

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Core Mathematics C3 (6665)

June 2007 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme	Marks
1. (<i>a</i>)	$\ln 3x = \ln 6$ or $\ln x = \ln \left(\frac{6}{3}\right)$ [implied by 0.69] or $\ln \left(\frac{3x}{6}\right) = 0$	M1
	x = 2 (only this answer)	A1 (cso) (2)
<i>(b)</i>	$(e^{x})^{2} - 4e^{x} + 3 = 0$ (any 3 term form)	M1
	$(e^x - 3)(e^x - 1) = 0$	
	$e^x = 3$ or $e^x = 1$ Solving quadratic	M1 dep
	$x = \ln 3$, $x = 0$ (or ln 1)	M1 A1 (4)
		(6 marks)

Notes: (a) Answer x = 2 with no working or no incorrect working seen: M1A1 Beware x = 2 from $\ln x = \frac{\ln 6}{\ln 3} = \ln 2$ M0A0 $\ln x = \ln 6 - \ln 3 \implies x = e^{(\ln 6 - \ln 3)}$ allow M1, x = 2 (no wrong working) A1

(b) 1^{st} M1 for attempting to multiply through by e^x : Allow y, X, even x, for e^x Be generous for M1 e.g $e^{2x} + 3 = 4$, $e^{x^2} + 3 = 4e^x$, $3 y^2 + 1 = 12y$ (from $3 e^{-x} = \frac{1}{3e^x}$), $e^x + 3 = 4e^x$

 2^{nd} M1 is for solving quadratic (may be by formula or completing the square) as far as getting two values for e^x or y or X etc

 3^{rd} M1 is for converting their answer(s) of the form $e^x = k$ to x = lnk (must be exact) A1 is for ln3 **and** ln1 or 0 (Both required and no further solutions)

2.	<i>(a)</i>	$2x^{2} + 3x - 2 = (2x - 1)(x + 2)$ at any stage	B1
		$f(x) = \frac{(2x+3)(2x-1) - (9+2x)}{(2x-1)(x+2)}$ f.t. on error in denominator factors	M1, A1√
		(need not be single fraction)	
		Simplifying numerator to quadratic form $\left[= \frac{4x^2 + 4x - 3 - 9 - 2x}{(2x - 1)(x + 2)} \right]$	M1
		Correct numerator $= \frac{4x^2 + 2x - 12}{[(2x-1)(x+2)]}$	A1
		Factorising numerator, with a denominator $=\frac{2(2x-3)(x+2)}{(2x-1)(x+2)}$ o.e.	M1
		$\begin{bmatrix} = \frac{2(2x-3)}{2x-1} \end{bmatrix} = \frac{4x-6}{2x-1} (\clubsuit)$	A1 cso (7)
	Alt.(a)	$2x^{2} + 3x - 2 = (2x - 1)(x + 2)$ at any stage B1	
		$f(x) = \frac{(2x+3)(2x^2+3x-2) - (9+2x)(x+2)}{(x+2)(2x^2+3x-2)}$ M1A1 f.t.	
		$4x^3 + 10x^2 - 8x - 24$	
		$=\frac{1}{(x+2)(2x^2+3x-2)}$	
		$= \frac{2(x+2)(2x^{2}+x-6)}{(x+2)(2x^{2}+3x-2)} \text{ or } \frac{2(2x-3)(x^{2}+4x+4)}{(x+2)(2x^{2}+3x+2)} \text{ o.e.}$ Any one linear factor × quadratic factor in numerator M1, A1 $= \frac{2(x+2)(x+2)(2x-3)}{(x+2)(2x^{2}+3x-2)} \text{ o.e.} $ M1 $= \frac{2(2x-3)}{2x-1} \frac{4x-6}{2x-1} (\clubsuit) $ A1	
	<i>(b)</i>	Complete method for f'(x); e.g f'(x) = $\frac{(2x-1) \times 4 - (4x-6) \times 2}{(2x-1)^2}$ o.e	M1 A1
		8 0/2 1>-2	
		$=\frac{1}{(2x-1)^2}$ or $8(2x-1)^2$	A1 (3)
		Not treating f^{-1} (for f') as misread	(10 marks)
No	tes: (a	1) 1 st M1 in either version is for correct method	
1 st A1 Allow $\frac{2x+3(2x-1)-(9+2x)}{9}$ or $\frac{(2x+3)(2x-1)-9+2x}{9}$ or $\frac{2x+3(2x-1)-9+2x}{9}$ (fractions)			
(2x-1)(x+2) $(2x-1)(x+2)$ $(2x-1)(x+2)$			
$2^{n\alpha}$ M1 in (main a) is for forming 3 term quadratic in numerator 3^{rd} M1 is for factorising their quadratic (usual rules) : factor of 2 need not be extracted			
(*) A1 is given answer so is cso			
Alt (a) 3 rd M1 is for factorising resulting quadratic			
Notice that B1 likely to be scored very late but on ePen scored first (b) SC : For M allow + given expression or one error in product rule			
Alt: Attempt at $f(x) = 2 - 4(2x-1)^{-1}$ and diff M1: $k(2x-1)^{-2}$ A1: A1 as above			
		Accept $8(4x^2 - 4x + 1)^{-2}$. Differentiating original function – mark as sc	heme.
	f(+x) + f(-x) + f(-x		

Question Number	Scheme	Marks	
3. (<i>a</i>)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 \mathrm{e}^x + 2x \mathrm{e}^x$	M1,A1,A1 (3)	
<i>(b)</i>	If $\frac{dy}{dx} = 0$, $e^{x}(x^{2} + 2x) = 0$ setting $(a) = 0$	M1	
	$\begin{bmatrix} e^{x} \neq 0 \end{bmatrix} \qquad \begin{array}{c} x(x+2) = 0 \\ (x=0) & \text{or} \\ x = 0, y = 0 \\ \end{array} \qquad \begin{array}{c} \text{and} \\ x = -2, y = 4e^{-2} (=0.54) \end{array}$	$\begin{array}{c} A1\\ A1 \sqrt{} \end{array} (3)$)
(c)	$\frac{d^2 y}{dx^2} = x^2 e^x + 2x e^x + 2x e^x + 2e^x \qquad \left[= (x^2 + 4x + 2) e^x \right]$	M1, A1 (2))
(<i>d</i>)	$x = 0, \frac{d^2 y}{dx^2} > 0 (=2) \qquad x = -2, \frac{d^2 y}{dx^2} < 0 [= -2e^{-2} (= -0.270)]$ M1: Evaluate, or state sign of, candidate's (c) for at least one of candidate's <i>x</i> value(s) from (b)	M1	
	∴minimum ∴maximum	A1 (cso) (2))
Alt.(d)	For M1: Evaluate, or state sign of, $\frac{dy}{dx}$ at two appropriate values – on either side of at least one of their answers from (b) or Evaluate y at two appropriate values – on either side of at least one of their answers from (b) or Sketch curve		
		(10 marks))

- Notes: (a) Generous M for attempt at f(x)g'(x) + f'(x)g(x)1st A1 for one correct, 2nd A1 for the other correct. Note that x^2e^x on its own scores no marks
 - Note that $x^2 e^x$ on its own scores no marks (b) 1^{st} A1 (x = 0) may be omitted, but for 2^{nd} A1 both sets of coordinates needed ; f.t only on candidate's x = -2
 - (c) M1 requires complete method for candidate's (a), result may be unsimplified for A1
 - (d) A1 is cso; x = 0, min, and x = -2, max and no incorrect working seen., or (in alternative) sign of $\frac{dy}{dx}$ either side correct, or values of y appropriate to t.p.

Need only consider the quadratic, as may assume $e^x > 0$.

If all marks gained in (a) and (c), and correct x values, give M1A1 for correct statements with no working

Question Number	Question Scheme		Marks	
4. (<i>a</i>)	$x^{2}(3-x) - 1 = 0$ o.e. (e.g. $x^{2}(-x+3) = 1$)		M1	
	(b) $x = \sqrt{\frac{1}{3-x}}$ $x = \sqrt{\frac{1}{3-x}}$ $x = \sqrt{\frac{1}{3-x}}$ $x = \sqrt{\frac{1}{3-x}}$ (*) Note(*), answer is given: need to see appropriate working and A1 is cso [Reverse process: Squaring and non-fractional equation M1, form f(x) A1] (b) $x_2 = 0.6455, x_3 = 0.6517, x_4 = 0.6526$ $1^{\text{st}} \text{ B1 is for one correct, } 2^{\text{nd}} \text{ B1 for other two correct}$ If all three are to greater accuracy, award B0 B1		A1 (cso)	(2)
(b)			B1; B1	(2)
(c)	Choose values in interval (0.6525, 0.6535) or tighter and evaluate both $f(0.6525) = -0.0005$ (372 $f(0.6535) = 0.002$ (101		M1	
	At least one correct "up to bracket", i.e0.0005 or Change of sign , $\therefore x = 0.653$ is a root (correct) to 3 d.	0.002 .p.	A1 A1	(3)
	Requires both correct "up to bracket" and conclusion	as above	(7 ma	arks)
Alt (i)	Continued iterations at least as far as x_6	M1	, , , , , , , , , , , , , , , , , , ,	,
Alt (ii)	Alt (ii) $\begin{array}{l} x_5 = 0.6527, x_6 = 0.6527, x_{7=} \dots \text{ two correct to at least 4 s.f.} & A1 \\ \text{Conclusion : Two values correct to 4 d.p., so } 0.653 \text{ is root to 3 d.p.} & A1 \\ \text{If use } g(0.6525) = 0.6527 > 0.6525 \text{ and } g(0.6535) = 0.6528 < 0.6535 \text{ M1A1} \\ \text{Conclusion : Both results correct, so } 0.653 \text{ is root to 3 d.p.} & A1 \\ \end{array}$			
_				
5. (<i>a</i>)	Finding g(4) = k and f(k) = or $fg(x) = ln\left(\frac{4}{x-3}\right)$	- 1)	M1	
	$[f(2) = \ln(2x2 - 1)$ $fg(4) = \ln(4 - 1)]$	$= \ln 3$	A1	(2)
<i>(b)</i>	$y = \ln(2x-1) \implies e^y = 2x-1 \text{ or } e^x = 2y-1$		M1, A1	
	$f^{-1}(x) = \frac{1}{2}(e^x + 1)$ Allow $y = \frac{1}{2}(e^x + 1)$		A1	
	Domain $x \in \Re$ [Allow \Re , all reals, $(-\infty, \infty)$] independent	B1	(4)
(C)	y	should appear to be asymptote	B1	
	$\frac{2}{3}$ $x = 3$	Equation x = 3 needed, may see in diagram (ignore others)	B1 ind.	
	$ \xrightarrow{0} \xrightarrow{3} x $	Intercept $(0, \frac{2}{3})$ no		
		other; accept $y = \frac{2}{3}$ (0.67) or on graph	B1 ind	(3)
<i>(d)</i>	(d) $\left \begin{array}{c} \frac{2}{x-3} = 3 \\ 2 \end{array} \right \Rightarrow x = 3\frac{2}{3}$ or exact equiv.		B1	
Alt: $\frac{2}{x-3} = -3, \implies x = 2\frac{1}{3} \text{ or exact equiv.}$ Note: $2 = 3(x+3) \text{ or } 2 = 3(-x-3) \text{ o.e. is M0A0}$ Alt: Squaring to quadratic $(9x^2 - 54x + 77 = 0)$ and solving M1: B1A1			M1, A1	(3)
		ving M1· B1A1	(12 m	arke)
And j squaring to quadratic $(9x - 34x + 77 = 0)$ and solving with DIAT			ал т ъзј	

6. (<i>a</i>)	Complete method for R: e.g. $R \cos \alpha = 3$, $R \sin \alpha = 2$, $R = \sqrt{(3^2 + 2^2)}$	M1		
	$R = \sqrt{13}$ or 3.61 (or more accurate)	A1		
	Complete method for $\tan \alpha = \frac{2}{3}$ [Allow $\tan \alpha = \frac{3}{2}$]	M1		
	$\alpha = 0.588$ (Allow 33.7°)	A1	(4)	
<i>(b)</i>	Greatest value = $\left(\sqrt{13}\right)^4 = 169$	M1, A	A1 (2)	
(c)	$\sin(x+0.588) = \frac{1}{\sqrt{13}}$ (= 0.27735) $\sin(x + \text{their } \alpha) = \frac{1}{\frac{1}{\text{their } R}}$	M1		
	$(x + 0.588) = 0.281(03 \text{ or } 16.1^{\circ})$	A1		
	(x + 0.588) = π - 0.28103 Must be π - their 0.281 or 180° - their 16.1°	M1		
	or $(x + 0.588)$ = $2\pi + 0.28103$ Must be $2\pi +$ their 0.281 or $360^{\circ} +$ their 16.1°	M1		
	x = 2.273 or $x = 5.976$ (awrt) Both (radians only)	A1	(5)	
	If 0.281 or 16.1° not seen, correct answers imply this A mark	(1	1 marks)	
Notes: (a) 1^{st} M1 on Epen for correct method for R, even if found second 2^{nd} M1 for correct method for $\tan \alpha$ No working at all: M1A1 for $\sqrt{13}$, M1A1 for 0.588 or 33.7°. N.B. Rcos $\alpha = 2$, Rsin $\alpha = 3$ used, can still score M1A1 for R, but loses the A mark for α . $\cos \alpha = 3$, $\sin \alpha = 2$: apply the same marking.				
(b) M1 for realising $sin(x + \alpha) = \pm 1$, so finding R ⁴ .				

(c) Working in mixed degrees/rads : first two marks availableWorking consistently in degrees: Possible to score first 4 marks

[Degree answers, just for reference, Only are 130.2° and 342.4°] Third M1 can be gained for candidate's $0.281 - \text{candidate's } 0.588 + 2\pi$ or equiv. in degrees **One of the answers correct in radians or degrees implies the corresponding M mark.**

Alt: (c)(i) Squaring to form quadratic in sin x or cos xM1 $[13\cos^2 x - 4\cos x - 8 = 0, 13\sin^2 x - 6\sin x - 3 = 0]$ Correct values for cos x = 0.953..., -0.646; or sin x = 0.767, 2.27 awrtA1For any one value of cos x or sinx, correct method for two values of xM1x = 2.273 or x = 5.976 (awrt) Both seen anywhereA1Checking other values (0.307, 4.011 or 0.869, 3.449) and discardingM1

(ii) Squaring and forming equation of form $a \cos 2x + b \sin 2x = c$ $9 \sin^2 x + 4 \cos^2 x + 12 \sin 2x = 1 \implies 12 \sin 2x + 5 \cos 2x = 11$ Setting up to solve using R formula e.g. $\sqrt{13} \cos(2x - 1.176) = 11$ M1

$$(2x-1.176) = \cos^{-1}\left(\frac{11}{\sqrt{13}}\right) = 0.562(0...)$$
 (\$\alpha\$) A1

$$(2x-1.176) = 2\pi - \alpha, \ 2\pi + \alpha, \dots$$
 M1

x = 2.273 or x = 5.976 (awrt) Both seen anywhere A1 Checking other values and discarding M1

