 6 \\ -7 \\ 12 \end{pmatrix}$. $\begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ = -12 - 7 + 12 = -7
| a | = $\sqrt{\frac{6^2 + (-7)^2 + 12^2}{\sqrt{229}\sqrt{6}}} = \sqrt{\frac{229}{229}}$
 $\sqrt{\frac{16}{229}\sqrt{6}\cos\theta} = -7$
 $\cos\theta = \frac{-7}{\sqrt{229}\sqrt{6}}$
 $\theta = 100.9 \circ (1 \text{ d.p.})$
(f) a . b = $\begin{pmatrix} 4 \\ 0 \\ 5 \end{pmatrix}$. $\begin{pmatrix} 6 \\ -2 \\ 0 \end{pmatrix}$ = 24 + 0 + 0 = 24
| a | = $\sqrt{\frac{4^2 + 5^2 = \sqrt{41}}{\sqrt{41}\sqrt{40}\cos\theta} = 24$
 $\cos\theta = \frac{24}{\sqrt{41}\sqrt{40}}$
 $\theta = 53.7 \circ (1 \text{ d.p.})$

(g) a . b =
$$\begin{pmatrix} -5 \\ 2 \\ -3 \end{pmatrix}$$
. $\begin{pmatrix} 2 \\ -2 \\ 11 \end{pmatrix}$ = $-10 - 4 - 33 = -47$
 $|a| = \sqrt{(-5)^2 + 2^2 + (-3)^2} = \sqrt{38}$
 $|b| = \sqrt{2^2 + (-2)^2 + 11^2} = \sqrt{129}$
 $\sqrt{38}\sqrt{129}\cos\theta = -47$
 $\cos\theta = \frac{-47}{\sqrt{38}\sqrt{129}}$
 $\theta = 132.2^\circ$ (1 d.p.)
(h) a . b = $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ = $1 - 1 + 1 = 1$
 $|a| = \sqrt{\frac{1^2 + 1^2 + 1^2}{1^2 + (-1)^2 + 1^2}} = \sqrt{3}$
 $|b| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}$
 $\sqrt{3}\sqrt{3}\cos\theta = 1$
 $\cos\theta = \frac{1}{\sqrt{3\sqrt{3}}} = \frac{1}{3}$
 $\theta = 70.5^\circ$ (1 d.p.)

Vectors Exercise G, Question 4

Question:

Find the value, or values, of λ for which the given vectors are perpendicular:

- (a) 3i + 5j and λ i + 6j
 (b) 2i + 6j k and λ i 4j 14k
- (c) $3i + \lambda j 8k$ and 7i 5j + k
- (d) 9i 3j + 5k and $\lambda i + \lambda j + 3k$
- (e) $\lambda i + 3j 2k$ and $\lambda i + \lambda j + 5k$

Solution:

(a)
$$\begin{pmatrix} 3 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} \lambda \\ 6 \end{pmatrix} = 3 \lambda + 30 = 0$$

 $\Rightarrow 3 \lambda = -30$
 $\Rightarrow \lambda = -10$
(b) $\begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} \lambda \\ -4 \\ -14 \end{pmatrix} = 2 \lambda - 24 + 14 = 0$
 $\Rightarrow 2 \lambda = 10$
 $\Rightarrow \lambda = 5$
(c) $\begin{pmatrix} 3 \\ \lambda \\ -8 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ -5 \\ 1 \end{pmatrix} = 21 - 5 \lambda - 8 = 0$
 $\Rightarrow 5 \lambda = 13$
 $\Rightarrow \lambda = 2\frac{3}{5}$
(d) $\begin{pmatrix} 9 \\ -3 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} \lambda \\ \lambda \\ 3 \end{pmatrix} = 9 \lambda - 3 \lambda + 15 = 0$

$$\Rightarrow 6 \lambda = -15$$

$$\Rightarrow \lambda = -2\frac{1}{2}$$
(e) $\begin{pmatrix} \lambda \\ 3 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} \lambda \\ \lambda \\ 5 \end{pmatrix} = \lambda^2 + 3\lambda - 10 = 0$

$$\Rightarrow (\lambda + 5) (\lambda - 2) = 0$$

$$\Rightarrow \lambda = -5 \text{ or } \lambda = 2$$

Vectors Exercise G, Question 5

Question:

Find, to the nearest tenth of a degree, the angle that the vector 9i - 5j + 3k makes with:

- (a) the positive *x*-axis
- (b) the positive y-axis

Solution:

(a) Using
$$a = 9i - 5j + 3k$$
 and $b = i$,
 $a \cdot b = \begin{pmatrix} 9 \\ -5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 9$
 $\begin{vmatrix} a \end{vmatrix} = \sqrt{9^2 + (-5)^2 + 3^2} = \sqrt{115}$
 $\begin{vmatrix} b \end{vmatrix} = 1$
 $\sqrt{115} \cos \theta = 9$
 $\cos \theta = \frac{9}{\sqrt{115}}$
 $\theta = 32.9^{\circ}$
(b) Using $a = 9i - 5j + 3k$ and $b = j$,
 $a \cdot b = \begin{pmatrix} 9 \\ -5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = -5$
 $\begin{vmatrix} a \end{vmatrix} = \sqrt{115} + b \end{vmatrix} = 1$

$$\begin{vmatrix} a \\ 115 \end{vmatrix} = \sqrt{115}, |b| = 1$$

$$\sqrt{115} \cos \theta = -5$$

$$\cos \theta = \frac{-5}{\sqrt{115}}$$

$$\theta = 117.8^{\circ}$$

Vectors Exercise G, Question 6

Question:

Find, to the nearest tenth of a degree, the angle that the vector $i\,+\,11j\,-\,4k$ makes with:

- (a) the positive *y*-axis
- (b) the positive *z*-axis

Solution:

(a) Using
$$a = i + 11j - 4k$$
 and $b = j$,
 $a \cdot b = \begin{pmatrix} 1 \\ 11 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 11$
 $\begin{vmatrix} a \end{vmatrix} = \sqrt{1^2 + 11^2 + (-4)^2} = \sqrt{138}$
 $\begin{vmatrix} b \end{vmatrix} = 1$
 $\sqrt{138} \cos \theta = 11$
 $\cos \theta = \frac{11}{\sqrt{138}}$
 $\theta = 20.5^{\circ}$
(b) Using $a = i + 11j - 4k$ and $b = k$,
 $a \cdot b = \begin{pmatrix} 1 \\ 11 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = -4$
 $\begin{vmatrix} a \end{vmatrix} = \sqrt{138}, |b| = 1$
 $\sqrt{138} \cos \theta = -4$
 $\cos \theta = \frac{-4}{4}$

$$\cos\theta = \frac{1}{\sqrt{138}}$$
$$\theta = 109.9^{\circ}$$

Vectors Exercise G, Question 7

Question:

The angle between the vectors i + j + k and 2i + j + k is θ . Calculate the exact value of $\cos \theta$.

Solution:

Using
$$a = i + j + k$$
 and $b = 2i + j + k$,
 $a \cdot b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = 2 + 1 + 1 = 4$
 $\begin{vmatrix} a \end{vmatrix} = \sqrt{\frac{1^2 + 1^2 + 1^2}{2^2 + 1^2}} = \sqrt{3}$
 $\begin{vmatrix} b \end{vmatrix} = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}$
 $\sqrt{3}\sqrt{6}\cos\theta = 4$
 $\cos\theta = \frac{4}{\sqrt{3}\sqrt{6}} = \frac{4}{\sqrt{3}\sqrt{3}\sqrt{2}} = \frac{4}{3\sqrt{2}}$
 $= \frac{4}{3\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{4\sqrt{2}}{6} = \frac{2\sqrt{2}}{3}$

Vectors Exercise G, Question 8

Question:

The angle between the vectors i + 3j and $j + \lambda k$ is 60 °. Show that $\lambda = \pm \sqrt{\frac{13}{5}}$.

Solution:

Using
$$a = i + 3j$$
 and $b = j + \lambda k$,
 $a \cdot b = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ \lambda \end{pmatrix} = 0 + 3 + 0 = 3$
 $\begin{vmatrix} a \end{vmatrix} = \sqrt{\frac{1^2 + 3^2}{1^2 + \lambda^2}} = \sqrt{\frac{10}{10}}$
 $\begin{vmatrix} b \end{vmatrix} = \sqrt{\frac{1^2 + 3^2}{1^2 + \lambda^2}} = \sqrt{1 + \lambda^2}$
 $\sqrt{10}\sqrt{1 + \lambda^2} \cos 60^\circ = 3$
 $\sqrt{1 + \lambda^2} = \frac{3}{\sqrt{10}\cos 60^\circ} = \frac{6}{\sqrt{10}}$

Squaring both sides:

$$1 + \lambda^{2} = \frac{36}{10}$$
$$\lambda^{2} = \frac{26}{10} = \frac{13}{5}$$
$$\lambda = \pm \sqrt{\frac{13}{5}}$$

Vectors Exercise G, Question 9

Question:

Simplify as far as possible:

(a) a . (b + c) + b . (a - c) , given that **b** is perpendicular to **c**.

(b) (a + b). (a + b), given that |a| = 2 and |b| = 3.

