

Mark Scheme (Results)

January 2013

GCE Mathematics 6666 Core Mathematics 4

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013 Publications Code UA034368 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes .

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** or AG: The answer is printed on the paper
- dM1 denotes a method mark which is dependent upon the award of the previous method mark.
- ddM1 denotes a method mark which is dependent upon the award of the previous 2 method marks.
- dM1* denotes a method mark which is dependent upon the award of the M1* mark.
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

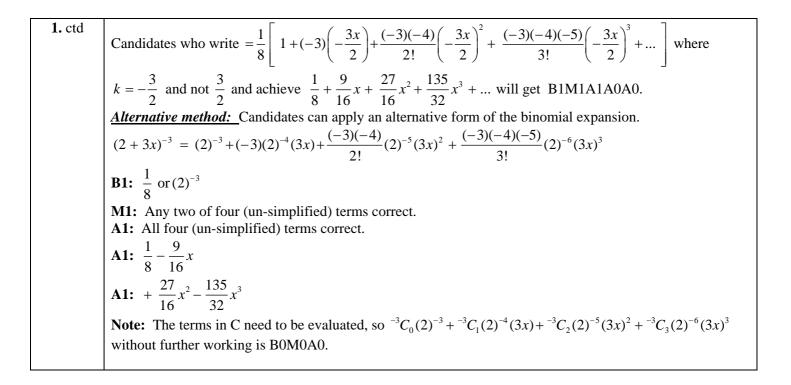
<u>Misreads</u>

A misread must be consistent for <u>the whole question</u> to be interpreted as such. These are not common. In clear cases, please deduct the <u>first</u> 2 A (or B) marks which <u>would</u> <u>have been lost by following the scheme</u>. (Note that 2 marks is the <u>maximum</u> misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).

Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.

January 2013 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme	Marks	
	$(2+3x)^{-3} = \underline{(2)}^{-3} \left(1 + \frac{3x}{2}\right)^{-3} = \frac{1}{\underline{8}} \left(1 + \frac{3x}{2}\right)^{-3} \qquad \qquad \underline{(2)}^{-3} \text{ or } \frac{1}{\underline{8}}$	<u>B1</u>	
	$= \left\{ \frac{1}{8} \right\} \left[1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3 + \dots \right]$ see notes	M1 A1	
	$= \left\{\frac{1}{8}\right\} \left[\frac{1 + (-3)\left(\frac{3x}{2}\right) + \frac{(-3)(-4)}{2!}\left(\frac{3x}{2}\right)^2 + \frac{(-3)(-4)(-5)}{3!}\left(\frac{3x}{2}\right)^3 + \dots}{3!} \right]$		
	$= \frac{1}{8} \left[1 - \frac{9}{2}x; + \frac{27}{2}x^2 - \frac{135}{4}x^3 + \dots \right]$ See notes below!		
	$= \frac{1}{8} - \frac{9}{16}x; + \frac{27}{16}x^2 - \frac{135}{32}x^3 + \dots$	A1; A1	
		[5] 5	
	<u>B1</u> : $(2)^{-3}$ or $\frac{1}{8}$ outside brackets or $\frac{1}{8}$ as constant term in the binomial expansion.		
	M1: Expands $(+kx)^{-3}$ to give any 2 terms out of 4 terms simplified or un-simplified,		
	Eg: $1 + (-3)(kx)$ or $(-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2$ or $1 + \dots + \frac{(-3)(-4)}{2!}(kx)^2$		
	or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ where $k \neq 1$ are ok for M1.		
	A1: A correct simplified or un-simplified $1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$		
	expansion with consistent (kx) where $k \neq 1$.		
	"Incorrect bracketing" $\left\{\frac{1}{8}\right\} \left[1 + (-3)\left(\frac{3x}{2}\right) + \frac{(-3)(-4)}{2!}\left(\frac{3x^2}{2}\right) + \frac{(-3)(-4)(-5)}{3!}\left(\frac{3x^3}{2}\right) + \dots\right]$ is M1A0		
	unless recovered.		
	A1: For $\frac{1}{8} - \frac{9}{16}x$ (simplified fractions) or also allow $0.125 - 0.5625x$.		
	Allow Special Case A1 for either SC: $\frac{1}{8} \left[1 - \frac{9}{2}x; \dots \right]$ or SC: $K \left[1 - \frac{9}{2}x + \frac{27}{2}x^2 - \frac{135}{4} \right]$	$x^{3} +]$	
	(where K can be 1 or omitted), with each term in the [] either a simplified fraction or a	a decimal.	
	A1: Accept only $\frac{27}{16}x^2 - \frac{135}{32}x^3$ or $1\frac{11}{16}x^2 - 4\frac{7}{32}x^3$ or $1.6875x^2 - 4.21875x^3$		



Question
NumberScheme2. (a)
$$\int \frac{1}{x^2} \ln x \, dx$$
,
$$\begin{cases} u = \ln x \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = x^{-2} \Rightarrow v = \frac{x^2}{-2} = \frac{-1}{2x^2} \end{cases}$$
In the form $\frac{\pm \lambda}{x^2} \ln x \pm \int u \frac{1}{x^2} \frac{1}{x}$ M1 $= \frac{-1}{2x^2} \ln x - \int \frac{-1}{2x^2} \frac{1}{x} \, dx$ $\frac{-1}{2x^2} \ln x \sinh (16 \, dx) = 1 \sin (16 \, dx) + \frac{1}{x^2} \frac{1}{x}$ M1 $= \frac{-1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^2} dx$ $\frac{-1}{2x^2} \ln x \sinh (16 \, dx) = 1 \sin (16 \, dx) + \frac{1}{x^2} \frac{1}{x}$ M1 $\left\{ = \frac{-1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^2} dx \right\}$ $\frac{-1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^2} dx^2$ M1 $\left\{ = -\frac{1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^2} dx^2 \right\}$ $\pm \int \mu \frac{1}{x^2} \cdot \frac{1}{x} \rightarrow \pm \beta x^2$.M1(b) $\left\{ \begin{bmatrix} -\frac{1}{2x^2} \ln x - \frac{1}{4x^2} \end{bmatrix}_1^2 \right\} = \left(-\frac{1}{2(2)^2} \ln 2 - \frac{1}{4(2)^2} \right) - \left(-\frac{1}{2(1)^2} \ln 1 - \frac{1}{4(1)^2} \right)$ Applies limits of 2 and
answer and subtracts
the correct way round. $= \frac{3}{16} - \frac{1}{8} \ln 2$ or $\frac{3}{16} - \ln 2^{\frac{1}{2}}$ or $\frac{1}{16} (3 - 2\ln 2)$, etc., or awr 0.1or equivalent. $\Delta 1: \frac{1}{2x^2} \ln x$ $\frac{1}{2} \ln x \frac{1}{2x^2} \ln x \pm \int \mu \frac{1}{x^2} \cdot \frac{1}{x}$ or equivalent. $\Delta 1: \frac{1}{2x^2} \ln x$ $\frac{1}{2} \ln x \frac{1}{2x} \int \frac{1}{x} + \frac{1}{2} \int \frac{1}{2x^2} \cdot \frac{1}{x}$ (a)M1: Integration by parts is applied in the form $\frac{\pm \lambda}{x^2} \ln x \pm \int \mu \frac{1}{x^2} \cdot \frac{1}{x}$ or equivalent. $\Delta 1: \frac{1}{2x^2} \ln x = \frac{1}{2x^2} \left(\frac{1}{x} + \frac{1}{2} \right) + c_1^2 = 1 - \frac{1}{2x^2} \left(\frac{1}{x} + \frac{1}{x} \right) + \frac{1}{2x^2} \left(\frac{1}{x} + \frac{1}{x} \right) + c_1^2 + c_1^2$

