

Mark Scheme (Results) January 2011

GCE

GCE Core Mathematics C3 (6665) Paper 1

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2011 Publications Code US026238 All the material in this publication is copyright © Edexcel Ltd 2011

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol \sqrt{will} be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

January 2011 Core Mathematics C3 6665 Mark Scheme

Question Number	Scheme		Mar	`ks
1. (a)	$7\cos x - 24\sin x = R\cos(x+\alpha)$			
(a)				
	$7\cos x - 24\sin x = R\cos x\cos \alpha - R\sin x\sin \alpha$			
	Equate $\cos x$: $7 = R \cos \alpha$			
	Equate $\sin x$: $24 = R \sin \alpha$			
	$R = \sqrt{7^2 + 24^2} ;= 25$	<i>R</i> = 25	B1	
	$\tan \alpha = \frac{24}{7} \implies \alpha = 1.287002218^{c}$	$\tan \alpha = \frac{24}{7}$ or $\tan \alpha = \frac{7}{24}$	M1	
		awrt 1.287	A1	
	Hence, $7\cos x - 24\sin x = 25\cos(x + 1.287)$			(2)
				(3)
(b)	Minimum value = -25	-25 or -R	B1ft	
				(1)
(c)	$7\cos x - 24\sin x = 10$			
	$25\cos(x+1.287) = 10$			
	$\cos\left(x+1.287\right) = \frac{10}{25}$	$\cos(x \pm \text{their } \alpha) = \frac{10}{(\text{their } R)}$	M1	
	$PV = 1.159279481^{\circ}$ or 66.42182152°	For applying $\cos^{-1}\left(\frac{10}{\text{their }R}\right)$	M1	
	So, $x + 1.287 = \{1.159279^{c}, 5.123906^{c}, 7.442465^{c}\}$	either 2π + or – their PV ^c or 360° + or – their PV [°]	M1	
	gives, $x = \{3.836906, 6.155465\}$	awrt 3.84 OR 6.16	A1	
		awrt 3.84 AND 6.16	A1	(5)
				[9]

Question Number	Scheme		Marks
2. (a)	$\frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)}$		
	$= \frac{(4x-1)(2x-1)-3}{2(x-1)(2x-1)}$ $= \frac{8x^2 - 6x - 2}{\{2(x-1)(2x-1)\}}$	An attempt to form a single fraction Simplifies to give a correct quadratic numerator over a correct quadratic denominator	M1 A1 aef
	$= \frac{2(x-1)(4x+1)}{\{2(x-1)(2x-1)\}}$ $= \frac{4x+1}{2x-1}$	An attempt to factorise a 3 term quadratic numerator	M1 A1
(b)	$f(x) = \frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)} - 2, x > 1$		(4)
	$f(x) = \frac{(4x+1)}{(2x-1)} - 2$		
	$= \frac{(4x+1) - 2(2x-1)}{(2x-1)}$ $= \frac{4x+1 - 4x + 2}{(2x-1)}$	An attempt to form a single fraction	M1
	$=\frac{3}{(2x-1)}$	Correct result	A1 * (2)
(c)	$f(x) = \frac{3}{(2x-1)} = 3(2x-1)^{-1}$		
	$f'(x) = 3(-1)(2x - 1)^{-2}(2)$	$\pm k (2x-1)^{-2}$	M1
	$f'(2) = \frac{-6}{9} = -\frac{2}{3}$	Either $\frac{-6}{9}$ or $-\frac{2}{3}$	A1 aef

Question Number	Scheme	Marks
3.	$2\cos 2\theta = 1 - 2\sin \theta$	
	Substitutes either $1 - 2\sin^2 \theta$ $2(1 - 2\sin^2 \theta) = 1 - 2\sin \theta$ or $2\cos^2 \theta - 1$ or $\cos^2 \theta - \sin^2 \theta$ for $\cos 2\theta$.	M1
	$2-4\sin^2\theta = 1-2\sin\theta$	
	$4\sin^2\theta - 2\sin\theta - 1 = 0$ Forms a "quadratic in sine" = 0	M1(*)
	$\sin \theta = \frac{2 \pm \sqrt{4 - 4(4)(-1)}}{8}$ Applies the quadratic formula See notes for alternative methods.	M1
	PVs: $\alpha_1 = 54^{\circ}$ or $\alpha_2 = -18^{\circ}$ $\theta = \{54, 126, 198, 342\}$ Any one correct answer 180-their pv All four solutions correct.	A1 dM1(*) A1 [6]