(c) (a + b). (2a - b), given that **a** is perpendicular to **b**.

Solution:

(a)
$$a \cdot (b + c) + b \cdot (a - c)$$

= $a \cdot b + a \cdot c + b \cdot a - b \cdot c$
= $2a \cdot b + a \cdot c$ (because $b \cdot c = 0$)

(b)
$$(a + b) \cdot (a + b)$$

= a · (a + b) + b · (a + b)
= a · a + a · b + b · a + b · b
= |a|² + 2a · b + |b|²
= 4 + 2a · b + 9
= 13 + 2a · b

(c)
$$(a + b) \cdot (2a - b)$$

= a · $(2a - b) + b \cdot (2a - b)$
= 2a · a - a · b + 2b · a - b · b
= 2 | a | ² - | b | ² (because a · b = 0)

Vectors Exercise G, Question 10

Question:

Find a vector which is perpendicular to both **a** and **b**, where:

(a) a = i + j - 3k, b = 5i - 2j - k(b) a = 2i + 3j - 4k, b = i - 6j + 3k(c) a = 4i - 4j - k, b = -2i - 9j + 6k

Solution:

(a) Let the required vector be xi + yj + zk. Then

 $\begin{pmatrix} 1\\1\\-3 \end{pmatrix} \cdot \begin{pmatrix} x\\y\\z \end{pmatrix} = 0 \text{ and } \begin{pmatrix} 5\\-2\\-1 \end{pmatrix} \cdot \begin{pmatrix} x\\y\\z \end{pmatrix} = 0$ x + y - 3z = 05x - 2y - z = 0Let z = 1: $x + y = 3 \quad (\times 2)$ 5x - 2y = 12x + 2y = 65x - 2y = 1Adding, $7x = 7 \implies x = 1$ 1 + y = 3, so y = 2So x = 1, y = 2 and z = 1A possible vector is i + 2j + k.

(b) Let the required vector be xi + yj + zk. Then

 $\begin{pmatrix} 2\\3\\-4 \end{pmatrix} \cdot \begin{pmatrix} x\\y\\z \end{pmatrix} = 0 \text{ and } \begin{pmatrix} 1\\-6\\3 \end{pmatrix} \cdot \begin{pmatrix} x\\y\\z \end{pmatrix} = 0$ 2x + 3y - 4z = 0x - 6y + 3z = 0Let z = 1:2x + 3y = 4 $x - 6y = -3 \quad (\times 2)$ 2x + 3y = 42x - 12y = -6

Subtracting, $15y = 10 \implies y = \frac{2}{3}$ 2x + 2 = 4, so x = 1So x = 1, $y = \frac{2}{3}$ and z = 1A possible vector is $i + \frac{2}{3}j + k$. Another possible vector is 3 $\left(i + \frac{2}{3}j + k\right) = 3i + 2j + 3k$. (c) Let the required vector be xi + yj + zk. Then $\begin{pmatrix} 4 \\ -4 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \text{ and } \begin{pmatrix} -2 \\ -9 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$ 4x - 4y - z = 0-2x - 9y + 6z = 0Let z = 1: 4x - 4y = 1-2x - 9y = -6 (×2) 4x - 4y = 1-4x - 18y = -12Adding, $-22y = -11 \Rightarrow y = \frac{1}{2}$ 4x - 2 = 1, so $x = \frac{3}{4}$ So $x = \frac{3}{4}$, $y = \frac{1}{2}$ and z = 1A possible vector is $\frac{3}{4}i + \frac{1}{2}j + k$ Another possible vector is 4 $\begin{pmatrix} \frac{3}{4}i + \frac{1}{2}j + k \end{pmatrix} = 3i + 2j + 4k$.

Page 1 of 2

Solutionbank 4 Edexcel AS and A Level Modular Mathematics

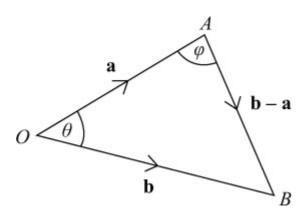
Vectors Exercise G, Question 11

Question:

The points A and B have position vectors 2i + 5j + k and 6i + j - 2k respectively, and O is the origin.

Calculate each of the angles in \triangle OAB, giving your answers in degrees to 1 decimal place.

Solution:



Using **a** and **b** to find θ :

a. b =
$$\begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}$$
. $\begin{pmatrix} 6 \\ 1 \\ -2 \end{pmatrix}$ = 12 + 5 - 2 = 15
| a | = $\sqrt{\frac{2^2 + 5^2 + 1^2}{2^2 + 5^2 + 1^2}} = \sqrt{30}$
| b | = $\sqrt{6^2 + 1^2 + (-2)^2} = \sqrt{41}$
 $\sqrt{30}\sqrt{41}\cos\theta = 15$
 $\cos\theta = \frac{15}{\sqrt{30}\sqrt{41}}$
 $\theta = 64.7^{\circ}$
Using AO and AB to find ϕ :
AO = -a = $\begin{pmatrix} -2 \\ -5 \\ -1 \end{pmatrix}$
AB = b - a = $\begin{pmatrix} 6 \\ 1 \\ -2 \end{pmatrix}$ - $\begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}$ = $\begin{pmatrix} 4 \\ -4 \\ -3 \end{pmatrix}$

$$\begin{pmatrix} -a \\ -a \end{pmatrix} \cdot \begin{pmatrix} b-a \\ -5 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ -5 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -4 \\ -3 \end{pmatrix} = -8 + 20 + 3 = 15$$

$$|-a| = \sqrt{(-2)^2 + (-5)^2 + (-1)^2} = \sqrt{30}$$

$$|\frac{b-a|}{\sqrt{30}\sqrt{41}} = \sqrt{4^2 + (-4)^2 + (-3)^2} = \sqrt{41}$$

$$\sqrt{30}\sqrt{41}\cos\phi = 15$$

$$\cos\phi = \frac{15}{\sqrt{30}\sqrt{41}}$$

$$\phi = 64.7^{\circ} (1 \text{ d.p.})$$

(Since $|b-a| = |b|$, AB = OB, so the triangle is isosceles).
$$\angle \text{ OBA} = 180^{\circ} - 64.7^{\circ} - 64.7^{\circ} = 50.6^{\circ} (1 \text{ d.p.})$$

Angles are 64.7°, 64.7° and 50.6° (all 1 d.p.)

Vectors Exercise G, Question 12

Question:

The points A, B and C have position vectors i + 3j + k, 2i + 7j - 3k and 4i - 5j + 2k respectively.

(a) Find, as surds, the lengths of *AB* and *BC*.

(b) Calculate, in degrees to 1 decimal place, the size of \angle ABC.

Solution:

(a)
$$AB = b - a = \begin{pmatrix} 2 \\ 7 \\ -3 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ -4 \end{pmatrix}$$

Length of $AB = |AB| = \sqrt{1^2 + 4^2 + (-4)^2} = \sqrt{33}$
 $BC = c - b = \begin{pmatrix} 4 \\ -5 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 7 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ -12 \\ 5 \end{pmatrix}$
Length of $BC = |BC| = \sqrt{2^2 + (-12)^2 + 5^2} = \sqrt{173}$
(b) $A \longrightarrow B$
 C
 θ is the angle between BA and BC.
 $BA \cdot BC = \begin{pmatrix} -1 \\ -4 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -12 \\ 5 \end{pmatrix} = -2 + 48 + 20 = 66$
 $\sqrt{33}\sqrt{173}\cos\theta = 66$
 $\cos\theta = \frac{66}{\sqrt{33}\sqrt{173}}$
 $\theta = 29.1^{\circ} (1 \text{ d.p.})$

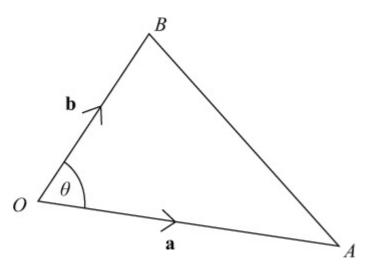
Vectors Exercise G, Question 13

Question:

Given that the points A and B have coordinates (7, 4, 4) and (2, -2, -1) respectively, use a vector method to find the value of cos AOB, where O is the origin.

Prove that the area of \triangle AOB is $\frac{5\sqrt{29}}{2}$.

Solution:



The position vectors of A and B are

$$a = \begin{pmatrix} 7 \\ 4 \\ 4 \end{pmatrix} \text{ and } b = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$$

$$a \cdot b = \begin{pmatrix} 7 \\ 4 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix} = 14 - 8 - 4 = 2$$

$$|a| = \sqrt{\frac{7^2 + 4^2 + 4^2}{2}} = \sqrt{81} = 9$$

$$|b| = \sqrt{\frac{2^2 + 4^2 + 4^2}{2}} = \sqrt{81} = 9$$

$$|b| = \sqrt{\frac{2^2 + 4^2 + 4^2}{2}} = \sqrt{81} = 9$$

$$9 \times 3 \times \cos \theta = 2$$

$$\cos \theta = \frac{2}{27}$$

$$\cos \omega \text{ AOB} = \frac{2}{27}$$

$$\operatorname{Area of} \ \omega \text{ AOB} = \frac{1}{2} |a| |b| \sin \omega \text{ AOB}$$

Using
$$\sin^2 \theta + \cos^2 \theta = 1$$
:
 $\sin^2 \angle AOB = 1 - \left(\frac{2}{27}\right)^2 = \frac{725}{27^2}$
 $\sin \angle AOB = \sqrt{\frac{725}{27^2}} = \frac{\sqrt{25}\sqrt{29}}{27} = \frac{5\sqrt{29}}{27}$
Area of $\triangle AOB = \frac{1}{2} \times 9 \times 3 \times \frac{5\sqrt{29}}{27} = \frac{5\sqrt{29}}{2}$

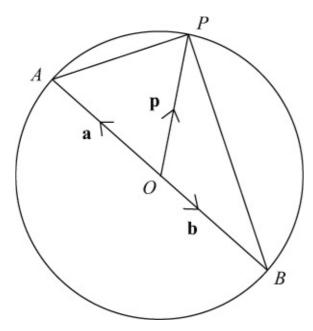
Vectors Exercise G, Question 14

Question:

AB is a diameter of a circle centred at the origin O, and P is any point on the circumference of the circle.

Using the position vectors of *A*, *B* and *P*, prove (using a scalar product) that *AP* is perpendicular to *BP* (i.e. the angle in the semicircle is a right angle).

Solution:



Let the position vectors, referred to origin *O*, of *A*, *B* and *P* be **a**, **b** and **p** respectively.

Since |OA| = |OB| and AB is a straight line, b = -a AP = p - a BP = p - b = p - (-a) = p + a $AP \cdot BP = (p - a) \cdot (p + a) = p \cdot (p + a) - a \cdot (p + a)$ $= p \cdot p + p \cdot a - a \cdot p - a \cdot a$ $= p \cdot p - a \cdot a$ $p \cdot p = |p|^2$ and $a \cdot a = |a|^2$ Also |p| = |a|, since the magnitude of each vector equals the radius of the circle. So $AP \cdot BP = |p|^2 - |a|^2 = 0$

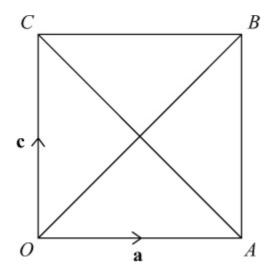
Since the scalar product is zero, AP is perpendicular to BP.

Vectors Exercise G, Question 15

Question:

Use a vector method to prove that the diagonals of the square *OABC* cross at right angles.

Solution:



Let the position vectors, referred to origin *O*, of *A* and *C* be **a** and **c** respectively. AB = OC = cAC = c - a

But |c| = |a|, since the magnitude of each vector equals the length of the side of the square.

So AC . OB = $|c|^2 - |a|^2 = 0$ Since the scalar product is zero; the diagonals cross at right angles.

Vectors Exercise H, Question 1

Question:

Find a vector equation of the straight line which passes through the point A, with position vector \mathbf{a} , and is parallel to the vector \mathbf{b} :

(a)
$$a = 6i + 5j - k$$
, $b = 2i - 3j - k$
(b) $a = 2i + 5j$, $b = i + j + k$
(c) $a = -7i + 6j + 2k$, $b = 3i + j + 2k$
(d) $a = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}$, $b = \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix}$
(e) $a = \begin{pmatrix} 6 \\ -11 \\ 2 \end{pmatrix}$, $b = \begin{pmatrix} 0 \\ 5 \\ -2 \end{pmatrix}$

Solution:

(a)
$$\mathbf{r} = \begin{pmatrix} 6 \\ 5 \\ -1 \end{pmatrix} + t \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix}$$

(b) $\mathbf{r} = \begin{pmatrix} 2 \\ 5 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
(c) $\mathbf{r} = \begin{pmatrix} -7 \\ 6 \\ 2 \end{pmatrix} + t \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$
(d) $\mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix} + t \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix}$

(e)
$$\mathbf{r} = \begin{pmatrix} 6 \\ -11 \\ 2 \end{pmatrix} + t \begin{pmatrix} 0 \\ 5 \\ -2 \end{pmatrix}$$

Vectors Exercise H, Question 2

Question:

Calculate, to 1 decimal place, the distance between the point *P*, where t = 1, and the point *Q*, where t = 5, on the line with equation:

(a)
$$\mathbf{r} = (2\mathbf{i} - \mathbf{j} + \mathbf{k}) + t(3\mathbf{i} - 8\mathbf{j} - \mathbf{k})$$

(b)
$$\mathbf{r} = (\mathbf{i} + 4\mathbf{j} + \mathbf{k}) + t (6\mathbf{i} - 2\mathbf{j} + 3\mathbf{k})$$

(c)
$$\mathbf{r} = (2\mathbf{i} + 5\mathbf{k}) + t(-3\mathbf{i} + 4\mathbf{j} - \mathbf{k})$$

Solution:

(a)
$$t = 1$$
: $p = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} 3 \\ -8 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ -9 \\ 0 \end{pmatrix}$
 $t = 5$: $q = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + 5 \begin{pmatrix} 3 \\ -8 \\ -1 \end{pmatrix} = \begin{pmatrix} 17 \\ -41 \\ -4 \end{pmatrix}$
 $PQ = q - p = \begin{pmatrix} 17 \\ -41 \\ -4 \end{pmatrix} - \begin{pmatrix} 5 \\ -9 \\ 0 \end{pmatrix} = \begin{pmatrix} 12 \\ -32 \\ -4 \end{pmatrix}$
Distance $= |PQ| = \sqrt{12^2 + (-32)^2 + (-4)^2}$
 $= \sqrt{1184} = 34.4 (1 \text{ d.p.})$
(b) $t = 1$: $p = \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 2 \\ 4 \end{pmatrix}$
 $t = 5$: $q = \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} + 5 \begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 31 \\ -6 \\ 16 \end{pmatrix}$
 $PQ = q - p = \begin{pmatrix} 31 \\ -6 \\ 16 \end{pmatrix} - \begin{pmatrix} 7 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 24 \\ -8 \\ 12 \end{pmatrix}$
Distance $= |PQ| = \sqrt{24^2 + (-8)^2 + 12^2}$
 $= \sqrt{784} = 28 (exact)$

(c)
$$t = 1$$
: $p = \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix} + 1 \begin{pmatrix} -3 \\ 4 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 4 \\ 4 \end{pmatrix}$
 $t = 5$: $q = \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix} + 5 \begin{pmatrix} -3 \\ 4 \\ -1 \end{pmatrix} = \begin{pmatrix} -13 \\ 20 \\ 0 \end{pmatrix}$
 $PQ = q - p = \begin{pmatrix} -13 \\ 20 \\ 0 \end{pmatrix} - \begin{pmatrix} -1 \\ 4 \\ 4 \end{pmatrix} = \begin{pmatrix} -12 \\ 16 \\ -4 \end{pmatrix}$
Distance $= |PQ| = \sqrt{(-12)^2 + 16^2 + (-4)^2}$
 $= \sqrt{416} = 20.4 (1 \text{ d.p.})$

Vectors Exercise H, Question 3

Question:

Find a vector equation for the line which is parallel to the *z*-axis and passes through the point (4, -3, 8).

Solution:

Vector $\mathbf{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ is in the direction of the *z*-axis.

The point (4, -3, 8) has position vector $\begin{pmatrix} 4 \\ -3 \\ 8 \end{pmatrix}$.

The equation of the line is

	(4)		(0)
r =		- 3		+ <i>t</i>		0	
	l	8	J		l	1	J

Vectors Exercise H, Question 4

Question:

Find a vector equation for the line which passes through the points:

(a) (2, 1, 9) and (4, -1, 8)
(b) (-3, 5, 0) and (7, 2, 2)
(c) (1, 11, -4) and (5, 9, 2)
(d) (-2, -3, -7) and (12, 4, -3)

Solution:

(a)
$$\mathbf{a} = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 4 \\ -1 \\ 8 \end{pmatrix}$$

 $\mathbf{b} - \mathbf{a} = \begin{pmatrix} 4 \\ -1 \\ 8 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$

Equation is

$$\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + t \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$$

(b)
$$\mathbf{a} = \begin{pmatrix} -3 \\ 5 \\ 0 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 7 \\ 2 \\ 2 \end{pmatrix}$$

 $\mathbf{b} - \mathbf{a} = \begin{pmatrix} 7 \\ 2 \\ 2 \end{pmatrix} - \begin{pmatrix} -3 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 10 \\ -3 \\ 2 \end{pmatrix}$

Equation is

$$\mathbf{r} = \left(\begin{array}{c} -3 \\ 5 \\ 0 \end{array}\right) + t \left(\begin{array}{c} 10 \\ -3 \\ 2 \end{array}\right)$$

(c)
$$\mathbf{a} = \begin{pmatrix} 1 \\ 11 \\ -4 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 5 \\ 9 \\ 2 \end{pmatrix}$
 $\mathbf{b} - \mathbf{a} = \begin{pmatrix} 5 \\ 9 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 11 \\ -4 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 6 \end{pmatrix}$
Equation is
 $\mathbf{r} = \begin{pmatrix} 1 \\ 11 \\ -4 \end{pmatrix} + t \begin{pmatrix} 4 \\ -2 \\ 6 \end{pmatrix}$
(d) $\mathbf{a} = \begin{pmatrix} -2 \\ -3 \\ -7 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 12 \\ 4 \\ -3 \end{pmatrix}$
 $\mathbf{b} - \mathbf{a} = \begin{pmatrix} 12 \\ 4 \\ -3 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -7 \end{pmatrix} = \begin{pmatrix} 14 \\ 7 \\ 4 \end{pmatrix}$
Equation is
 $\mathbf{r} = \begin{pmatrix} -2 \\ -3 \\ -7 \end{pmatrix} + t \begin{pmatrix} 14 \\ 7 \\ 4 \end{pmatrix}$

Vectors Exercise H, Question 5

Question:

The point (1, p, q) lies on the line *l*. Find the values of *p* and *q*, given that the equation is *l* is:

(a)
$$\mathbf{r} = (2\mathbf{i} - 3\mathbf{j} + \mathbf{k}) + t(\mathbf{i} - 4\mathbf{j} - 9\mathbf{k})$$

(b) $\mathbf{r} = (-4\mathbf{i} + 6\mathbf{j} - \mathbf{k}) + t(2\mathbf{i} - 5\mathbf{j} - 8\mathbf{k})$
(c) $\mathbf{r} = (16\mathbf{i} - 9\mathbf{j} - 10\mathbf{k}) + t(3\mathbf{i} + 2\mathbf{j} + \mathbf{k})$

Solution:

(a)
$$\mathbf{r} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -4 \\ -9 \end{pmatrix}$$

 $x = 1: \quad 2+t=1 \quad \Rightarrow \quad t=-1$
 $\mathbf{r} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -4 \\ -9 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 10 \end{pmatrix}$
So $p = 1$ and $q = 10$.
(b) $\mathbf{r} = \begin{pmatrix} -4 \\ 6 \\ -1 \end{pmatrix} + t \begin{pmatrix} 2 \\ -5 \\ -8 \end{pmatrix}$
 $x = 1: \quad -4+2t=1 \quad \Rightarrow \quad 2t=5 \quad \Rightarrow \quad t=\frac{5}{2}$
 $\mathbf{r} = \begin{pmatrix} -4 \\ 6 \\ -1 \end{pmatrix} + \frac{5}{2} \begin{pmatrix} 2 \\ -5 \\ -8 \end{pmatrix} = \begin{pmatrix} 1 \\ -6\frac{1}{2} \\ -21 \end{pmatrix}$
So $p = -6\frac{1}{2}$ and $q = -21$.
(c) $\mathbf{r} = \begin{pmatrix} 16 \\ -9 \\ -10 \end{pmatrix} + t \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$
 $x = 1: \quad 16+3t=1 \quad \Rightarrow \quad 3t=-15 \quad \Rightarrow \quad t=-5$

$$\mathbf{r} = \begin{pmatrix} 16 \\ -9 \\ -10 \end{pmatrix} + \begin{pmatrix} -5 \\ -5 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -19 \\ -15 \end{pmatrix}$$

So $p = -19$ and $q = -15$.

Vectors Exercise I, Question 1

Question:

Determine whether the lines with the given equations intersect. If they do intersect, find the coordinates of their point of intersection.

$$\mathbf{r} = \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} 1 \\ 14 \\ 16 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$$

Solution:

$$\mathbf{r} = \begin{pmatrix} 2+2t \\ 4+t \\ -7+3t \end{pmatrix}, \mathbf{r} = \begin{pmatrix} 1+s \\ 14-s \\ 16-2s \end{pmatrix}.$$
At an intersection point: $\begin{pmatrix} 2+2t \\ 4+t \\ -7+3t \end{pmatrix} = \begin{pmatrix} 1+s \\ 14-s \\ 16-2s \end{pmatrix}$

$$2+2t = 1+s$$

$$4+t = 14-s$$
Adding: $6+3t = 15$

$$\Rightarrow \quad 3t = 9$$

$$\Rightarrow \quad t = 3$$

$$2+6 = 1+s$$

$$\Rightarrow \quad s = 7$$
If the lines intersect, $-7+3t = 16-2s$ must be true.
$$-7+3t = -7+9 = 2$$

$$16-2s = 16-14 = 2$$
The *z* components are equal, so the lines do intersect.
Intersection point:
$$\begin{pmatrix} 2+2t \\ 4+t = 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 7 \end{pmatrix}$$

 $\begin{pmatrix} 2+2t \\ 4+t \\ -7+3t \end{pmatrix} = \begin{pmatrix} 8 \\ 7 \\ 2 \end{pmatrix}$ Coordinates (8, 7, 2)

Vectors Exercise I, Question 2

Question:

Determine whether the lines with the given equations intersect. If they do intersect, find the coordinates of their point of intersection.

$$\mathbf{r} = \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix} + t \begin{pmatrix} 9 \\ -2 \\ -1 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} + s \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$

Solution:

$$\mathbf{r} = \begin{pmatrix} 2+9t\\ 2-2t\\ -3-t \end{pmatrix}, \mathbf{r} = \begin{pmatrix} 3+2s\\ -1-s\\ 2+3s \end{pmatrix}$$

At an intersection point: $\begin{pmatrix} 2+9t\\ 2-2t\\ -3-t \end{pmatrix} = \begin{pmatrix} 3+2s\\ -1-s\\ 2+3s \end{pmatrix}$
 $2+9t = 3+2s$
 $2-2t = -1-s$ (×2)
 $2+9t = 3+2s$
 $4-4t = -2-2s$
Adding: $6+5t = 1$
 $\Rightarrow 5t = -5$
 $\Rightarrow t = -1$
 $2-9 = 3+2s$
 $\Rightarrow 2s = -10$
 $\Rightarrow s = -5$

If the lines intersect, -3 - t = 2 + 3s must be true.

$$-3 - t = -3 + 1 = -2$$

2 + 3s = 2 - 15 = -13

The *z* components are not equal, so the lines do not intersect.

Vectors Exercise I, Question 3

Question:

Determine whether the lines with the given equations intersect. If they do intersect, find the coordinates of their point of intersection.

$$\mathbf{r} = \begin{pmatrix} 12 \\ 4 \\ -6 \end{pmatrix} + t \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} 8 \\ -2 \\ 6 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ -5 \end{pmatrix}$$

Solution:

$$\mathbf{r} = \begin{pmatrix} 12 - 2t \\ 4 + t \\ -6 + 4t \end{pmatrix}, \mathbf{r} = \begin{pmatrix} 8 + 2s \\ -2 + s \\ 6 - 5s \end{pmatrix}$$

At an intersection point: $\begin{pmatrix} 12 - 2t \\ 4 + t \\ -6 + 4t \end{pmatrix} = \begin{pmatrix} 8 + 2s \\ -2 + s \\ 6 - 5s \end{pmatrix}$
 $12 - 2t = 8 + 2s$
 $4 + t = -2 + s$ (×2)
 $12 - 2t = 8 + 2s$
 $4 + t = -2 + s$ (×2)
 $12 - 2t = 8 + 2s$
Adding: $20 = 4 + 4s$
 $\Rightarrow 4s = 16$
 $\Rightarrow s = 4$
 $12 - 2t = 8 + 8$
 $\Rightarrow 2t = -4$
 $\Rightarrow t = -2$
If the lines intersect, $-6 + 4t = 6 - 5s$ must be true.
 $-6 + 4t = -6 - 8 = -14$
 $6 - 5s = 6 - 20 = -14$
The z components are equal, so the lines do intersect. Intersection point:
 $\begin{pmatrix} 12 - 2t \\ 4 + t \end{pmatrix} = \begin{pmatrix} 16 \\ 2 \end{pmatrix}$

 $\begin{vmatrix} 4+t \\ -6+4t \end{vmatrix} = \begin{vmatrix} 2 \\ -14 \end{vmatrix}.$ Coordinates (16, 2, -14)

Vectors Exercise I, Question 4

Question:

Determine whether the lines with the given equations intersect. If they do intersect, find the coordinates of their point of intersection.

$$\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} + t \begin{pmatrix} 4 \\ 2 \\ 6 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} -2 \\ -9 \\ 12 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

Solution:

$$\mathbf{r} = \begin{pmatrix} 1+4t\\ 2t\\ 4+6t \end{pmatrix}, \mathbf{r} = \begin{pmatrix} -2+s\\ -9+2s\\ 12-s \end{pmatrix}$$

At an intersection point: $\begin{pmatrix} 1+4t\\ 2t\\ 4+6t \end{pmatrix} = \begin{pmatrix} -2+s\\ -9+2s\\ 12-s \end{pmatrix}$
 $1+4t = -2+s\\ 2t = -9+2s \quad (\times 2)$
 $1+4t = -2+s\\ 4t = -18+4s$
Subtracting: $1 = 16 - 3s$
 $\Rightarrow 3s = 15$
 $\Rightarrow s = 5$
 $1+4t = -2+5$
 $\Rightarrow 4t = 2$
 $\Rightarrow t = \frac{1}{2}$
If the lines intersect, $4 + 6t = 12 - s$ must be true.

A + 6t = 4 + 3 = 7 12 - s = 12 - 5 = 7The z components are equal, so the lines do intersect. Intersection point: $\begin{pmatrix} 1+4t \\ 2t \\ 4+6t \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 7 \end{pmatrix}$. Coordinates (3, 1, 7)

Vectors Exercise I, Question 5

Question:

Determine whether the lines with the given equations intersect. If they do intersect, find the coordinates of their point of intersection.

$$\mathbf{r} = \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ -4 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix} + s \begin{pmatrix} 6 \\ -4 \\ 1 \end{pmatrix}$$

Solution:

$$\mathbf{r} = \begin{pmatrix} 3+2t\\ -3+t\\ 1-4t \end{pmatrix}, \mathbf{r} = \begin{pmatrix} 3+6s\\ 4-4s\\ 2+s \end{pmatrix}$$

At an intersection point: $\begin{pmatrix} 3+2t\\ -3+t\\ 1-4t \end{pmatrix} = \begin{pmatrix} 3+6s\\ 4-4s\\ 2+s \end{pmatrix}$
 $3+2t=3+6s$
 $-3+t=4-4s$ (×2)
 $3+2t=3+6s$
 $-6+2t=8-8s$
Subtracting: $9 = -5+14s$
 $\Rightarrow 14s = 14$
 $\Rightarrow s = 1$
 $3+2t = 3+6$
 $\Rightarrow 2t = 6$
 $\Rightarrow t = 3$
If the lines intersect, $1-4t = 2+s$ must be true.
 $1-4t = 1-12 = -11$
 $2+s = 2+1 = 3$
The z components are not equal, so the lines do not intersect.

Vectors Exercise J, Question 1

Question:

Find, to 1 decimal place, the acute angle between the lines with the given vector equations:

Solution:

Direction vectors are
$$a = \begin{pmatrix} 3 \\ -5 \\ -1 \end{pmatrix}$$
 and $b = \begin{pmatrix} 2 \\ 1 \\ -9 \end{pmatrix}$

$$\cos \theta = \frac{a \cdot b}{|a| |b|}$$

$$a \cdot b = \begin{pmatrix} 3 \\ -5 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ -9 \end{pmatrix} = 6 - 5 + 9 = 10$$

$$|a| = \sqrt{3^2 + (-5)^2 + (-1)^2} = \sqrt{35}$$

$$|b| = \sqrt{2^2 + 1^2 + (-9)^2} = \sqrt{86}$$

$$\cos \theta = \frac{10}{\sqrt{35\sqrt{86}}}$$

$$\theta = 79.5^{\circ} (1 \text{ d.p.})$$
The acute angle between the lines is 79.5 ° (1 d.p.)

Vectors Exercise J, Question 2

Question:

Find, to 1 decimal place, the acute angle between the lines with the given vector equations:

r = (i - j + 7k) + t(-2i - j + 3k)and r = (8i + 5j - k) + s(-4i - 2j + k)

Solution:

Direction vectors are
$$a = \begin{pmatrix} -2 \\ -1 \\ 3 \end{pmatrix}$$
 and $b = \begin{pmatrix} -4 \\ -2 \\ 1 \end{pmatrix}$

$$\cos \theta = \frac{|\mathbf{a} \cdot \mathbf{b}|}{|\mathbf{a}| |\mathbf{b}|}$$

$$\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} -2 \\ -1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -4 \\ -2 \\ 1 \end{pmatrix} = 8 + 2 + 3 = 13$$

$$|\mathbf{a}| = \sqrt{(-2)^2 + (-1)^2 + 3^2} = \sqrt{14}$$

$$|\mathbf{b}| = \sqrt{(-4)^2 + (-2)^2 + 1^2} = \sqrt{21}$$

$$\cos \theta = \frac{13}{\sqrt{14}\sqrt{21}}$$

$$\theta = 40.7^{\circ} (1 \text{ d.p.})$$
The acute angle between the lines is 40.7 ° (1 d.p.)

Vectors Exercise J, Question 3

Question:

Find, to 1 decimal place, the acute angle between the lines with the given vector equations:

 $\begin{array}{l} r = \;(\; 3i + 5j - k\;) \; + t\;(\; i + j + k\;) \\ \text{and}\; r = \;(\; -i + 11j + 5k\;) \; + s\;(\; 2i - 7j + 3k\;) \end{array}$

Solution:

Direction vectors are $a = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $b = \begin{pmatrix} 2 \\ -7 \\ 3 \end{pmatrix}$

$$\cos \theta = \frac{a \cdot b}{|a| |b|}$$

$$a \cdot b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -7 \\ 3 \end{pmatrix} = 2 - 7 + 3 = -2$$

$$|a| = \sqrt{\frac{1^2 + 1^2 + 1^2}{2} + \frac{\sqrt{3}}{2}} = \sqrt{62}$$

$$|b| = \sqrt{\frac{2^2 + (-7)^2 + 3^2}{\sqrt{3}\sqrt{62}}} = \sqrt{62}$$

$$\cos \theta = \frac{-2}{\sqrt{3}\sqrt{62}}$$

$$\theta = 98.4^{\circ} (1 \text{ d.p.})$$
This is the angle between the two vectors.
The acute angle between the lines is $180^{\circ} - 98.4^{\circ} = 81.6^{\circ} (1 \text{ d.p.})$.

Vectors Exercise J, Question 4

Question:

Find, to 1 decimal place, the acute angle between the lines with the given vector equations:

r = (i + 6j - k) + t (8i - j - 2k)and r = (6i + 9j) + s (i + 3j - 7k)

Solution:

Direction vectors are
$$a = \begin{pmatrix} 8 \\ -1 \\ -2 \end{pmatrix}$$
 and $b = \begin{pmatrix} 1 \\ 3 \\ -7 \end{pmatrix}$

$$\cos \theta = \frac{a \cdot b}{|a| |b|}$$

$$a \cdot b = \begin{pmatrix} 8 \\ -1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 3 \\ -7 \end{pmatrix} = 8 - 3 + 14 = 19$$

$$|a| = \sqrt{8^2 + (-1)^2 + (-2)^2} = \sqrt{69}$$

$$|b| = \sqrt{1^2 + 3^2 + (-7)^2} = \sqrt{59}$$

$$\cos \theta = \frac{19}{\sqrt{69}\sqrt{59}}$$

$$\theta = 72.7^{\circ} (1 \text{ d.p.})$$
The acute angle between the lines is 72.7 ° (1 d.p.)

Vectors Exercise J, Question 5

Question:

Find, to 1 decimal place, the acute angle between the lines with the given vector equations:

r = (2i + k) + t (11i + 5j - 3k)and r = (i + j) + s (-3i + 5j + 4k)

Solution:

Direction vectors are
$$a = \begin{pmatrix} 11 \\ 5 \\ -3 \end{pmatrix}$$
 and $b = \begin{pmatrix} -3 \\ 5 \\ 4 \end{pmatrix}$

$$\cos \theta = \frac{a \cdot b}{|a| |b|}$$

$$a \cdot b = \begin{pmatrix} 11 \\ 5 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 5 \\ 4 \end{pmatrix} = -33 + 25 - 12 = -20$$

$$|a| = \sqrt{11^2 + 5^2 + (-3)^2} = \sqrt{155}$$

$$|b| = \sqrt{(-3)^2 + 5^2 + 4^2} = \sqrt{50}$$

$$\cos \theta = \frac{-20}{\sqrt{155}\sqrt{50}}$$

$$\theta = 103.1^{\circ} (1 \text{ d.p.})$$
This is the angle between the two vectors.
The acute angle between the lines is $180^{\circ} - 103.1^{\circ} = 76.9^{\circ} (1 \text{ d.p.})$.

Vectors **Exercise J, Question 6**

Question:

The straight lines l_1 and l_2 have vector equations r = (i + 4j + 2k) + t (8i + 5j + k) and r = (i + 4j + 2k) + s (3i + j)respectively, and P is the point with coordinates (1, 4, 2).

(a) Show that the point Q (9, 9, 3) lies on l_1 .

(b) Find the cosine of the acute angle between l_1 and l_2 .

(c) Find the possible coordinates of the point R, such that R lies on l_2 and PQ = PR.

1

Solution:

(a) Line
$$l_1$$
: $\mathbf{r} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} + t \begin{pmatrix} 8 \\ 5 \\ 1 \end{pmatrix}$
When $t = 1$, $\mathbf{r} = \begin{pmatrix} 9 \\ 9 \\ 3 \end{pmatrix}$
So the point (9, 9, 3) lies on l_1 .
(b) Direction vectors are $\mathbf{a} = \begin{pmatrix} 8 \\ 5 \\ 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$
 $\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} 8 \\ 5 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} = 24 + 5 + 0 = 29$
 $|\mathbf{a}| = \sqrt{8^2 + 5^2 + 1^2} = \sqrt{90}$
 $|\mathbf{b}| = \sqrt{3^2 + 1^2 + 0^2} = \sqrt{10}$
 $\cos \theta = \frac{29}{\sqrt{90}\sqrt{10}} = \frac{29}{\sqrt{900}} = \frac{29}{30}$

(c) PQ =
$$\sqrt{\frac{(9-1)^2}{8^2+5^2+1^2}} = \sqrt{9-4} = \sqrt{90}^2$$

Line
$$l_2$$
: $\mathbf{r} = \begin{pmatrix} 1\\ 4\\ 2 \end{pmatrix} + s \begin{pmatrix} 3\\ 1\\ 0 \end{pmatrix} = \begin{pmatrix} 1+3s\\ 4+s\\ 2 \end{pmatrix}$
Let the coordinates of R be $(1+3s, 4+s, 2)$
 $PR = \sqrt{(1+3s-1)^2 + (4+s-4)^2 + (2-2)^2}$
 $= \sqrt{9s^2 + s^2} = \sqrt{10s^2}$
 $PQ^2 = PR^2$: $90 = 10s^2$
 $\Rightarrow s^2 = 9$
 $\Rightarrow s = \pm 3$
When $s = 3, \mathbf{r} = \begin{pmatrix} 10\\ 7\\ 2 \end{pmatrix}$ R : $\begin{pmatrix} 10, 7, 2 \end{pmatrix}$
When $s = -3, \mathbf{r} = \begin{pmatrix} -8\\ 1\\ 2 \end{pmatrix}$ R : $\begin{pmatrix} -8, 1, 2 \end{pmatrix}$

Vectors Exercise K, Question 1

Question:

With respect to an origin O, the position vectors of the points L, M and N are (4i + 7j + 7k), (i + 3j + 2k) and (2i + 4j + 6k) respectively.

(a) Find the vectors ML and MN.

(b) Prove that $\cos \angle LMN = \frac{9}{10}$.

Đ

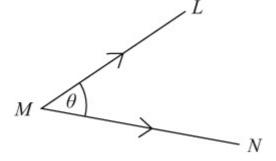
Solution:

$$l = \begin{pmatrix} 4 \\ 7 \\ 7 \end{pmatrix}, m = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, n = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$$

(a) ML = 1 - m =
$$\begin{pmatrix} 4 \\ 7 \\ 7 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$$

MN = n - m = $\begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$

(b)



$$\cos \theta = \frac{ML \cdot MN}{|ML| |MN|}$$

$$ML \cdot MN = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} = 3 + 4 + 20 = 27$$

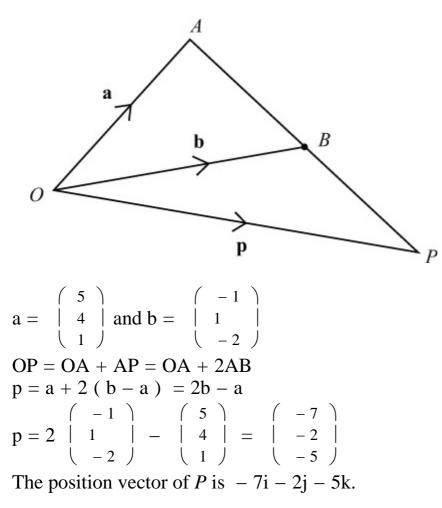
Vectors Exercise K, Question 2

Question:

The position vectors of the points A and B relative to an origin O are 5i + 4j + k, - i + j - 2k respectively. Find the position vector of the point P which lies on AB produced such that AP = 2BP.

B

Solution:



Vectors Exercise K, Question 3

Question:

Points A, B, C, D in a plane have position vectors a = 6i + 8j, $b = \frac{3}{2}a$,

c = 6i + 3j, $d = \frac{5}{3}c$ respectively. Write down vector equations of the lines *AD* and *BC* and find the position vector of their point of intersection.

Ð

Solution:

 $a = \begin{pmatrix} 6 \\ 8 \end{pmatrix}, b = \frac{3}{2}a = \begin{pmatrix} 9 \\ 12 \end{pmatrix}$ $c = \begin{pmatrix} 6 \\ 3 \end{pmatrix}, d = \frac{5}{3}c = \begin{pmatrix} 10 \\ 5 \end{pmatrix}$ Line AD: AD = d - a = $\begin{pmatrix} 10 \\ 5 \end{pmatrix}$ - $\begin{pmatrix} 6 \\ 8 \end{pmatrix}$ = $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$ $\mathbf{r} = \begin{pmatrix} 6 \\ 8 \end{pmatrix} + t \begin{pmatrix} 4 \\ -3 \end{pmatrix}$ Line BC: BC = c - b = $\begin{pmatrix} 6 \\ 3 \end{pmatrix} - \begin{pmatrix} 9 \\ 12 \end{pmatrix} = \begin{pmatrix} -3 \\ -9 \end{pmatrix}$ $\mathbf{r} = \begin{pmatrix} 9 \\ 12 \end{pmatrix} + s \begin{pmatrix} -3 \\ -9 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 9 \\ 12 \end{pmatrix} + s \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ Where AD and BC intersect, $\begin{pmatrix} 6+4t \\ 8-3t \end{pmatrix} = \begin{pmatrix} 9+s \\ 12+3s \end{pmatrix}$ (Using the last version of BC) 6 + 4t = 9 + s $(\times 3)$ 8 - 3t = 12 + 3s18 + 12t = 27 + 3s8 - 3t = 12 + 3sSubtracting: 10 + 15t = 1515t = 5⇒

$$\Rightarrow$$
 $t = \frac{1}{3}$

Intersection: $\mathbf{r} = \begin{pmatrix} 6+4t \\ 8-3t \end{pmatrix} = \begin{pmatrix} \frac{22}{3} \\ 7 \end{pmatrix}$

$$\mathbf{r} = \frac{22}{3}\mathbf{i} + 7\mathbf{j}$$

Vectors Exercise K, Question 4

Question:

Find the point of intersection of the line through the points (2, 0, 1) and (-1, 3, 4) and the line through the points (-1, 3, 0) and (4, -2, 5). Calculate the acute angle between the two lines.

B

Solution:

Line through (2, 0, 1) and (-1, 3, 4). Let $a = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ and $b = \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix}$ $\mathbf{b} - \mathbf{a} = \left(\begin{array}{c} -1 \\ 3 \\ 4 \end{array}\right) - \left(\begin{array}{c} 2 \\ 0 \\ 1 \end{array}\right) = \left(\begin{array}{c} -3 \\ 3 \\ 3 \end{array}\right)$ Equation: $\mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} -3 \\ 3 \\ 3 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ Line through (-1, 3, 0) and (4, -2, 5). Let $\mathbf{c} = \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix}$ and $\mathbf{d} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix}$ $\mathbf{d} - \mathbf{c} = \left(\begin{array}{c} 4\\ -2\\ 5\end{array}\right) - \left(\begin{array}{c} -1\\ 3\\ 0\end{array}\right) = \left(\begin{array}{c} 5\\ -5\\ 5\end{array}\right)$ Equation: $\mathbf{r} = \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix} + s \begin{pmatrix} 5 \\ -5 \\ 5 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$

At the intersection point: $\begin{pmatrix} 2-t \\ t \\ 1+t \end{pmatrix} = \begin{pmatrix} -1+s \\ 3-s \\ s \end{pmatrix}$ 2 - t = -1 + st = 3 - s1 + t = sAdding the second and third equations: 1 + 2t = 32t = 2*t* = 1 s = 2Intersection point: $\mathbf{r} = \begin{pmatrix} 2-t \\ t \\ 1+t \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ Coordinates (1, 1, 2) Direction vectors of the lines are $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ Calling these **m** and **n**: $\cos\theta = \frac{\mathbf{m} \cdot \mathbf{n}}{|\mathbf{m}| |\mathbf{n}|}$ $m \cdot n = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = -1 - 1 + 1 = -1 \\ | m | = \sqrt{(-1)^2 + 1^2 + 1^2} = \sqrt{3} \\ | n | = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}$ $\cos\theta = \frac{-1}{\sqrt{3\sqrt{3}}} = \frac{-1}{3}$ $\theta = 109.5^{\circ}$ (1 d.p.) This is the angle between the two vectors. The acute angle between the lines is $180^{\circ} - 109.5^{\circ} = 70.5^{\circ} (1 \text{ d.p.})$.

Vectors Exercise K, Question 5

Question:

Show that the lines $\begin{aligned} r &= (-2i+5j-11k) + \lambda (3i+j+3k) \\ r &= 8i+9j + \mu (4i+2j+5k) \\ intersect. Find the position vector of their common point. \end{aligned}$

Ð

Solution:

$$\mathbf{r} = \begin{pmatrix} -2+3\lambda \\ 5+\lambda \\ -11+3\lambda \end{pmatrix}, \mathbf{r} = \begin{pmatrix} 8+4\mu \\ 9+2\mu \\ 5\mu \end{pmatrix}$$

At an intersection point: $\begin{pmatrix} -2+3\lambda \\ 5+\lambda \\ -11+3\lambda \end{pmatrix} = \begin{pmatrix} 8+4\mu \\ 9+2\mu \\ 5\mu \end{pmatrix}$
 $-2+3\lambda = 8+4\mu \\ 5+\lambda = 9+2\mu \quad (\times 2) \\ -2+3\lambda = 8+4\mu \\ 10+2\lambda = 18+4\mu \\ \text{Subtracting:} \quad -12+\lambda = -10$
 $\Rightarrow \lambda = 12-10$
 $\Rightarrow \lambda = 12-10$
 $\Rightarrow \lambda = 2 \\ -2+6 = 8+4\mu \\ \Rightarrow \lambda = -1 \\ \text{If the lines intersect, } -11+3\lambda = 5\mu : \\ -11+3\lambda = -11+6 = -5 \\ 5\mu = -5 \\ \text{The z components are equal, so the lines do intersect. Intersection point: $\mathbf{r} = \begin{pmatrix} -2+3\lambda \\ 5+\lambda \\ -11+3\lambda \end{pmatrix} = \begin{pmatrix} 4 \\ 7 \\ -5 \end{pmatrix} = 4\mathbf{i} + 7\mathbf{j} - 5\mathbf{k}.$$

Vectors Exercise K, Question 6

Question:

Find a vector that is perpendicular to both 2i + j - k and i + j - 2k.

B

Solution:

Let the required vector be xi + yj + zk.

$$\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \text{ and } \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

$$2x + y - z = 0$$

$$2x + y - 2z = 0$$
Let $z = 1$:
$$2x + y = 1$$

$$x + y = 2$$
Subtracting: $x = -1, y = 3$
So $x = -1, y = 3$ and $z = 1$
A possible vector is $-i + 3j + k$.

Vectors Exercise K, Question 7

Question:

State a vector equation of the line passing through the points *A* and *B* whose position vectors are i - j + 3k and i + 2j + 2k respectively. Determine the position vector of the point *C* which divides the line segment *AB* internally such that AC = 2CB.

Ø

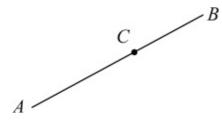
Solution:

$$\mathbf{a} = \left(\begin{array}{c} 1\\ -1\\ 3 \end{array}\right), \mathbf{b} = \left(\begin{array}{c} 1\\ 2\\ 2 \end{array}\right)$$

Equation of line:

 $\mathbf{r} = \mathbf{a} + t (\mathbf{b} - \mathbf{a})$ $\begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 0 \\ +t \end{bmatrix} = \mathbf{a}$

$$\begin{array}{c} 1 - 1 \\ 3 \end{array} \right) + 1 + 1 + 3 \\ -1 \end{array}$$



but AC = 2CB Position vector of *C*:

$$c = a + \frac{2}{3} \left(b - a \right)$$

$$= \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \frac{2}{3} \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \frac{7}{3} \end{pmatrix}$$

$$= i + j + \frac{7}{3}k$$

Vectors Exercise K, Question 8

Question:

Vectors **r** and **s** are given by $r = \lambda i + (2\lambda - 1)j - k$ $s = (1 - \lambda)i + 3\lambda j + (4\lambda - 1)k$ where λ is a scalar.

(a) Find the values of λ for which **r** and **s** are perpendicular. When $\lambda = 2$, **r** and **s** are the position vectors of the points *A* and *B* respectively, referred to an origin *0*.

(b) Find AB.

(c) Use a scalar product to find the size of \angle BAO, giving your answer to the nearest degree.

B

Solution:

$$\mathbf{r} = \left(\begin{array}{c} \lambda \\ 2 \lambda - 1 \\ -1 \end{array}\right) \quad \text{, and} \quad \mathbf{s} = \left(\begin{array}{c} 1 - \lambda \\ 3 \lambda \\ 4 \lambda - 1 \end{array}\right)$$

(a) If **r** and **s** are perpendicular, $r \cdot s = 0$

$$\mathbf{r} \cdot \mathbf{s} = \begin{pmatrix} \lambda \\ 2\lambda - 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 - \lambda \\ 3\lambda \\ 4\lambda - 1 \end{pmatrix}$$
$$= \lambda (1 - \lambda) + 3\lambda (2\lambda - 1) - 1 (4\lambda - 1)$$
$$= \lambda - \lambda^{2} + 6\lambda^{2} - 3\lambda - 4\lambda + 1$$
$$= 5\lambda^{2} - 6\lambda + 1$$
$$\therefore 5\lambda^{2} - 6\lambda + 1 = 0$$
$$(5\lambda - 1) (\lambda - 1) = 0$$
$$\lambda = \frac{1}{5} \text{ or } \lambda = 1$$

(b)
$$\lambda = 2$$
: $a = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}, b = \begin{pmatrix} -1 \\ 6 \\ 7 \end{pmatrix}$
 $AB = b - a = \begin{pmatrix} -1 \\ 6 \\ 7 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ 8 \end{pmatrix}$
 $= -3i + 3j + 8k$

(c) Using vectors AB and AO:

AB =
$$\begin{pmatrix} -3 \\ 3 \\ 8 \end{pmatrix}$$
, AO = $-a = \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}$
cos \angle BAO = $\frac{AB \cdot AO}{|AB| + AO|}$
AB · AO = $\begin{pmatrix} -3 \\ 3 \\ 8 \end{pmatrix}$ · $\begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}$ = $6 - 9 + 8 = 5$
 $|AB| = \sqrt{\begin{pmatrix} -3 \\ 2 \\ -3 \end{pmatrix}}$ · $\begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}$ = $6 - 9 + 8 = 5$
 $|AB| = \sqrt{\begin{pmatrix} (-3)^2 + 3^2 + 8^2 = \sqrt{82} \\ (-2)^2 + (-3)^2 + 1^2 = \sqrt{14}$
 $|AO| = \sqrt{(-2)^2 + (-3)^2 + 1^2} = \sqrt{14}$
 $\cos \angle BAO = \frac{5}{\sqrt{82}\sqrt{14}}$
 $\angle BAO = 82^\circ$ (nearest degree)

Vectors Exercise K, Question 9

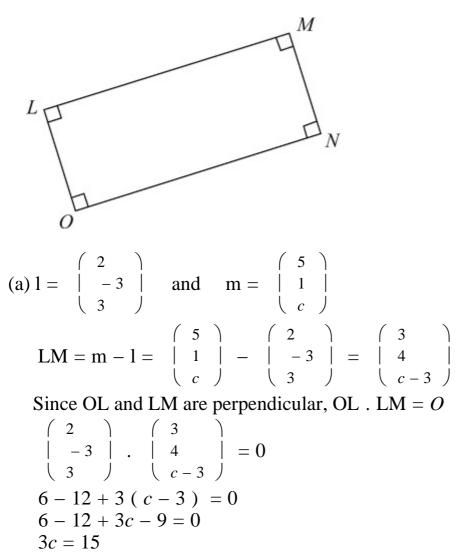
Question:

With respect to an origin O, the position vectors of the points L and M are 2i - 3j + 3k and 5i + j + ck respectively, where c is a constant. The point N is such that *OLMN* is a rectangle.

- (a) Find the value of *c*.
- (b) Write down the position vector of *N*.
- (c) Find, in the form r = p + tq, an equation of the line *MN*.

Ø

Solution:



c = 5

(b)
$$n = ON = LM = \begin{pmatrix} 3 \\ 4 \\ c-3 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}$$

 $n = 3i + 4j + 2k$

Using the point M and the direction vector \mathbf{l} :

$$\mathbf{r} = \left(\begin{array}{c} 5\\1\\5\end{array}\right) + t \left(\begin{array}{c} 2\\-3\\3\end{array}\right)$$

Vectors Exercise K, Question 10

Question:

The point A has coordinates (7, -1, 3) and the point B has coordinates (10, -2, 2). The line *l* has vector equation $r = i + j + k + \lambda$ (3i - j + k), where λ is a real parameter.

(a) Show that the point *A* lies on the line *l*.

(b) Find the length of *AB*.

(c) Find the size of the acute angle between the line l and the line segment AB, giving your answer to the nearest degree.

(d) Hence, or otherwise, calculate the perpendicular distance from B to the line l, giving your answer to two significant figures.

B

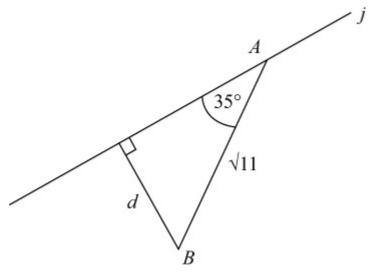
Solution:

(a) Line *l*:
$$\mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$$

Point *A* is $(7, -1, 3)$
Using $\lambda = 2, \mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ -1 \\ 3 \end{pmatrix}$
So *A* lies on the line *l*.
(b) $AB = \sqrt{(10-7)^2 + [-2-(-1)]^2 + (-1)^2} = \sqrt{(11)^2 + (2-3)^2}$
 $= \sqrt{3^2 + (-1)^2 + (-1)^2} = \sqrt{(11)^2}$
(c) $AB = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 10 \\ -2 \\ 2 \end{pmatrix} - \begin{pmatrix} 7 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}$
Angle between the vectors $\begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = 9 + 1 - 1 = 9$$

The magnitude of each of the vectors is $\sqrt{11}$
So $\cos \theta = \frac{9}{\sqrt{11}\sqrt{11}} = \frac{9}{11}$
 $\Rightarrow \quad \theta = 35^{\circ}$ (nearest degree)
(d)



$$\sin 35^{\circ} = \frac{d}{\sqrt{11}}$$

 $d = \sqrt{11} \sin 35^{\circ} = 1.9 (2 \text{ s.f.})$

Vectors Exercise K, Question 11

Question:

Referred to a fixed origin *O*, the points *A* and *B* have position vectors (5i - j - k) and (i - 5j + 7k) respectively.

- (a) Find an equation of the line *AB*.
- (b) Show that the point C with position vector 4i 2j + k lies on AB.
- (c) Show that *OC* is perpendicular to *AB*.
- (d) Find the position vector of the point *D*, where $D \not\equiv A$, on *AB* such that |OD| = |OA|.

B

Solution:

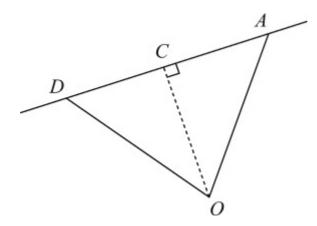
(a)
$$\mathbf{a} = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ -5 \\ 7 \end{pmatrix}$$

 $\mathbf{b} - \mathbf{a} = \begin{pmatrix} 1 \\ -5 \\ 7 \end{pmatrix} - \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} -4 \\ -4 \\ 8 \end{pmatrix}$
Equation of *AB*:
 $\mathbf{r} = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} + t \begin{pmatrix} -4 \\ -4 \\ 8 \end{pmatrix}$
or
 $\mathbf{r} = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} + t \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$
(b) Using $t = 1$: $\mathbf{r} = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} + 1 \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 1 \end{bmatrix}$
So the point with position vector $4\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ lies on *AB*.

(c) OC . AB =
$$\begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$$
 . $\begin{pmatrix} -4 \\ -4 \\ 8 \end{pmatrix}$ = $-16 + 8 + 8 = 0$

Since the scalar product is zero, OC is perpendicular to AB.

(d)



Since
$$OD = OA$$
, $DC = CA$, so $DC = CA$.
 $CA = a - c = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} - \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$
 $DC = c - d = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$
 $So d = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix}$
 $d = 3i - 3j + 3k$

Vectors Exercise K, Question 12

Question:

Referred to a fixed origin *O*, the points *A*, *B* and *C* have position vectors (9i - 2j + k), (6i + 2j + 6k) and (3i + pj + qk) respectively, where *p* and *q* are constants.

(a) Find, in vector form, an equation of the line *l* which passes through *A* and *B*. Given that *C* lies on *l*:

(b) Find the value of p and the value of q.

(c) Calculate, in degrees, the acute angle between OC and AB, The point D lies on AB and is such that OD is perpendicular to AB.

(d) Find the position vector of *D*.

Đ

Solution:

$$a = \begin{pmatrix} 9 \\ -2 \\ 1 \end{pmatrix}, b = \begin{pmatrix} 6 \\ 2 \\ 6 \end{pmatrix}, c = \begin{pmatrix} 3 \\ p \\ q \end{pmatrix}$$
(a) $b - a = \begin{pmatrix} 6 \\ 2 \\ 6 \end{pmatrix} - \begin{pmatrix} 9 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \\ 5 \end{pmatrix}$
Equation of *l*:
$$r = \begin{pmatrix} 9 \\ -2 \\ 1 \end{pmatrix} + t \begin{pmatrix} -3 \\ 4 \\ 5 \end{pmatrix}$$

(b) Since C lies on l,

$$\begin{pmatrix} 3 \\ p \\ q \end{pmatrix} = \begin{pmatrix} 9 \\ -2 \\ 1 \end{pmatrix} + t \begin{pmatrix} -3 \\ 4 \\ 5 \end{pmatrix}$$

$$3 = 9 - 3t$$

$$3t = 6$$

$$t = 2$$

So
$$p = -2 + 4t = 6$$

and $q = 1 + 5t = 11$
(c) $\cos \theta = \frac{OC \cdot AB}{|OC| |AB|}$
OC $\cdot AB = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 1 & 0C & 0 & 0 \\ 0 & 11 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 &$

$$d = \begin{pmatrix} 9 - \frac{9}{5} \\ -2 + \frac{12}{5} \\ 1 + 3 \end{pmatrix} = \frac{36}{5}i + \frac{2}{5}j + 4k$$

Vectors Exercise K, Question 13

Question:

Referred to a fixed origin O, the points A and B have position vectors (i + 2j - 3k) and (5i - 3j) respectively.

(a) Find, in vector form, an equation of the line l_1 which passes through A and B. The line l_2 has equation $r = (4i - 4j + 3k) + \lambda (i - 2j + 2k)$, where λ is a scalar parameter.

(b) Show that A lies on l_2 .

(c) Find, in degrees, the acute angle between the lines l_1 and l_2 . The point *C* with position vector (2i - k) lies on l_2 .

(d) Find the shortest distance from C to the line l_1 .

B

Solution:

(a)
$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 5 \\ -3 \\ 0 \end{pmatrix}$$

 $\mathbf{b} - \mathbf{a} = \begin{pmatrix} 5 \\ -3 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix}$
Equation of l_1 :
 $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + t \begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix}$

(b) Equation of l_2 :

$$\mathbf{r} = \begin{pmatrix} 4 \\ -4 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$$

Using
$$\lambda = -3$$
, $\mathbf{r} = \begin{pmatrix} 4 \\ -4 \\ 3 \end{pmatrix} - 3 \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$
So A lies on the line I

So *A* lies on the line l_2 .

(c) Direction vectors of
$$l_1$$
 and l_2 are $\begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$.

Calling these **m** and **n**:

$$\cos \theta = \frac{\frac{m \cdot n}{|m| |n|}}{m \cdot |n|}$$

$$m \cdot n = \begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 4 + 10 + 6 = 20$$

$$|m| = \sqrt{4^2 + (-5)^2 + 3^2} = \sqrt{50}$$

$$|n| = \sqrt{1^2 + (-2)^2 + 2^2} = \sqrt{9} = 3$$

$$\cos \theta = \frac{20}{3\sqrt{50}}$$

$$\theta = 19.5^{\circ} (1 \text{ d.p.})$$
The angle between l_1 and l_2 is 19.5 ° (1 d.p.).

Vectors Exercise K, Question 14

Question:

Two submarines are travelling in straight lines through the ocean. Relative to a fixed origin, the vector equations of the two lines, l_1 and l_2 , along which they

travel are $r = 3i + 4j - 5k + \lambda$ (i - 2j + 2k) and $r = 9i + j - 2k + \mu$ (4i + j - k) where λ and μ are scalars.

(a) Show that the submarines are moving in perpendicular directions.

(b) Given that l_1 and l_2 intersect at the point *A*, find the position vector of *A*. The point *B* has position vector 10j - 11k.

(c) Show that only one of the submarines passes through the point B.

(d) Given that 1 unit on each coordinate axis represents 100 m, find, in km, the distance AB.

B

Solution:

(a) Line
$$l_1$$
: $\mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$
Line l_2 : $\mathbf{r} = \begin{pmatrix} 9 \\ 1 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ 1 \\ -1 \end{pmatrix}$
Using the direction vectors:
 $\begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 1 \\ -1 \end{pmatrix} = 4 - 2 - 2 = 0$

Since the scalar product is zero, the directions are perpendicular.

(b) At an intersection point:
$$\begin{pmatrix} 3+\lambda\\ 4-2\lambda\\ -5+2\lambda \end{pmatrix} = \begin{pmatrix} 9+4\mu\\ 1+\mu\\ -2-\mu \end{pmatrix}$$

$$3 + \lambda = 9 + 4 \mu \quad (\times 2)$$

$$4 - 2 \lambda = 1 + \mu$$

$$6 + 2 \lambda = 18 + 8 \mu$$

$$4 - 2 \lambda = 1 + \mu$$
Adding: $10 = 19 + 9 \mu$

$$\Rightarrow 9 \mu = -9$$

$$\Rightarrow \mu = -1$$

$$3 + \lambda = 9 - 4$$

$$\Rightarrow \lambda = 2$$
Intersection point: $\begin{pmatrix} 3 + \lambda \\ 4 - 2\lambda \\ -5 + 2\lambda \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ -1 \end{pmatrix}$
Position vector of A is $a = 5i - k$.
(c) Position vector of B : $b = 10j - 11k = \begin{pmatrix} 0 \\ 10 \\ -11 \end{pmatrix}$
For l_1 , to give zero as the x component, $\lambda = -3$.
$$r = \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} - 3 \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 10 \\ -11 \end{pmatrix}$$
So B lies on l_1 .
For l_2 , to give -11 as the z component, $\mu = 9$.
$$r = \begin{pmatrix} 9 \\ 1 \\ -2 \end{pmatrix} + 9 \begin{pmatrix} 4 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 45 \\ 10 \\ -11 \end{pmatrix}$$
So B does not lie on l_2 .
So only one of the submarines passes through B .
(d) $|AB| = \sqrt{(0-5)^2 + (10-0)^2} + [-11-(-1)]^2$

$$= \sqrt{(-5)^2 + 10^2 + (-10)^2}$$

Since 1 unit represents 100 m, the distance AB is $15 \times 100 = 1500 \text{ m} = 1.5 \text{ km}.$