Number	Scheme		Ma	rks
3.	Method 1: Using one identity			
	$\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} = A + \frac{B}{(x+2)} + \frac{C}{(3x-1)}$			
	A = 3	their constant term $= 3$	B1	
	$9x^{2} + 20x - 10 \equiv A(x+2)(3x-1) + B(3x-1) + C(x+2)$	Forming a correct identity.	B1	
	Either $x^2: 9 = 3A$, $x: 20 = 5A + 3B + C$	Attempts to find the value of		
	constant: $-10 = -2A - B + 2C$ or	either one of their <i>B</i> or their <i>C</i> from their identity.	M1	
	$x = -2 \Longrightarrow 36 - 40 - 10 = -7B \Longrightarrow -14 = -7B \Longrightarrow B = 2$			
		Correct values for their <i>B</i> and their <i>C</i> , which are	Λ1	
	$x = \frac{1}{3} \Longrightarrow 1 + \frac{20}{3} - 10 = \frac{7}{3}C \Longrightarrow -\frac{7}{3} = \frac{7}{3}C \Longrightarrow C = -1$	found using a correct identity.	A1	
				г
	Method 2: Long Division			[
		their constant terms 2	D 1	
	$\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{5x-4}{(x+2)(3x-1)}$	their constant term $= 3$	B1	
	So, $\frac{5x-4}{(x+2)(3x-1)} \equiv \frac{B}{(x+2)} + \frac{C}{(3x-1)}$			
	$30, \ \frac{1}{(x+2)(3x-1)} = \frac{1}{(x+2)} + \frac{1}{(3x-1)}$			
	$5x - 4 \equiv B(3x - 1) + C(x + 2)$	Forming a correct identity.	B1	
	Either $x_{1} = 5 - 2R + C$ constant $A = R + 2C$	Attempts to find the value of		
	Either x: $5 = 3B + C$, constant: $-4 = -B + 2C$ or	either one of their B or their C	M1	
	$ x = -2 \Rightarrow -10 - 4 = -7B \Rightarrow -14 = -7B \Rightarrow B = 2 $	from their identity.		
		Correct values for		
	$x = \frac{1}{3} \Rightarrow \frac{5}{3} - 4 = \frac{7}{3}C \Rightarrow -\frac{7}{3} = \frac{7}{3}C \Rightarrow C = -1$	their B and their C , which are	A1	
		found using $5x - 4 \equiv B(3x - 1) + C(x + 2)$	111	
		3x - 4 = B(3x - 1) + C(x + 2)		г
	So, $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{2}{(x+2)} - \frac{1}{(3x-1)}$			[
	(x+2)(3x-1) $(x+2)$ $(3x-1)$			

Note: You can imply the 2nd B1 from either $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} = \frac{A(x+2)(3x-1) + B(3x-1) + C(x+2)}{(x+2)(3x-1)}$ 3. ctd or $\frac{5x-4}{(x+2)(3x-1)} = \frac{B(3x-1) + C(x+2)}{(x+2)(3x-1)}$ Alternative Method 1: Initially dividing by (x + 2) $\frac{9x^2 + 20x - 10}{"(x+2)"(3x-1)} \equiv \frac{9x+2}{(3x-1)} - \frac{14}{(x+2)(3x-1)}$ $\equiv 3 + \frac{5}{(3x-1)} - \frac{14}{(x+2)(3x-1)}$ **B1:** their constant term = 3So, $\frac{-14}{(x+2)(3x-1)} = \frac{B}{(x+2)} + \frac{C}{(3x-1)}$ $-14 \equiv B(3x-1) + C(x+2)$ **B1:** Forming a correct identity. M1: Attempts to find either one of their $\Rightarrow B = 2, C = -6$ *B* or their *C* from their identity. So, $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{5}{(3x-1)} + \frac{2}{(x+2)} - \frac{6}{(3x-1)}$ and $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{2}{(x+2)} - \frac{1}{(3x-1)}$ A1: Correct answer in partial fractions. Alternative Method 2: Initially dividing by (3x - 1) $\frac{9x^2 + 20x - 10}{(x+2)''(3x-1)''} \equiv \frac{3x + \frac{23}{3}}{(x+2)} - \frac{\frac{7}{3}}{(x+2)(3x-1)}$ $\equiv 3 + \frac{\frac{5}{3}}{(x+2)} - \frac{\frac{7}{3}}{(x+2)(3x-1)}$ **B1:** their constant term = 3So, $\frac{-\frac{7}{3}}{(x+2)(3x-1)} \equiv \frac{B}{(x+2)} + \frac{C}{(3x-1)}$ $-\frac{7}{2} \equiv B(3x-1) + C(x+2)$ **B1:** Forming a correct identity. $\Rightarrow B = \frac{1}{2}, C = -1$ M1: Attempts to find either one of their B or their C from their identity. So, $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{\frac{5}{3}}{(x+2)} + \frac{\frac{1}{3}}{(x+2)} - \frac{1}{(3x-1)}$ and $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{2}{(x+2)} - \frac{1}{(3x-1)}$ A1: Correct answer in partial fractions.

Question Number	Scheme	Marks	
4. (a)	1.0981	B1 cao	
		[]	1]
(b)	Area $\approx \frac{1}{2} \times 1$; $\times [0.5 + 2(0.8284 + \text{their } 1.0981) + 1.3333]$	B1; <u>M1</u>	
	$=\frac{1}{2} \times 5.6863 = 2.84315 = 2.843 \text{ (3 dp)}$ 2.843 or awrt 2.843	A1	
	2	ſ	3]
(c)	$\left\{u = 1 + \sqrt{x}\right\} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{\mathrm{d}x}{\mathrm{d}u} = 2(u-1)$	<u>B1</u>	-
	$\left\{ \int \frac{x}{1+\sqrt{x}} \mathrm{d}x = \right\} \int \frac{(u-1)^2}{u} \cdot 2(u-1) \mathrm{d}u \qquad \qquad \int \frac{(u-1)^2}{u} \cdot \dots \cdot \int (u-1)^2 \mathrm{d}u = 0$	M1	
	$\left\{ \int \frac{1}{1+\sqrt{x}} dx \right\} \int \frac{1}{u} \int \frac{(u-1)^2}{u} 2(u-1) du$	A1	
	$= 2 \int \frac{(u-1)^3}{u} du = \{2\} \int \frac{(u^3 - 3u^2 + 3u - 1)}{u} du$ Expands to give a "four term" cubic in u . Eg: $\pm Au^3 \pm Bu^2 \pm Cu \pm D$	M1	
	$= \{2\} \int \left(u^2 - 3u + 3 - \frac{1}{u} \right) du$ An attempt to divide at least three terms in <i>their cubic</i> by <i>u</i> . See notes.	M1	
	$= \{2\} \left(\frac{u^3}{3} - \frac{3u^2}{2} + 3u - \ln u\right) \qquad \qquad \int \frac{(u-1)^3}{u} \to \left(\frac{u^3}{3} - \frac{3u^2}{2} + 3u - \ln u\right)$	A1	
	Area(R) = $\left[\frac{2u^3}{3} - 3u^2 + 6u - 2\ln u\right]_2^3$		
	$= \left(\frac{2(3)^3}{3} - 3(3)^2 + 6(3) - 2\ln 3\right) - \left(\frac{2(2)^3}{3} - 3(2)^2 + 6(2) - 2\ln 2\right)$ Applies limits of 3 and 2 in <i>u</i> or 4 and 1 in <i>x</i> and subtracts either way round.	M1	
	$= \frac{11}{3} + 2\ln 2 - 2\ln 3 \text{or} \frac{11}{3} + 2\ln\left(\frac{2}{3}\right) \text{ or } \frac{11}{3} - \ln\left(\frac{9}{4}\right), \text{ etc} \qquad \begin{array}{c} \text{Correct exact answer} \\ \text{or equivalent.} \end{array}$	A1	
			8] 2
(a)	B1: 1.0981 correct answer only. Look for this on the table or in the candidate's working.	J	. 🚄
(b)	B1 : Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$		
	M1: For structure of trapezium rule []		
	A1: anything that rounds to 2.843 <u>Note:</u> Working must be seen to demonstrate the use of the trapezium rule. <u>Note</u> : actual area is 2.85	5573645	
	<u>Note:</u> Award B1M1 A1 for $\frac{1}{2}(0.5 + 1.3333) + (0.8284 + \text{their } 1.0981) = 2.84315$		
	Bracketing mistake: Unless the final answer implies that the calculation has been done correctl	y	
	Award B1M0A0 for $\frac{1}{2} \times 1 + 0.5 + 2(0.8284 + \text{their } 1.0981) + 1.3333$ (nb: answer of 6.1863).		
	Award B1M0A0 for $\frac{1}{2} \times 1$ (0.5 + 1.3333) + 2(0.8284 + their 1.0981) (nb: answer of 4.76965).		

4. (b) ctd Alternative method for part (b): Adding individual trapezia Area $\approx 1 \times \left[\frac{0.5 + 0.8284}{2} + \frac{0.8284 + 1.0981}{2} + \frac{1.0981 + 1.3333}{2} \right] = 2.84315$ **B1:** 1 and a divisor of 2 on all terms inside brackets. M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2. A1: anything that rounds to 2.843 (c) **B1:** $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$ or $du = \frac{1}{2\sqrt{x}}dx$ or $2\sqrt{x}du = dx$ or dx = 2(u-1)du or $\frac{dx}{du} = 2(u-1)$ oe. 1st M1: $\frac{x}{1+\sqrt{x}}$ becoming $\frac{(u-1)^2}{u}$ (Ignore integral sign). **1**st A1 (B1 on epen): $\frac{x}{1+\sqrt{x}} dx$ becoming $\frac{(u-1)^2}{u} \cdot 2(u-1) \{ du \}$ or $\frac{(u-1)^2}{u} \cdot \frac{2}{(u-1)^{-1}} \{ du \}$. You can ignore the integral sign and the du. **2nd M1:** Expands to give a "four term" cubic in u, $\pm Au^3 \pm Bu^2 \pm Cu \pm D$ where $A \neq 0$, $B \neq 0$, $C \neq 0$ and $D \neq 0$ The cubic does not need to be simplified for this mark. 3^{rd} M1: An attempt to divide at least three terms in *their cubic* by *u*. Ie. $\frac{(u^3 - 3u^2 + 3u - 1)}{u} \rightarrow u^2 - 3u + 3 - \frac{1}{u}$ **2nd A1:** $\int \frac{(u-1)^3}{u} du \rightarrow \left(\frac{u^3}{3} - \frac{3u^2}{2} + 3u - \ln u\right)$ 4^{th} M1: Some evidence of limits of 3 and 2 in *u* and subtracting either way round. **3rd A1:** Exact answer of $\frac{11}{3} + 2\ln 2 - 2\ln 3$ or $\frac{11}{3} + 2\ln \left(\frac{2}{3}\right)$ or $\frac{11}{3} - \ln \left(\frac{9}{4}\right)$ or $2\left(\frac{11}{6} + \ln 2 - \ln 3\right)$ or $\frac{22}{6} + 2\ln\left(\frac{2}{3}\right)$, etc. Note: that fractions must be combined to give either $\frac{11}{3}$ or $\frac{22}{6}$ or $3\frac{2}{3}$ Alternative method for 2nd M1 and 3rd M1 mark $\{2\} \int \frac{(u-1)^2}{u} (u-1) \, \mathrm{d}u = \{2\} \int \frac{(u^2 - 2u + 1)}{u} (u-1) \, \mathrm{d}u$ An attempt to expand $(u-1)^2$, then 2nd M1 divide the result by *u* and then go on to $= \{2\} \int \left(u - 2 + \frac{1}{u} \right) (u - 1) \, du = \{2\} \int \left(u^2 - ... \right) \, du$ multiply by (u-1). to give three out of four of $= \{2\} \left[\left(u^2 - 2u + 1 - u + 2 - \frac{1}{u} \right) du \right]$ 3rd M1 $\pm Au^2$, $\pm Bu$, $\pm C$ or $\pm \frac{D}{2}$ $= \{2\} \left[\left(u^2 - 3u + 3 - \frac{1}{u} \right) du \right]$

$$\begin{array}{l} \textbf{4. (c) ctd} \quad \boxed{\textbf{Final two marks in part (c): } u = 1 + \sqrt{x}} \\ \text{Area}(R) = \left[\frac{2(1 + \sqrt{x})^3}{3} - 3(1 + \sqrt{x})^2 + 6(1 + \sqrt{x}) - 2\ln(1 + \sqrt{x}) \right]_1^4 \\ = \left(\frac{2(1 + \sqrt{x})^3}{3} - 3(1 + \sqrt{1})^2 + 6(1 + \sqrt{1}) - 2\ln(1 + \sqrt{4}) \right) \\ - \left(\frac{2(1 + \sqrt{1})^3}{3} - 3(1 + \sqrt{1})^2 + 6(1 + \sqrt{1}) - 2\ln(1 + \sqrt{1}) \right) \\ - \left(\frac{2(1 + \sqrt{1})^3}{3} - 3(1 + \sqrt{1})^2 + 6(1 + \sqrt{1}) - 2\ln(1 + \sqrt{1}) \right) \\ = (18 - 27 + 18 - 2\ln 3) - \left(\frac{16}{3} - 12 + 12 - 2\ln 2 \right) \\ = \frac{11}{3} + 2\ln 2 - 2\ln 3 \quad \text{or} \quad \frac{11}{3} + 2\ln\left(\frac{2}{3}\right) \text{ or} \quad \frac{11}{3} - \ln\left(\frac{9}{4}\right), \text{ etc} \quad \textbf{A1: Correct exact answer or equivalent.} \\ \hline \textbf{Alternative method for the final 5 marks in part (b)} \\ \int \frac{(u - 1)^3}{u} du, \quad \begin{cases} u^u = u^{-1} \Rightarrow \frac{d^u u^u}{dx} = -u^{-2} \\ \frac{dw}{dx} = (u - 1)^3 \Rightarrow w = (u - 1)^4 \\ \frac{dw}{dx} = (u - 1)^4 \end{array} \\ = \frac{(u - 1)^4}{4u} - \frac{1}{4} \int \frac{(u^- - 4u^2 + 6u^2 - 4u + 1)}{u^2} du \\ = \frac{(u - 1)^4}{4u} + \frac{1}{4} \int u^2 - 4u + 6 - \frac{4}{u} + \frac{1}{u^2} du \\ = \frac{(u - 1)^4}{4u} + \frac{1}{4} \int u^2 - 4u + 6 - \frac{4}{u} + \frac{1}{u^2} du \\ = \frac{(u - 1)^4}{4u} + \frac{1}{4} \left(\frac{u^3}{3} - 2u^2 + 6u - 4\ln u - \frac{1}{u} \right) \\ \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{(u - 1)}{u} du = \left[\frac{(u - 1)^4}{4u} + \frac{u^3}{12} - \frac{u^2}{2} + \frac{3u}{2} - \ln u - \frac{1}{4u} \right]_{2}^{3} \\ = \left(\frac{16}{12} + \frac{27}{12} - \frac{9}{2} + \frac{9}{2} - \ln 3 - \frac{1}{12} \right) - \left(\frac{1}{8} + \frac{8}{12} - \frac{4}{2} + \frac{6}{2} - \ln 2 - \frac{1}{8} \right) \\ \textbf{M1:} \\ = (7 - \ln 3) - \left(\frac{5}{3} - \ln 2 \right) \\ = \frac{11}{6} + \ln \frac{2}{3} \\ \text{Area}(R) = 2 \int_{2}^{\frac{1}{2}} \frac{(u - 1)^3}{u} du = 2 \left(\frac{11}{6} + \ln \frac{2}{3} \right) \\ \textbf{A1:} \end{aligned}$$