Question Number	Scheme		Marks
4.	$a = 20 + 4e^{-kt}$ (can *)		
(a)	$\theta = 20 + A e^{-kt} (\text{eqn }^*)$		
	$\{t = 0, \theta = 90 \Rightarrow\} 90 = 20 + Ae^{-k(0)}$	Substitutes $t = 0$ and $\theta = 90$ into eqn *	M1
	$90 = 20 + A \implies \underline{A = 70}$	$\underline{A = 70}$	A1 (2)
(b)	$\theta = 20 + 70e^{-kt}$		
	$\{t = 5, \theta = 55 \Rightarrow\}$ $55 = 20 + 70e^{-k(5)}$	Substitutes $t = 5$ and $\theta = 55$ into eqn *	
	$\frac{35}{70} = e^{-5k}$	and rearranges eqn $*$ to make $e^{\pm 5k}$ the subject.	M1
	$\ln\left(\frac{35}{70}\right) = -5k$	Takes 'lns' and proceeds to make ' $\pm 5k$ ' the subject.	dM1
	$-5k = \ln\left(\frac{1}{2}\right)$		
	$-5k = \ln 1 - \ln 2 \implies -5k = -\ln 2 \implies \underline{k = \frac{1}{5} \ln 2}$	Convincing proof that $k = \frac{1}{5} \ln 2$	A1 * (3)
(c)	$\theta = 20 + 70\mathrm{e}^{-\frac{1}{5}t\ln 2}$		
	$\frac{d\theta}{dt} = -\frac{1}{5} \ln 2.(70) e^{-\frac{1}{5}t \ln 2}$	$\pm \alpha e^{-kt}$ where $k = \frac{1}{5} \ln 2$	M1
	$\frac{1}{dt} = -\frac{1}{5} \ln 2.(70) e^{-5}$	$-14\ln 2e^{-\frac{1}{5}t\ln 2}$	A1 oe
	When $t = 10$, $\frac{d\theta}{dt} = -14 \ln 2e^{-2\ln 2}$		
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{7}{2}\ln 2 = -2.426015132$		
	Rate of decrease of $\theta = 2.426 \ ^{\circ}C/\min$ (3 dp.)	awrt ± 2.426	A1
			(3) [8]

Question Number	Scheme		Mar	ŕks
5. (a)	Crosses x-axis $\Rightarrow f(x) = 0 \Rightarrow (8 - x)\ln x = 0$			
	Either $(8 - x) = 0$ or $\ln x = 0 \Rightarrow x = 8, 1$ Eit	ther one of $\{x\}=1$ OR $x=\{8\}$	B1	
	Coordinates are $A(1, 0)$ and $B(8, 0)$.	so th $A(1, \{0\})$ and $B(8, \{0\})$	B1	(2)
(b)	Apply product rule: $\begin{cases} u = (8 - x) & v = \ln x \\ \frac{du}{dx} = -1 & \frac{dv}{dx} = \frac{1}{x} \end{cases}$	vu' + uv'	M1	
	$f'(x) = -\ln x + \frac{8-x}{x}$	Any one term correct	A1	
		Both terms correct	A1	(3)
(c)	f'(3.5) = 0.032951317 f'(3.6) = -0.058711623 Sign change (and as f'(x) is continuous) therefore	Attempts to evaluate both $f'(3.5)$ and $f'(3.6)$	M1	
	the <i>x</i> -coordinate of Q lies between 3.5 and 3.6. both v	values correct to at least 1 sf, sign change and conclusion	A1	(2)
(d)	At Q , $f'(x) = 0 \implies -\ln x + \frac{8-x}{x} = 0$	Setting $f'(x) = 0$.	M1	
	$\Rightarrow -\ln x + \frac{8}{x} - 1 = 0$	Splitting up the numerator and proceeding to x=	M1	
	$\Rightarrow \frac{8}{x} = \ln x + 1 \Rightarrow 8 = x(\ln x + 1)$			
	$\Rightarrow x = \frac{8}{\ln x + 1}$ (as required)	For correct proof. No errors seen in working.	A1	(3)

Question Number	Scheme		Marks
(e)	Iterative formula: $x_{n+1} = \frac{8}{\ln x_n + 1}$		
	$x_{1} = \frac{8}{\ln(3.55) + 1}$ $x_{1} = 3.528974374$ $x_{2} = 3.538246011$ $x_{3} = 3.534144722$	An attempt to substitute $x_0 = 3.55$ into the iterative formula. Can be implied by $x_1 = 3.528(97)$ Both $x_1 = awrt 3.529$ and $x_2 = awrt 3.538$	M1 A1
	$x_1 = 3.529, x_2 = 3.538, x_3 = 3.534$, to 3 dp.	x_1 , x_2 , x_3 all stated correctly to 3 dp	A1 (3) [13]

Question Number	Scheme		Marks
6. (a)	$y = \frac{3-2x}{x-5} \implies y(x-5) = 3-2x$	Attempt to make x (or swapped y) the subject	M1
	xy - 5y = 3 - 2x		
	$\Rightarrow xy + 2x = 3 + 5y \Rightarrow x(y + 2) = 3 + 5y$	Collect <i>x</i> terms together and factorise.	M1
	$\Rightarrow x = \frac{3+5y}{y+2} \qquad \therefore f^{-1}(x) = \frac{3+5x}{x+2}$	$\frac{3+5x}{x+2}$	A1 oe (3)
(b)	Range of g is $-9 \le g(x) \le 4$ or $-9 \le y \le 4$	Correct Range	B1 (1)
(c)		Deduces that g(2) is 0. Seen or implied.	M1
	g g(2)=g (0) = -6, from sketch.	-6	A1 (2)
(d)	fg(8) = f(4)	Correct order g followed by f	M1
	$=\frac{3-4(2)}{4-5}=\frac{-5}{-1}=5$	5	A1
			(2)