Question Number	Scheme	Marks
7. (<i>a</i>)	$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \frac{\sin^2\theta + \cos^2\theta}{\cos\theta\sin\theta}$ M1 Use of common denominator to obtain single fraction	M1
	$= \frac{1}{\cos \theta \sin \theta}$ M1 Use of appropriate trig identity (in this case $\sin^2 \theta + \cos^2 \theta = 1$)	M1
	$= \frac{1}{\frac{1}{2}\sin 2\theta}$ Use of $\sin 2\theta = 2\sin\theta\cos\theta$ = $2\cos^2\theta$ (*)	M1
Alt.(a)	$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \tan\theta + \frac{1}{\tan\theta} = \frac{\tan^2\theta + 1}{\tan\theta} \qquad M1$	A1 CS0 (4)
	$=\frac{\sec^2\theta}{\tan\theta}$ M1	
	$= \frac{1}{\cos\theta\sin\theta} = \frac{1}{\frac{1}{2}\sin 2\theta} \qquad M1$	
	$= 2 \operatorname{cosec} 2\theta (\textcircled{R}) (\operatorname{cso}) A1$ If show two expressions are equal, need conclusion such as QED, tick, true.	
(b)	$\begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	B1
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B1 dep. (2)
(c)	$2\csc 2\theta = 3$ $\sin 2\theta = \frac{2}{2}$ Allow $\frac{2}{2} = 3$ [M1 for equation in $\sin 2\theta$]	M1 A1
	$3 \sin 2\theta \\ (2\theta) = [41.810^{\circ}, 138.189^{\circ}; 401.810^{\circ}, 498.189^{\circ}] \\ 1 \text{ st } \text{M1 for } \alpha, 180 - \alpha; 2^{\text{nd}} \text{ M1 adding } 360^{\circ} \text{ to at least one of values} \\ \theta = 20.9^{\circ}, 69.1^{\circ}, 200.9^{\circ}, 249.1^{\circ} (1 \text{ d.p.}) \qquad \text{awrt}$	M1; M1
Note	1 st A1 for any two correct, 2 nd A1 for other two Extra solutions in range lose final A1 only SC: Final 4 marks: θ = 20.9°, after M0M0 is B1; record as M0M0A1A0	A1,A1 (6)
Alt.(c)	$\tan \theta + \frac{1}{\tan \theta} = 3$ and form quadratic, $\tan^2 \theta - 3 \tan \theta + 1 = 0$ M1, A1 (M1 for attempt to multiply through by $\tan \theta$, A1 for correct equation above) Solving quadratic $[\tan \theta = \frac{3 \pm \sqrt{5}}{2} = 2.618 \text{ or } = 0.3819]$ M1	
	$\theta = 69.1^{\circ}, 249.1^{\circ}$ $\theta = 20.9^{\circ}, 200.9^{\circ}$ (1 d.p.) M1, A1, A1 (M1 is for one use of $180^{\circ} + \alpha^{\circ}$, A1A1 as for main scheme)	(12 marks)

Question Number	Scheme	Marks
8. (<i>a</i>)	$D = 10, t = 5, x = 10e^{-\frac{1}{8} \times 5}$ = 5.353 awrt	M1 A1 (2)
(b)	$D = 10 + 10e^{-\frac{5}{8}}, t = 1,$ $x = 15.3526 \times e^{-\frac{1}{8}}$ x = 13.549 (*)	M1 A1 cso (2)
Alt.(b)	$x = 10e^{-\frac{1}{8}\times 6} + 10e^{-\frac{1}{8}\times 1}$ M1 $x = 13.549$ (*) A1 cso	
(<i>c</i>)	$15.3526e^{-\frac{1}{8}T} = 3$	M1
	$e^{-\frac{1}{8}T} = \frac{3}{15.3526} = 0.1954$	
	$-\frac{1}{8}T = \ln 0.1954$	M1
	T = 13.06 or 13.1 or 13	A1 (3)
		(7 marks)

Notes: (b) (main scheme) M1 is for $(10+10e^{-\frac{5}{8}})e^{-\frac{1}{8}}$, or $\{10 + \text{their}(a)\}e^{-(1/8)}$

N.B. The answer is given. There are many correct answers seen which deserve M0A0 or M1A0 (If adding two values, these should be 4.724 and 8.825)

(c) 1^{st} M is for $(10+10e^{-\frac{5}{8}}) e^{-\frac{T}{8}} = 3$

 2^{nd} M is for converting $e^{-\frac{T}{8}} = k$ (k > 0) to $-\frac{T}{8} = \ln k$. This is independent of 1^{st} M.

Trial and improvement: M1 as scheme,

M1 correct process for their equation (two equal to 3 s.f.) A1 as scheme