Question Number	Scheme		Mark	s
5.	Working parametrically:			
	$x = 1 - \frac{1}{2}t$, $y = 2^{t} - 1$ or $y = e^{t \ln 2} - 1$			
(a)	$\left\{x=0\implies\right\}0=1-\frac{1}{2}t\implies t=2$	Applies $x = 0$ to obtain a value for <i>t</i> .	M1	
	When $t = 2$, $y = 2^2 - 1 = 3$	Correct value for <i>y</i> .	A1	[2]
(b)	$\{y = 0 \implies\} 0 = 2^t - 1 \Longrightarrow t = 0$	Applies $y = 0$ to obtain a value for <i>t</i> . (Must be seen in part (b)).	M1	[-]
	When $t = 0$, $x = 1 - \frac{1}{2}(0) = 1$	<i>x</i> = 1	A1	
(c)	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{1}{2}$ and either $\frac{\mathrm{d}y}{\mathrm{d}t} = 2^t \ln 2$ or $\frac{\mathrm{d}y}{\mathrm{d}t} = \mathrm{e}^{t\ln 2} \ln 2$	2	B1	[2]
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2^t \ln 2}{-\frac{1}{2}}$	Attempts their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$.	M1	
	At <i>A</i> , $t = "2"$, so $m(\mathbf{T}) = -8\ln 2 \implies m(\mathbf{N}) = \frac{1}{8\ln 2}$	Applies $t = "2"$ and $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1	
	$y-3 = \frac{1}{8 \ln 2} (x-0)$ or $y = 3 + \frac{1}{8 \ln 2} x$ or equiv.	alent. See notes.	M1 A1 cso	
(d)	Area(R) = $\int (2^t - 1) \cdot \left(-\frac{1}{2}\right) dt$	Complete substitution for both y and dx	M1	[5]
	$x = -1 \rightarrow t = 4$ and $x = 1 \rightarrow t = 0$		B1	
		Either $2^t \rightarrow \frac{2^t}{\ln 2}$		
	$= \left\{-\frac{1}{2}\right\} \left(\frac{2^t}{\ln 2} - t\right)$	or $(2^t - 1) \rightarrow \frac{(2^t)}{\pm \alpha (\ln 2)} - t$	M1*	
	(2)(112)	or $(2'-1) \rightarrow \pm \alpha (\ln 2)(2') - t$		
		or $(2^{t} - 1) \rightarrow \pm \alpha (\ln 2)(2^{t}) - t$ $(2^{t} - 1) \rightarrow \frac{2^{t}}{\ln 2} - t$	A1	
	$\left\{-\frac{1}{2}\left[\frac{2^{t}}{\ln 2}-t\right]_{4}^{0}\right\} = -\frac{1}{2}\left(\left(\frac{1}{\ln 2}\right)-\left(\frac{16}{\ln 2}-4\right)\right)$	Depends on the previous method mark. Substitutes their changed limits in <i>t</i> and subtracts either way round.	dM1*	
	$=\frac{15}{2\ln 2}-2$	$\frac{15}{2\ln 2} - 2 \text{ or equivalent.}$	A1	
				[6] 15

M1: Applies x = 0 and obtains a value of t. **5.** (a) A1: For $y = 2^2 - 1 = 3$ or y = 4 - 1 = 3Alternative Solution 1: **M1:** For substituting t = 2 into either x or y. A1: $x = 1 - \frac{1}{2}(2) = 0$ and $y = 2^2 - 1 = 3$ Alternative Solution 2: M1: Applies y = 3 and obtains a value of t. **A1:** For $x = 1 - \frac{1}{2}(2) = 0$ or x = 1 - 1 = 0. **Alternative Solution 3: M1:** Applies y = 3 or x = 0 and obtains a value of t. A1: Shows that t = 2 for both y = 3 and x = 0. M1: Applies y = 0 and obtains a value of t. Working must be seen in part (b). (b) **A1:** For finding x = 1. **Note:** Award M1A1 for x = 1. **B1:** Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ correct. This mark can be implied by later working. (c) **M1:** Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or their $\frac{dy}{dt} \times \frac{1}{\text{their}\left(\frac{dx}{dt}\right)}$. Note: their $\frac{dy}{dt}$ must be a function of t. **M1:** Uses their value of *t* found in part (a) and applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$. M1: y - 3 = (their normal gradient)x or y = (their normal gradient)x + 3 or equivalent. A1: $y-3 = \frac{1}{8 \ln 2} (x-0)$ or $y=3+\frac{1}{8 \ln 2} x$ or $y-3 = \frac{1}{\ln 256} (x-0)$ or $(8 \ln 2) y - 24 \ln 2 = x$ or $\frac{y-3}{(x-0)} = \frac{1}{8\ln 2}$. You can apply isw here. Working in decimals is ok for the three method marks. B1, A1 require exact values. M1: Complete substitution for both y and dx. So candidate should write down $\int (2^t - 1) \cdot (1 + \frac{dx}{dt})$ (d) **B1:** Changes limits from $x \to t$. $x = -1 \to t = 4$ and $x = 1 \to t = 0$. Note t = 4 and t = 0 seen is B1. **M1*:** Integrates 2^t correctly to give $\frac{2^t}{\ln 2}$... or integrates $(2^t - 1)$ to give either $\frac{(2^t)}{\pm \alpha (\ln 2)} - t$ or $\pm \alpha (\ln 2)(2^t) - t$. A1: Correct integration of $(2^t - 1)$ with respect to t to give $\frac{2^t}{\ln 2} - t$. dM1*: Depends upon the previous method mark. Substitutes their limits in t and subtracts either way round. A1: Exact answer of $\frac{15}{2\ln 2} - 2$ or $\frac{15}{\ln 4} - 2$ or $\frac{15 - 4\ln 2}{2\ln 2}$ or $\frac{7.5}{\ln 2} - 2$ or $\frac{15}{2}\log_2 e - 2$ or equivalent.

Questio n Number	Scheme		Marks
5.	Alternative: Converting to a Cartesian equation	<u></u>	
(a)	$t = 2 - 2x \implies y = 2^{2-2x} - 1$ $\{x = 0 \implies\} y = 2^2 - 1$ $y = 3$	Applies $x = 0$ in their Cartesian equation to arrive at a correct answer of 3.	M1 A1
(b)	$\{y = 0 \implies\} 0 = 2^{2-2x} - 1 \Longrightarrow 0 = 2 - 2x \Longrightarrow x = \dots$ $x = 1$	Applies $y = 0$ to obtain a value for x. (Must be seen in part (b)). x = 1	[2] M1 A1
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\left(2^{2-2x}\right)\ln 2$	$\pm \lambda 2^{2-2x}, \ \lambda \neq 1$ -2(2 ^{2-2x})ln 2 or equivalent	[2] M1
	At A, $x = 0$, so $m(\mathbf{T}) = -8\ln 2 \implies m(\mathbf{N}) = \frac{1}{8\ln 2}$	Applies $x = 0$ and $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1
	$y-3 = \frac{1}{8 \ln 2} (x-0)$ or $y = 3 + \frac{1}{8 \ln 2} x$ or equivalent.	As in the original scheme.	M1 A1 oe
(d)	$\operatorname{Area}(R) = \int (2^{2-2x} - 1) \mathrm{d}x$	Form the integral of their Cartesian equation of <i>C</i> .	[5] M1
	$= \int_{-1}^{1} (2^{2-2x} - 1) dx$	For $2^{2-2x} - 1$ with limits of $x = -1$ and $x = 1$. Ie. $\int_{-1}^{1} (2^{2-2x} - 1)$	B1
	$=\left(\frac{2^{2-2x}}{-2\ln 2} - x\right)$	Either $2^{2-2x} \rightarrow \frac{2^{2-2x}}{-2\ln 2}$ or $(2^{2-2x} - 1) \rightarrow \frac{2^{2-2x}}{\pm \alpha (\ln 2)} - x$ or $(2^{2-2x} - 1) \rightarrow \pm \alpha (\ln 2)(2^{2-2x}) - x$ $(2^{2-2x} - 1) \rightarrow \frac{2^{2-2x}}{-2\ln 2} - x$	
			A1
	$\left\{ \left[\frac{2^{2-2x}}{-2\ln 2} - x \right]_{-1}^{1} \right\} = \left(\left(\frac{1}{-2\ln 2} - 1 \right) - \left(\frac{16}{-2\ln 2} + 1 \right) \right)$	Substitutes mints of -1 and then x_B	dM1*
	$=\frac{15}{2\ln 2}-2$	and subtracts either way round. $\frac{15}{2 \ln 2} - 2 \text{ or equivalent.}$	A1
			[6] 15
(d)	Alternative method: In Cartesian and applying	g u = 2 - 2x	

Area(R) =
$$\int (2^u - 1) \{ dx \}$$
, where $u = 2 - 2x$
= $\int_4^0 (2^u - 1) (-\frac{1}{2}) \{ du \}$

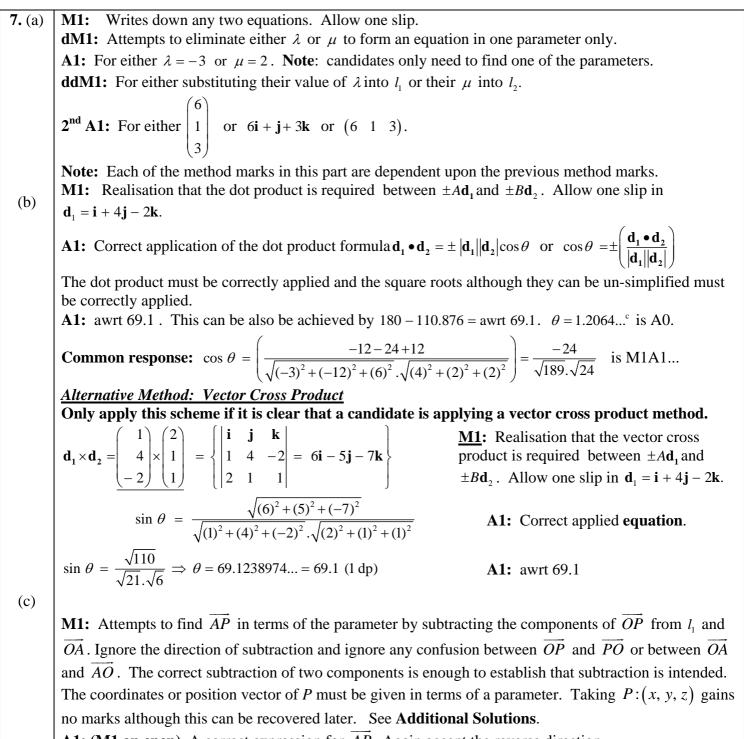
M0: Unless a candidate *writes* $\int (2^{2-2x} - 1) \{dx\}$ Then apply the "working parametrically" mark scheme.

Questio n Number	Scheme		Marks
5. (d)	Alternative method: For substitution $u = 2^t$		
	Area(R) = $\int (2^t - 1) \cdot \left(-\frac{1}{2}\right) dt$	Complete substitution for both y and dx	M1
	where $u = 2^t \implies \frac{\mathrm{d}u}{\mathrm{d}t} = 2^t \ln 2 \implies \frac{\mathrm{d}u}{\mathrm{d}t} = u \ln 2$		
	$x = -1 \rightarrow t = 4 \rightarrow u = 16$ and $x = 1 \rightarrow t = 0 \rightarrow u = 1$	Both correct limits in <i>t</i> or both correct limits in <i>u</i> .	B1
	So area(R) = $-\frac{1}{2}\int \frac{u-1}{u\ln 2} du$	If not awarded above, you can award M1 for this integral	
	$= -\frac{1}{2}\int \frac{1}{\ln 2} - \frac{1}{u \ln 2} du$		
		Either $2' \rightarrow \frac{u}{\ln 2}$	
	$=\left\{-\frac{1}{2}\right\}\left(\frac{u}{\ln 2}-\frac{\ln u}{\ln 2}\right)$	or $(2^t - 1) \rightarrow \frac{u}{\pm \alpha (\ln 2)} - \frac{\ln u}{\ln 2}$	M1*
	$-\left\{-\frac{1}{2}\right\}\left(\frac{1}{\ln 2}-\frac{1}{\ln 2}\right)$	or $(2^t - 1) \rightarrow \pm \alpha (\ln 2)(u) - \frac{\ln u}{\ln 2}$	
		$(2^t - 1) \rightarrow \frac{u}{\ln 2} - \frac{\ln u}{\ln 2}$	A1
	$\left[\begin{array}{ccc} 1 \left[u & \ln u \right]^{1} \end{array}\right] \qquad 1\left(\left(1 \right) \left(16 & \ln 16 \right) \right)$	Depends on the previous	
	$\left\{-\frac{1}{2}\left[\frac{u}{\ln 2} - \frac{\ln u}{\ln 2}\right]_{16}^{1}\right\} = -\frac{1}{2}\left(\left(\frac{1}{\ln 2}\right) - \left(\frac{16}{\ln 2} - \frac{\ln 16}{\ln 2}\right)\right)$	method mark. Substitutes their changed limits <i>in</i>	dM1*
		<i>u</i> and subtracts either way round.	
	$=\frac{15}{2\ln 2}-\frac{\ln 16}{2\ln 2}$ or $\frac{15}{2\ln 2}-2$		
	$=\frac{1}{2\ln 2}-\frac{1}{2\ln 2}$ or $\frac{1}{2\ln 2}-2$	$\frac{15}{2\ln 2} - \frac{\ln 16}{2\ln 2} \text{or} \frac{15}{2\ln 2} - 2$	A1
		or equivalent.	[0]
			[6]

Questio		
n	Scheme	Marks
Number		
6. (a)	$\{y = 0 \Rightarrow\} 1 - 2\cos x = 0$ $1 - 2\cos x = 0$, seen or implied.	M1
	π 5 π At least one correct value of x. (See notes).	A1
	$\Rightarrow x = \frac{\pi}{3}, \frac{5\pi}{3}$ Both $\frac{\pi}{3}$ and $\frac{5\pi}{3}$	A1 cso
	$V = \pi \int_{-\frac{5\pi}{3}}^{\frac{5\pi}{3}} (1 - 2\cos x)^2 dx \qquad \text{For } \pi \int_{-\frac{5\pi}{3}}^{\frac{5\pi}{3}} (1 - 2\cos x)^2 dx$	[3]
(b)	π	B1
	Ignore limits and dx	
	$\left\{ \int (1 - 2\cos x)^2 dx \right\} = \int (1 - 4\cos x + 4\cos^2 x) dx$	
	$\int (1 + \cos 2x) = \cos^2 x - 1$	
	$= \int 1 - 4\cos x + 4\left(\frac{1 + \cos 2x}{2}\right) dx \qquad \qquad \cos 2x = 2\cos^2 x - 1$ See notes.	M1
	$= \int (3 - 4\cos x + 2\cos 2x) \mathrm{d}x$	
	Attempts $\int y^2$ to give any two of	
	$\pm A \rightarrow \pm Ax, \pm B\cos x \rightarrow \pm B\sin x$ or	M1
	$= 3x - 4\sin x + \frac{2\sin 2x}{2} \qquad \qquad \pm \lambda \cos 2x \rightarrow \pm \mu \sin 2x.$	
	Correct integration.	A1
	$2\sin\left(\left(2(5)\right) + 1 + (5)\right) = 2\sin\left(\frac{10\pi}{3}\right) + (2(5)) + ($	
	$V = \left\{\pi\right\} \left[\left(3\left(\frac{5\pi}{3}\right) - 4\sin\left(\frac{5\pi}{3}\right) + \frac{2\sin\left(\frac{10\pi}{3}\right)}{2}\right) - \left(3\left(\frac{\pi}{3}\right) - 4\sin\left(\frac{\pi}{3}\right) + \frac{2\sin\left(\frac{2\pi}{3}\right)}{2}\right) \right] $ Applying limits the correct way round. Ignore	ddM1
	π.	
	$=\pi \left(\left(5\pi + 2\sqrt{3} - \frac{\sqrt{3}}{2} \right) - \left(\pi - 2\sqrt{3} + \frac{\sqrt{3}}{2} \right) \right)$	
	$=\pi((18.3060) - (0.5435)) = 17.7625\pi = 55.80$	
	$=\pi(4\pi + 3\sqrt{3}) \text{ or } 4\pi^2 + 3\pi\sqrt{3}$ Two term exact answer.	A1
		[6] 9

6. (a)	M1: $1-2\cos x = 0$.
	This can be implied by either $\cos x = \frac{1}{2}$ or any one of the correct values for x in radians or in
	degrees. $\pi = 5\pi$
	1st A1: Any one of either $\frac{\pi}{3}$ or $\frac{5\pi}{3}$ or 60 or 300 or awrt 1.05 or 5.23 or awrt 5.24.
	2nd A1: Both $\frac{\pi}{3}$ and $\frac{5\pi}{3}$.
(b)	
	B1: (M1 on epen) For $\pi \int (1-2\cos x)^2$. Ignore limits and dx.
	1st M1: Any correct form of $\cos 2x = 2\cos^2 x - 1$ used or written down in the same variable.
	This can be implied by $\cos^2 x = \frac{1 + \cos 2x}{2}$ or $4\cos^2 x \rightarrow 2 + 2\cos 2x$ or $\cos 2A = 2\cos^2 A - 1$.
	2nd M1: Attempts $\int y^2$ to give any two of $\pm A \rightarrow \pm Ax$, $\pm B \cos x \rightarrow \pm B \sin x$ or $\pm \lambda \cos 2x \rightarrow \pm \mu \sin 2x$. Do not worry about the signs when integrating $\cos x$ or $\cos 2x$ for this mark.
	Note: $\int (1 - 2\cos x)^2 = \int 1 + 4\cos^2 x$ is ok for an attempt at $\int y^2$.
	1 st A1: Correct integration. Eg. $3x - 4\sin x + \frac{2\sin 2x}{2}$ or $x - 4\sin x + \frac{2\sin 2x}{2} + 2x$ oe.
	3rd ddM1: Depends on both of the two previous method marks. (Ignore π).
	Some evidence of substituting their $x = \frac{5\pi}{3}$ and their $x = \frac{\pi}{3}$ and subtracting the correct
	way round. You will need to use your calculator to check for correct substitution of their limits into their integrand if a candidate does not explicitly give some evidence.
	Note: For correct integral and limits decimals gives: $\pi((18.3060) - (0.5435)) = 17.7625\pi = 55.80$
	2nd A1: <i>Two term</i> exact answer of either $\pi(4\pi + 3\sqrt{3})$ or $4\pi^2 + 3\pi\sqrt{3}$ or equivalent.
	Note: The π in the volume formula is only required for the B1 mark and the final A1 mark. Note: Decimal answer of 58.802 without correct exact answer is A0.
	Note: Applying $\int (1 - 2\cos x) dx$ will usually be given no marks in this part.

Questio n Number	Scheme		Marks
7. (a)	i: $9 + \lambda = 2 + 2\mu$ (1) j: $13 + 4\lambda = -1 + \mu$ (2) k: $-3 - 2\lambda = 1 + \mu$ (3)	Any two equations. (Allow one slip).	M1
	Eg: (2) – (3): $16 + 6\lambda = -2$ or (2) – 4(1): $-23 = -9 - 7\mu$	An attempt to eliminate one of the parameters.	dM1
	Leading to $\lambda = -3$ or $\mu = 2$	Either $\lambda = -3$ or $\mu = 2$	A1
	$l_{1}: \mathbf{r} = \begin{pmatrix} 9\\13\\-3 \end{pmatrix} - 3 \begin{pmatrix} 1\\4\\-2 \end{pmatrix} = \begin{pmatrix} 6\\1\\3 \end{pmatrix} \text{ or } l_{2}: \mathbf{r} = \begin{pmatrix} 2\\-1\\1 \end{pmatrix} + 2 \begin{pmatrix} 2\\1\\1 \end{pmatrix} = \begin{pmatrix} 6\\1\\3 \end{pmatrix}$	See notes	ddM1 A1
(b)	$\mathbf{d}_{1} = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}, \mathbf{d}_{2} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \implies \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$	Realisation that the dot product is required between $\pm A\mathbf{d}_1$ and $\pm B\mathbf{d}_2$.	[5] M1
	$\cos \theta = \pm \left(\frac{2 + 4 - 2}{\sqrt{(1)^2 + (4)^2 + (-2)^2} \cdot \sqrt{(2)^2 + (1)^2 + (1)^2}} \right)$	Correct equation.	A1
	$\cos \theta = \frac{4}{\sqrt{21}.\sqrt{6}} \implies \theta = 69.1238974 = 69.1 \ (1 \text{ dp})$	awrt 69.1	A1
(c)	$\overrightarrow{OA} = \begin{pmatrix} 4\\16\\-3 \end{pmatrix}, \overrightarrow{OP} = \begin{pmatrix} 9\\13\\-3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\4\\-2 \end{pmatrix} = \begin{pmatrix} 9+\lambda\\13+4\lambda\\-3-2\lambda \end{pmatrix}$		[3]
	$\overline{AP} = \begin{pmatrix} 9+\lambda\\13+4\lambda\\-3-2\lambda \end{pmatrix} - \begin{pmatrix} 4\\16\\-3 \end{pmatrix} = \begin{pmatrix} \lambda+5\\4\lambda-3\\-2\lambda \end{pmatrix}$		M1 A1
	$\overrightarrow{AP} \bullet \mathbf{d}_1 = 0 \implies \begin{pmatrix} \lambda + 5 \\ 4\lambda - 3 \\ -2\lambda \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = \lambda + 5 + 16\lambda - 12 + 4\lambda = 0$		dM1
	leading to $\{21\lambda - 7 = 0 \implies\} \lambda = \frac{1}{3}$	$\lambda = \frac{1}{3}$	A1
	Position vector $\overrightarrow{OP} = \begin{pmatrix} 9\\13\\-3 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1\\4\\-2 \end{pmatrix} = \begin{pmatrix} 9\frac{1}{3}\\14\frac{1}{3}\\-3\frac{2}{3} \end{pmatrix} \text{ or } \begin{pmatrix} \frac{28}{3}\\\frac{43}{3}\\-\frac{11}{3}\\-\frac{11}{3} \end{pmatrix}$		ddM1 A1
			[6] 14



A1: (M1 on epen) A correct expression for *AP*. Again accept the reverse direction.

dM1: Depends on the previous M. Taking the scalar product of their expression for \overrightarrow{AP} with

 \mathbf{d}_1 or a multiple of \mathbf{d}_1 and equating to 0 and obtaining an equation for λ . The equation must derive from an expression of the form $x_1x_2 + y_1y_2 + z_1z_2 = 0$. Differentiation can be used. See **Additional Solutions**. **A1:** Solving to find $\lambda = \frac{1}{3}$.

ddM1: Depends on both previous Ms. Substitutes their value of the parameter into their expression for \overrightarrow{OP} . Substituting into \overrightarrow{AP} is a common error which loses the mark.

Note: Needs 2 correct co-ordinates if $\lambda = \frac{1}{3}$ found and then *P* stated without method to gain ddM1.

A1: $9\frac{1}{3}\mathbf{i} + 14\frac{1}{3}\mathbf{j} - 3\frac{2}{3}\mathbf{k}$. Accept vector notation or coordinates. *Must be exact.*

7. (c) **Additional Solution 1:** Taking $\overrightarrow{OP} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, in itself, can gain no marks but this may be converted to a parameter at a later stage in the solution and, at that stage, any relevant marks can be awarded. For example, $\overline{AP} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} 4 \\ 16 \\ -3 \end{pmatrix} = \begin{pmatrix} x-4 \\ y-16 \\ z+3 \end{pmatrix}$ leading to: $\begin{pmatrix} x-4 \\ y-16 \\ z+3 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = x - 4 + 4y - 64 - 2z - 6 = 0$ No marks gained at this stage. Using, $\overrightarrow{OP} = \begin{pmatrix} 9\\13\\-3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\4\\-2 \end{pmatrix} = \begin{pmatrix} 9+\lambda\\13+4\lambda\\-3-2\lambda \end{pmatrix}$ on x + 4y - 2z = 74At this stage award M1A1 and dM1 which gives: $9 + \lambda + 4(13 + 4\lambda) - 2(-3 - 2\lambda) = 74$ (which is implied by an equation) $\Rightarrow 21\lambda + 67 = 74 \Rightarrow \lambda = \frac{1}{3}$ A1: Solving to find $\lambda = \frac{1}{2}$. Position vector $\overrightarrow{OP} = \begin{pmatrix} 9\\13\\-3 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1\\4\\-2 \end{pmatrix} = \begin{pmatrix} 9\frac{1}{3}\\14\frac{1}{3}\\-3\frac{2}{2} \end{pmatrix} \text{ or } \begin{pmatrix} \frac{28}{3}\\\frac{43}{3}\\-\frac{43}{3}\\-\frac{11}{3} \end{pmatrix}$ ddM1 A1 Additional Solution 2: Using Differentiation $\overrightarrow{AP} = \begin{pmatrix} 9+\lambda\\13+4\lambda\\-3-2\lambda \end{pmatrix} - \begin{pmatrix} 4\\16\\-3 \end{pmatrix} = \begin{pmatrix} \lambda+5\\4\lambda-3\\-2\lambda \end{pmatrix}$ M1A1: As main scheme $AP^{2} = (\lambda + 5)^{2} + (4\lambda - 3)^{2} + (-2\lambda)^{2} = \{21\lambda^{2} - 14\lambda + 34\}$ $\frac{\mathrm{d}}{\mathrm{d}\lambda} \left(AP^2 \right) = 42\lambda - 14 = 0$ **M1** leading to $\lambda = \frac{1}{3}$ **A1:** Solving to find $\lambda = \frac{1}{3}$ then apply the main scheme.

Question Number	Scheme	Marks
8. (a)	$\left\{\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{(3-\theta)}{125}\right\} \Rightarrow \int \frac{1}{3-\theta} \mathrm{d}\theta = \int \frac{1}{125} \mathrm{d}t \text{or} \int \frac{125}{3-\theta} \mathrm{d}\theta = \int \mathrm{d}t$	B1
	$-\ln(\theta - 3) = \frac{1}{125}t \{+c\}$ or $-\ln(3 - \theta) = \frac{1}{125}t \{+c\}$ See notes.	M1 A1
	$\ln(\theta - 3) = -\frac{1}{125}t + c$	
	$\theta - 3 = e^{-\frac{1}{125}t + c} \text{ or } e^{-\frac{1}{125}t}e^{c}$ $\theta = Ae^{-0.008t} + 3 *$ $Correct \text{ completion}$ $to \ \theta = Ae^{-0.008t} + 3.$	A1
		[4]
(b)	$\{t=0, \theta=16 \Rightarrow\}$ $16 = Ae^{-0.008(0)} + 3; \Rightarrow A = 13$ Substitutes $\theta = 10$ into an equation	M1; A1
	$10 = 13e^{-0.008t} + 3$ of the form $\theta = Ae^{-0.008t} + 3$, or equivalent. <i>See notes.</i>	M1
	Correct algebra to $-0.008t = \ln k$,	M1
	$e^{-0.00kt} = \frac{1}{13} \implies -0.008t = \ln\left(\frac{1}{13}\right)$ where k is a positive value. See <i>notes</i> .	111
	$\left\{ t = \frac{\ln\left(\frac{7}{13}\right)}{(-0.008)} \right\} = 77.3799 = 77 \text{ (nearest minute)} $ awrt 77	A1
		[5] 9
8. (a)	B1: (M1 on epen) Separates variables as shown. $d\theta$ and dt should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs. M1: Both $\pm \lambda \ln(3-\theta)$ or $\pm \lambda \ln(\theta-3)$ and $\pm \mu t$ where λ and μ are constants.	
	A1: For $-\ln(\theta - 3) = \frac{1}{125}t$ or $-\ln(3 - \theta) = \frac{1}{125}t$ or $-125\ln(\theta - 3) = t$ or $-125\ln(3 - \theta) = t$	
	Note: $+c$ is not needed for this mark. A1: Correct completion to $\theta = Ae^{-0.008t} + 3$. Note: $+c$ is needed for this mark.	
	Note: $\ln(\theta - 3) = -\frac{1}{125}t + c$ leading to $\theta - 3 = e^{-\frac{1}{125}t} + e^c$ or $\theta - 3 = e^{-\frac{1}{125}t} + A$, would be final	
	A0.	
	Note: From $-\ln(\theta - 3) = \frac{1}{125}t + c$, then $\ln(\theta - 3) = -\frac{1}{125}t + c$	
	$\Rightarrow \theta - 3 = e^{-\frac{1}{125}t + c} \text{ or } \theta - 3 = e^{-\frac{1}{125}t}e^{c} \Rightarrow \theta = Ae^{-0.008t} + 3 \text{ is required for A1.}$	
	Note: From $-\ln(3-\theta) = \frac{1}{125}t + c$, then $\ln(3-\theta) = -\frac{1}{125}t + c$	
	$\Rightarrow 3 - \theta = e^{-\frac{1}{125}t^{+c}} \text{ or } 3 - \theta = e^{-\frac{1}{125}t}e^{c} \Rightarrow \theta = Ae^{-0.008t} + 3 \text{ is sufficient for A1.}$	
	Note: The jump from $3 - \theta = Ae^{-\frac{1}{125}t}$ to $\theta = Ae^{-0.008t} + 3$ is fine.	

Note: $\ln(\theta - 3) = -\frac{1}{125}t + c \implies \theta - 3 = Ae^{-\frac{1}{125}t}$, where candidate writes $A = e^c$ is also acceptable.

8. (b)		
	 M1: (B1 on epen) Substitutes θ = 16, t = 0, into eit constant or the printed equation. Note: You can imply this method. A1: (M1 on epen) A = 13. Note: θ = 13e^{-0.008t} + 3 M1A1. M1: Substitutes θ = 10 into an equation of the fo where A is a positive or negative numerical M1: Uses correct algebra to rearrange their equation where k is a positive numerical value. A1: awrt 77 or awrt 1 hour 17 minutes. Alternative Method 1 for part (b) 	I mark. 3 without any working implies the first two marks, rm $\theta = Ae^{-0.008t} + 3$, or equivalent. I value and A can be equal to 1 or -1.
	$\int \frac{1}{3-\theta} d\theta = \int \frac{1}{125} dt \implies -\ln(\theta-3) = \frac{1}{125}t + c$	
	$\begin{cases} 1 3 - \theta \\ 1 25 \end{cases} = 10 \Rightarrow \begin{cases} 1 25 \\ -\ln(16 - 3) = \frac{1}{125}(0) + c \\ \Rightarrow c = -\ln 13 \end{cases}$	M1: Substitutes $t = 0, \theta = 16$, into $-\ln(\theta - 3) = \frac{1}{125}t + c$ A1: $c = -\ln 13$
	$-\ln(\theta - 3) = \frac{1}{125}t - \ln 13$ or $\ln(\theta - 3) = -\frac{1}{125}t$	$+\ln 13$
	125 125	M1: Substitutes $\theta = 10$ into an equation of the
	$-\ln(10-3) = \frac{1}{125}t - \ln 13$	form $\pm \lambda \ln(\theta - 3) = \pm \frac{1}{125}t \pm \mu$
	$\ln 13 - \ln 7 = \frac{1}{125}t$	where λ , μ are numerical values. M1: Uses correct algebra to rearrange their equation into the form $\pm 0.008t = \ln C - \ln D$, where <i>C</i> , <i>D</i> are <i>positive numerical values</i> .
	t = 77.3799 = 77 (nearest minute)	A1: awrt 77.
	$\frac{Alternative Method 2 for part (b)}{\int \frac{1}{3-\theta} d\theta} = \int \frac{1}{125} dt \implies -\ln 3-\theta = \frac{1}{125}t + c$	
	$\{t=0, \theta=16 \Rightarrow\} -\ln 3-16 = \frac{1}{125}(0) + c$ $\Rightarrow c = -\ln 13$	M1: Substitutes $t = 0, \theta = 16$, into $-\ln(3 - \theta) = \frac{1}{125}t + c$ A1: $c = -\ln 13$
	$-\ln 3-\theta = \frac{1}{125}t - \ln 13$ or $\ln 3-\theta = -\frac{1}{125}t$	
	$-\ln(3-10) = \frac{1}{125}t - \ln 13$	M1: Substitutes $\theta = 10$ into an equation of the form $\pm \lambda \ln(3 - \theta) = \pm \frac{1}{125}t \pm \mu$ where $\lambda = \mu$ are numerical values
	$\ln 13 - \ln 7 = \frac{1}{125}t$	where λ , μ are numerical values. M1: Uses correct algebra to rearrange their equation into the form $\pm 0.008t = \ln C - \ln D$,

where *C*, *D* are *positive numerical values*.

A1: awrt 77.

8. (b)	Alternative Method 3 for part (b)	
	$\int_{16}^{10} \frac{1}{3-\theta} \mathrm{d}\theta = \int_{0}^{t} \frac{1}{125} \mathrm{d}t$	
	$= \left[-\ln\left 3 - \theta\right \right]_{16}^{10} = \left[\frac{1}{125}t \right]_{0}^{t}$	
	$-\ln 7\ln 13 = \frac{1}{125}t$	M1A1: $\ln 13$ M1: Substitutes limit of $\theta = 10$ correctly. M1: Uses correct algebra to rearrange their own equation into the form $\pm 0.008t = \ln C - \ln D$,
	t = 77.3799 = 77 (nearest minute)	where <i>C</i> , <i>D</i> are <i>positive numerical values</i> . A1: awrt 77.
	<u>Alternative Method 4 for part (b)</u>	M1*: Writes down a pair of equations in <i>A</i> and <i>t</i>
	$\{\theta = 16 \Rightarrow\} 16 = Ae^{-0.008t} + 3$ $\{\theta = 10 \Rightarrow\} 10 = Ae^{-0.008t} + 3$, for $\theta = 16$ and $\theta = 10$ with either A unknown or A being a positive or negative value.
	$\left\{ \theta = 10 \Longrightarrow \right\}$ $10 = Ae^{-0.008t} + 3$	A1: Two equations with an unknown <i>A</i> .
	$-0.008t = \ln\left(\frac{13}{A}\right)$ or $-0.008t = \ln\left(\frac{7}{A}\right)$	M1: Uses <i>correct algebra</i> to solve both of their equations leading to answers of the form $-0.008t = \ln k$, where <i>k</i> is <i>a positive numerical value</i> .
	$t_{(1)} = \frac{\ln\left(\frac{13}{A}\right)}{-0.008}$ and $t_{(2)} = \frac{\ln\left(\frac{7}{A}\right)}{-0.008}$	value.
	$t_{(1)} = \frac{1}{-0.008} \text{ and } t_{(2)} = \frac{1}{-0.008}$ $t = t_{(1)} - t_{(2)} = \frac{\ln\left(\frac{13}{A}\right)}{-0.008} - \frac{\ln\left(\frac{7}{A}\right)}{-0.008}$ $\left(\ln\left(\frac{7}{12}\right) \right)$	M1: Finds difference between the two times. (either way round).
	$\left\{ t = \frac{\ln\left(\frac{7}{13}\right)}{\left(-0.008\right)} \right\} = 77.3799 = 77 \text{ (nearest minute)}$	A1: awrt 77. Correct solution only.