Question Number	Scheme	Marks
(e)(ii)	y Correct shape	B1
	$\begin{array}{c c} 2 \\ \hline & \\ \hline \\ \hline$	B1 (4)
(f)	Domain of g^{-1} is $-9 \le x \le 4$ Either correct answer or a follow through from part (b) answer	B1√ (1) [13]

Question Number	Scheme		Mar	-ks
7				
(a)	$y = \frac{3 + \sin 2x}{2 + \cos 2x}$			
	Apply quotient rule: $\begin{cases} u = 3 + \sin 2x & v = 2 + \cos 2x \\ \frac{du}{dx} = 2\cos 2x & \frac{dv}{dx} = -2\sin 2x \end{cases}$			
		Applying $\frac{vu^r - uv^r}{v^2}$	M1	
	$\frac{dy}{dx} = \frac{2\cos 2x(2 + \cos 2x) - 2\sin 2x(3 + \sin 2x)}{(2 + \cos 2x)^2}$	Any one term correct on the	A1	
	$(2 + \cos 2x)$	numerator Fully correct (unsimplified).	A1	
	$=\frac{4\cos 2x + 2\cos^2 2x + 6\sin 2x + 2\sin^2 2x}{\left(2 + \cos 2x\right)^2}$			
	$=\frac{4\cos 2x + 6\sin 2x + 2(\cos^2 2x + \sin^2 2x)}{(2 + \cos 2x)^2}$	For correct proof with an understanding		
		that $\cos^2 2x + \sin^2 2x = 1$.		
	$= \frac{4\cos 2x + 6\sin 2x + 2}{\left(2 + \cos 2x\right)^2} \text{(as required)}$	No errors seen in working.	A1*	
				(4)
(b)	When $x = \frac{\pi}{2}$, $y = \frac{3 + \sin \pi}{2 + \cos \pi} = \frac{3}{1} = 3$	<i>y</i> = 3	B1	
	At			
	$\left(\frac{\pi}{2}, 3\right), m(\mathbf{T}) = \frac{6\sin\pi + 4\cos\pi + 2}{\left(2 + \cos\pi\right)^2} = \frac{-4 + 2}{1^2} = -2$	$m(\mathbf{T}) = -2$	B1	
	Either T : $y-3 = -2(x - \frac{\pi}{2})$	$y - y_1 = m(x - \frac{\pi}{2})$ with 'their		
	or $y = -2x + c$ and	TANGENT gradient' and their y_1 ;	M1	
	$3 = -2\left(\frac{\pi}{2}\right) + c \implies c = 3 + \pi ;$	or uses $y = mx + c$ with 'their TANGENT gradient';		
	T: $y = -2x + (\pi + 3)$	$y = -2x + \pi + 3$	A1	
				(4) [8]

Question Number	Scheme	Ma	arks
8.			
(a)	$y = \sec x = \frac{1}{\cos x} = (\cos x)^{-1}$		
	Writes $\sec x$ as $(\cos x)^{-1}$ and gives $\frac{dy}{dx} = -1(\cos x)^{-2}(-\sin x)$ $\frac{dy}{dx} = \pm ((\cos x)^{-2}(\sin x))$ $-1(\cos x)^{-2}(-\sin x) \text{ or } (\cos x)^{-2}(\sin x)$	M1 A1	
	$\frac{dy}{dx} = \left\{\frac{\sin x}{\cos^2 x}\right\} = \left(\frac{1}{\cos x}\right)\left(\frac{\sin x}{\cos x}\right) = \underbrace{\sec x \tan x}_{\text{Must see both underlined steps.}}$	A1 .	AG (3)
(b)	$x = \sec 2y, y \neq (2n+1)\frac{\pi}{4}, n \in \mathbb{Z}.$		
	$\frac{dx}{dy} = 2\sec 2y \tan 2y \qquad \qquad K \sec 2y \tan 2y \\ 2\sec 2y \tan 2y \qquad $	M1 A1	(2)
(c)	$\frac{dy}{dx} = \frac{1}{2\sec 2y \tan 2y}$ Applies $\frac{dy}{dx} = \frac{1}{\left(\frac{dx}{dy}\right)}$	M1	
	$\frac{dy}{dx} = \frac{1}{2x \tan 2y}$ Substitutes x for sec 2y.	M1	
	$1 + \tan^2 A = \sec^2 A \implies \tan^2 2y = \sec^2 2y - 1$ Attempts to use the identity $1 + \tan^2 A = \sec^2 A$	M1	
	So $\tan^2 2y = x^2 - 1$		
	$\frac{dy}{dx} = \frac{1}{2x\sqrt{(x^2 - 1)}} \qquad \qquad \frac{dy}{dx} = \frac{1}{2x\sqrt{(x^2 - 1)}}$	A1	(4)
			[9]

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code US026238 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH